
1

Digital Computer Organization
Prof. P. K. Biswas

Department of Electronic and Electrical Communication Engineering,
Indian Institute of Technology, Kharagpur

Lecture No. # 11
Pipeline CPU – II

In the last class we have started discussion on MIPS processor architecture and to build up the
MIPS processor architecture, we have taken some examples some representative examples from
the MIPS instruction set.

(Refer Slide Time: 00:01:15 min)

One of the examples we have taken is add instruction which is a register type or R type
instruction. Then two instructions of M type or memory reference instructions we have
considered, they are load word and store word and one branch instruction that is branch on equal
instruction. We have seen in different steps for execution of these instructions, what are the data
elements that will be required and what we will be the data path connecting those data elements?
So you have seen that in case of instruction fetch operation which is of course common for any
of the instructions, we need program counter and we have said that we have an instruction
memory. So program counter output gives address to the instruction memory when from the
instruction memory, you get the instruction opcode output. Simultaneously the program counter
is incremented by 4 and this incrementation operation is done with the help of a adder and our
assumption in this case is all the instructions have the same length that is 4 bytes. This is the data
path that will be used for instruction fetch operation.

2

(Refer Slide Time: 00:02:30 min)

The next for an R type operation that is an add instruction, the format is ADD R1, R2 and R3
where the contents of R1 and R2 will be added and the result will be stored in R3 and the data
units that are involved for execution of this instruction is set of registers, we put every registers
in one block. So this becomes set of registers where the addresses of the registers R1 R2 and R3
will come from the instruction. So we have two registers to be read that is register R1 and
register R2, so those addresses will be available on these lines and one register to be written that
is register R3, the address will be available on write register address lines. Then output from the
register files, the outputs of the registers which are addressed by these two address lines are
added through this ALU and the result is written back into the register file through this write
data. This data will be written into the register whose address is available on the write register
address and this is the data path and the data units which will be needed for execution of this add
instruction and this is a typical register type instruction.

Then for memory type instructions we have considered load word and store word instructions
where these instructions have this format load word or store word R1, offset R2 where R2 is the
base register. The content of this register R2 is added with offset, offset after sign extension. To
give you the physical address in the memory and for load operation, you have to read that
particular memory location and store the data in register R1. Whereas for store word, the data
from register R1 will be stored into the addressed memory location.

3

(Refer slide Time: 00:03:56 min)

The data path and data units that are involved in this operation are this (Refer Slide Time:
00:04:42). This obviously will have their register files because two registers are involved.
Register R2 is always to be read, R1 may be read or may be written into depending upon the type
of instruction that you execute, whether it is load word or store word. In this case ALU is used
for computation of the physical address in the memory, not for performing any add operation like
we have seen in case of register type instructions. So this ALU now computes the physical
address in the memory location which is to be accessed either for reading purpose or for writing
purpose.

(Refer Slide Time: 00:05:22 min)

4

Then the branch type of instruction that we have seen that is branch on equal R1 R2 offset where
R1 and R2, if these two registers contents are same then the program counter will be loaded with
a value offset and this offset is from the current program counter value. So again in this case, this
ALU is used for comparing R1 and R2 that means ALU has to work in subtract mode. If the
ALU output is zero in that case, the effective branch address has to be loaded into the program
counter and for that what you have to do is with the current program counter value, you have to
add the sign extended offset after giving a left shift by two bits. This left shift of two bits ensures
that always the branch address that is generated starts at the starting location of a word of 4
bytes. So that ensures that always this branch address will be the first address of an instruction
because every instruction consists of four bytes. These are the data units and the data paths
which are involved while execution of BEQ instruction.

(Refer Slide Time: 00:06:40 min)

Then you have seen that how to combine all these data paths and the data units by using the
multiplexers because in many cases we have that data from various sources has to go to a single
destination. So all those source outputs are to be multiplexed and the multiplexer output will go
to the destination. Accordingly we have one multiplexer here and another multiplexer here. So
this is the basic design of this MIPS CPU.

However you will find that in this particular CPU, we have duplication of data units. For
example here we have two adder units and one ALU, though these addition operations can be
performed by this same ALU, if we design our data path properly. Not only that, here in we
need two different memory units, one is the instruction memory and the other one is data
memory. So instruction memory contains only the instructions, the data memory contains the
data. So whenever you have to read a data or you have to write a data by using load word or store
word instructions, the data will be read from or written into this data memory whereas the
instruction will always come from the instruction memory. Now let us see that how we can avoid
this duplication because if we can properly design the data path and you can avoid the
duplication, a lot of hardware cost can be saved.

5

So the first thing that you have to do is to avoid duplication is that whether we can combine this
data memory and instruction memory. So that we will have a single memory unit which will
store both the instruction and data.

(Refer Slide Time: 00:08:28 min)

So for optimization of hardware, the first operation that we will do is we will have a single
memory which will store both the data and the instruction. Now we don’t have any more
separate instruction memory and data memory. We have the memory unit M. Now since we are
storing both the instruction and data in the same memory and we have seen before that when an
instruction is to be fetched from the memory, the address has to come from the program counter.
When a data has to be accessed from the memory, the address has to come from the ALU output
because it is the ALU which computes the effective address of the data. There are two sources of
addresses from where the address to this memory can be available, one is program counter, other
one is ALU.

Naturally we have to have some multiplexer which will multiplex the program counter output
and the ALU output, so that the proper address can reach the memory. So we have a multiplexer
and the multiplexer output gives the address of the memory. We will have two inputs to this
multiplexer, one input will come from the program counter and the other input will come from
the ALU output. so we will connect this later. Now output of the memory can either be an
instruction or it can also be a data. Now we put it this way that if it is an instruction, we will load
the instruction in a register called an instruction register.

In our earlier design, initial design you will find that we did not have anything called an
instruction register. Now we will put a register called an instruction register and if the output of
the memory is an instruction, the instruction will be stored in the instruction register. Whereas if
the output of the memory is a data, we will put that in another register and we will call this as
memory data register. So it will be memory data register or MDR.

6

Now after this stage, as you have seen here previous design that once an instruction is read, you
have to access a set of registers. So between this memory and the register, now this memory is
combined. It is an instruction memory cum data memory. So between the memory and the
register bank or register files, we have put two more registers. one is instruction register and
another one is memory data register.

Now the addresses to different registers has to come from the instruction and because we have
stored the instruction in instruction register, so all these connections earlier which was coming
from the instruction memory directly, now it has to come from the instruction register. So the
next component that we will put is the register bank, so a set of registers and all the register
addresses to this register will now come from the instruction register. So we will have read
register addresses, we will also have the write register address. These are now coming from the
instruction register. Now the registers which are read, the outputs will be available on this output.
These outputs have to go to the ALU. So we have to put one ALU and before ALU, we will latch
this register outputs in two more intermediate registers. Let us call them registers A and B. One
is register A and the other register is B and from these registers, the output will go to the ALU.
So this is the ALU.

Now our aim is that we were having in our basic design, two adders and one ALU. These two
adders were responsible for computing the addresses, instruction addresses and ALU was used
for performing the register type instructions, executing the register type instructions and also for
calculating the memory data address. Now all these we want to perform with the help of single
ALU. So obviously there are a number of sources from which data is to be fed to the ALU. That
means at the input of the ALU, we must have some multiplexer to multiplex different data
sources. So we will have one multiplexer here, we will have another multiplexer here. Outputs of
the multiplexers will give data to the ALU. For this multiplexer one of the input will come from
register A and the other input will come from the program counter because the same ALU, we
will also use for calculating the instruction address.

Now to this multiplexer, one of the inputs is the output of register B. The other input can come
from the instruction because in many cases, the offset address which is specified within the
instruction that has to be added with the program counter. So one of the inputs to this multiplexer
will come from the instruction register and whatever we get from the instruction register that is
from here, the first operation we have said that we will perform on this is sign extension and the
second operation that were to be performed on this is left shift by two bits. Now there are
operations in which case we need only the sign extension.

There are cases when we need both sign extension and left shift operation. Only sign extension
will be needed when we want to compute the address of the data in the memory. We need both of
them when this offset will be used for calculation of branch address. That means to this
multiplexer, I have to provide this input. One of the multiplexer inputs will be this one that is
only sign extension. The other input to the multiplexer can be after the left shift bit operation.
Another input to this multiplexer will be a fixed number that is 4 and this fixed number is used
whenever after fetching an instruction, you compute the next instruction address. So that sets
these multiplexers.

7

Now ALU output, whatever ALU will compute depending upon what is the control signal that is
provided to the ALU and depending upon which of the inputs to this multiplexers are selected.
Output of the ALU, we will latch another register which let us call as ALU out. Now as I said
that the other input to this multiplexer will come from the program counter. So the second input
of the upper multiplexer comes from the program counter. So this completes this part.

The next is register. For registers you find that there is one write input data to the registers and
this write data input to the register will be used from the data memory output. When the
instruction that is executed is a load word instruction or this can also be from the output of the
ALU, when the instruction that is to be executed is an R type instruction. So that says that to this
input, again I have to have a multiplexer. The multiplexer output will provide the write data to
these set of registers. One of these multiplexer inputs will come from the memory data register
and this path will be used when you perform a load word instruction, execute a load word
instruction and the other input to this multiplexer will come from the ALU out. This path will be
used when the instruction to be executed is an R type instruction like add instruction. So I put
this ALU out to the other input of this multiplexer. Not only that this ALU also computes the
program counter value.

For calculation of the next instruction address, for calculation of the jump address all those
things this ALU computes the next program counter value. So the other input of this first
multiplexer will also come from the same ALU output. Is it okay? Anything else is left? That is
the write data to the memory. So when I want to perform a store word operation, in case of store
word the data which is read from the register file that has to come to memory. That means I have
to have one memory data input from one of the registers. So that completes the entire data path
of this CPU where we have been able to avoid duplication of the data units.

In this case all these are multiplexers, this is a multiplexer, this is also a multiplexer, this is also a
multiplexer. Now when we have done this design, you will find that this particular design… One
more path that I have missed that is loading the program counter value. The program counter
input has to come from the ALU output. So this completes the entire data path design of the
CPU. Now this CPU as we said that in our earlier case, the basic design was suitable even for a
single clock period execution. Every instruction could be executed in a single clock period in this
basic design.

When we convert this design to this design, now we can make use of multiple clock periods to
execute an instruction. What is the advantage we gain? That is even the instructions which
require shorter delay that can be incorporated. So the CPU will be more efficient. Of course the
sequence in which the operations are to be done that has to be decided by the control unit which I
have not shown in this diagram. So it is quite obvious that this instruction register output will go
to an instruction decoder. The instruction decoder output goes to a timing and control circuit and
the timing and control circuit will generate the required control signals to execute any instruction
in proper sequence. What are the control signals that will be needed? Load program counter, read
memory, write memory, load instruction register, load memory data register, then write register.
Then you need control signals for load A or load B, you need the control signals for ALU
function. You need the control signals for latching ALU output into this ALU out register. You
also need control signals for the select inputs of the multiplexers.

8

So all these control signals in the required sequence will now be generated by the timing and
control unit. The timing and control unit will generate those control signals after it gets the input
from an instruction decoder, the instruction decoder will get input from the instruction register.
So that part I am not showing in the diagram. Why the output of B going to M? Yeah, this is for
store word instruction. What is the operation that we have to perform in case of store word?

(Refer Slide Time: 00:24:06 min)

See in case of store word this was the format, store word R1 offset R2 in which case, the address
of the memory will be calculated by adding content of R2 to the offset that is specified in the
address. So you will get the physical address in the memory where the data is to be written and
which data you have to write? That is the content of register R1. Here the content of register R1
will be available in register B, after that the data is read from the register file and that content has
to be written back into the memory. Address of the memory will come from this ALU out.
Clear? So you can make use of this data unit for multi cycle implementation of different
instruction executions. Now once we have this data unit, you will find that the operations that are
to be performed in sequence are the first operation is obviously the instruction fetch operation.

9

(Refer Slide Time: 00:25:10 min)

In instruction fetch what you do? We have said that an instruction is to be loaded into instruction
register. So it is instruction register which will get the instruction from memory and the address
of the memory will come from the program counter. Simultaneously the program counter also
has to be incremented by program counter plus 4, program counter has to be incremented by 4.
So you will find that during the first clock period, you are making use of two units in this
architecture. One is the program counter output has to be available to the memory address inputs,
that means the multiplexer has to be set accordingly so that this input is selected to the output.
During the same clock period we also increment the program counter that means we make use of
this ALU.

For this ALU, this program counter comes to one input of the multiplexer. So this multiplexer
select input has to be set in such a way that this input is passing to the output. For this
multiplexer, the select input has to be set in such a way that this fixed input 4 comes to this input
of the ALU. ALU has to perform an add operation and this output of the ALU has to come to the
program counter. So for that let me put it this way, instead of connecting the program counter
input from here let us connect the program counter input from here. So that during the same
clock cycle, this ALU output can be loaded into the program counter. Otherwise I need an
additional clock cycle because output of the ALU has to be loaded into the ALU out register and
then from the ALU out register, it has to go to the program counter. So I connect this program
counter input directly from the ALU output. So this is the operation that is to be performed
during the first clock period.

During the second clock period. (Conversation between professor and student: Refer Slide Time:
00:27:44) but only that one will be loaded into pc for which the pc write enable is active. During
the second clock period, the operation that will be performed is instruction decode.
Simultaneously since here you have loaded the instruction into instruction register, so the register
addresses are also available.

10

So what I can do is I can perform instruction decode at the same time register read. These two
operations can be performed simultaneously. Now find that because during this period only I am
decoding the instructions, so which instruction is going to be executed that is not known. May be
the registers that we are reading, they are not needed for execution of that instruction. So
anything that we perform before the instruction decoding is complete. We have to ensure that,
that operation is not harmful or the operations which are common to every instruction that can be
performed. The operation which is common to every instruction is an instruction fetch but that
has already been performed. So during this step when we are decoding the instruction, I can only
perform that operation which is not harmful.

Even if the result is wrong that can be overwritten by the correct result during the next clock
cycles. So register read is such an operation, if I read the register and put the output of the
register in say intermediate registers A and B, that is not harmful. May be the data that is read
will not be used that will be overwritten by a fresh data during later clock cycles but this is not
harmful. So we can read these registers. So during the second clock period, what I can do is I can
simply say that intermediate latch A will get the register output. Output from one of the registers
where the address of the register will come from some bits in the instruction register. I am simply
reading it, without knowing that they will be used.

Similarly I can also read the second register that is register B, the intermediate register B gets the
second register output, the address of which also comes from some other bits in the instruction
register. Simultaneously i can perform another thing. If it is a branch instruction then I have to
compute the branch address. Now what I can do is I can pre-calculate the branch address
irrespective of whether it is a branch instruction or not. So what I can do is I can simply put ALU
out register to be program counter plus offset fields which comes from the instruction register.
Now this instruction may not be a branch instruction at all.

So in this case the ALU out register will be over written by the fresh data during later clock
cycles but there is no harm if I pre-calculate this. But what is the advantage that I get? If I pre-
calculate this and I find that the instruction is actually branch instruction, the data is already,
branch address is already having it. So I can reduce one more clock cycle. During the third clock
period, what we can do is we can execute some instruction or we can compute the memory
address or if it is a branch instruction, we can complete the branch instruction. So if it is an M
type instruction, memory type instruction in that case what we have to do is we have to calculate
the memory address. So in that case the ALU out will be simply register A because for
calculation of the branch address, this will become the base address plus the offset which comes
from the instruction register.

This has to be done for a memory type instruction, if the instruction is a memory type
instruction. If it is a register type instruction like add and all those things, in that case we will
have ALU out is equal to the function that we have to perform on the registers R1 and R2. The
contents of R1 and R2 are now available in the intermediate registers A and B, so that functional
value will be loaded into ALU out register, if the instruction is an R type instruction. If the
instruction is a branch instruction in that case branch output is already available in the ALU out
from the previous step.

11

So what we will do is we will simply compare if A is equal to B then the program counter will
get the value of ALU out. By loading this ALU out into program counter, your branch instruction
execution is complete. So that is the advantage by precalculating the branch address. Now even
if it is not a branch address, I don’t have any harm because the ALU out is being over written by
the proper values in step three. So this earlier value will be over written. So this is not harmful
but in the third step, whatever operation you are performing that is instruction dependent. That
means in the second step the instruction has been decoded and depending upon the decoder
output, one of this operations will be performed.

Then what you do in the fourth step? during the fourth clock period, the operations that will be
performed is if it is a memory reference operation then either the content of the memory has to
be loaded into memory data register, if it is a load word instruction or the output of the register
file has to be stored into memory if it is a store word instruction or output of ALU has to be
loaded into the register, one of the register the write register if it is an R type instruction. So what
we have to do is we have to do MDR, during step 4 will be memory address of this will come
from ALU out, if the instruction that you are executing is a load word instruction or memory
ALU out will get the value of B if the add instruction that we are executing is the store word
instruction.

(Refer Slide Time: 00:35:24 min)

So that is what is performed through this block, output of B is going to the write input of
memory. If it is an R type instruction then a register whose address comes from the instruction
register that is the write register address, this gets the value from ALU out if the instruction is an
R type instruction. Now here you find that every instruction if it is a branch instruction, the
branch instruction was complete in step number three. If it is a store word instruction, the store
word instruction is complete in step number 4. If it is an R type instruction that is also complete
in step number 4. But if it is a load word instruction, it is not yet complete because only the data
from the memory has been loaded into MDR, the memory data register at the end of step 4.

12

But finally this data has to go to the destination register. That means for a load word instruction
during step number 5, during clock period 5 the operation that is to be performed is write register
that is of which comes from the instruction register will get the value from memory data register
or MDR.

So we find that out of these instructions that we are considering, it is the load word instruction
which takes maximum number of clock cycles. All other instruction instructions take less
number of clock cycles which was not possible in case of single cycle implementation. In case of
single cycle implementation, for every operation we had to give the same amount of time but in
this case, only the load word will get maximum amount of time others will get the time as
required. At the end of each of them we have to design the controller in such a way that the
machine will be put back into clock period zero or time state zero. So by doing this we can save
a lot of time and the implementation becomes very efficient. So we have seen that by converting
a single cycle implementation to a multi cycle implementation, our design becomes efficient and
not only that I mean it will be more efficient so far as execution time is concerned. It is also
optimized with respect to hardware because it is the same hardware unit which can be shared by
more than one operation at different time instants.

In case of single cycle implementation we had duplicated hardware. So our hardware cost is also
reduced. But is it the best design? While converting from a single cycle implementation to a
multi cycle implementation, we have reduced the hardware but we have lost the facility of
pipelining. In case of single cycle implementation by slight modification we can make that a
pipeline processor but this one I cannot covert to a pipeline processor. So if we are not interested
in pipelining this is optimum design. If we are interested in pipelining in that case some
hardware duplication must be permitted, must be incorporated. So that we will see later.

