
1

Digital Computer Organization
Prof. P.K. Biswas

Department of Electronic & Electrical Communication Engineering
Indian Institute of Technology, Kharagpur

Lecture No. # 01
Introduction to Digital Computer Organization

Welcome to the course on computer organization. In this course we will try to find out that what
are the resources that are available in a computer. Specifically the hardware resources and how
those resources are interconnected or how the data path that go from one resource to another
resource to accomplish a particular task. Now to start with let us have a high level view of a
computer. As you all know that to get a task done by a computer, the computer must have some
hardware resources and some software resources.

(Refer Slide Time: 00:01:42 min)

To get a high level view at the heart of the computer, we have the hardware resources of the
computer. So I can put it like this. So at the center of the computer we have the hardware. On top
of hardware we have a layer of software which is called operating system or OS and above this
operating system we will have another layer of software which are basically the application
software’s. So here we have application software’s. So whenever a program is to be executed,
the program that we write that remains in the applications software level. Then as the program is
to be executed then it is an operating system which gives an interface between the application
level software and the hardware resources of the computer.

So basic job of the operating system which is in between the application level software and the
hardware resources of the computer is to manage the hardware resources so that the same
hardware resource can be used by one or more application level software’s at the same time.
Now in this particular course we will concentrate on the hardware resources. We will not talk
much about the operating system or application level software.

2

So now to see that what are the hardware resources that we need in a computer let us take a very
simple software example. So if I write a program like this, the program will read two variables,
add the two variables and output the sum. So I can write a very simple software in a high level
language like this.

(Refer Slide Time: 00:03:51 min)

So I will put scanf, so let us say have a very simple program like this. Scanf a b where the values
of the variables a and b will be radiant then we perform the addition of these two variables a and
b and the result is assigned to variable c and then finally we would like to print the value of c. Of
course before these we have to define or we have to declare the variables a, b and c. So let us
declare the variables a, b and c as integer variables. Let us try to see that how these high level
program will be executed by the computer.

Now as you all might be knowing that a computer is not capable of executing this high level
language program. So in between what you have to do is we have to compile this program and
we have to create the executable code of the program and only the executable code can be
executed by a computer. So in between actually how the computer executes this high level
program, to explain that let us convert this high level program into an intermediate code. Let us
call it an assembly level code. So in case of assembly level code, this high level instructions and
you can see that these are the instructions of a C language. So let us try to see that how this C
language code is converted to assembly language instructions. So the first operation that is done
is scanf percentage d, percentage d this just tells you that what is the format of the data which
will be read in and the variable names are a and b.

So if I convert this to assembly level instructions, this particular high level instructions will be
converted to a form like this, IN from some PORT. Let us name the PORT as PORTA, so from
PORTA some data will be read in. The data will go to some register within the CPU of the
computer. What is this register that will come later on or this register is usually called the
accumulator of the CPU and once the data comes to the accumulator then from the accumulator,

3

the data is stored in a location, the location which is assigned to choose the variable a. So after
reading in the data, this data will be stored in location which is assigned to location, the variable
A. So once you have read in the data for A and you have stored it to the memory location, the
next data that has to be read in is the value of this variable b. So similar such operation will be
performed. It will performed in for inputting the data, let us assume that these data will also
come from the same PORT, so PORTA and after reading in data the data will be stored in
variable or the memory location which is assigned to variable B. So these four assembly level
instructions perform the job of this high level instructions scanf. So we find that a single
instruction in a high level language is actually converted to a number of instructions in assembly
level.

Now after performing this, what we have do is we have to perform the addition of the values of
the variables a and b and after completing this addition operation, the value has to be saved in the
memory location which is assigned to variable c. So for doing this once the values of a and b are
saved in the memory, we have to get this values from the memory and only after reading these
value from this memory, this particular operation of addition of these two variables can be
performed.

So to read the values of these variables from the memory, the operation which is performed is
load from the memory location into the accumulator of the computer. So we will put it as LDA
then A. So from the memory location which is assigned to variable A, the data will be read in
and it will be put in the accumulator of the CPU of the computer. So once I get this data in the
CPU then another operation that I can perform is say add memory. So the content of the memory
location B has to be added with A, so I will put it as add memory B. Here we assume that after
addition of these two values of A and B, the result will be available in the accumulator. So the
next operation that we have to perform is because this statement says that the result of this
addition has to be saved in the variable C. So we have to perform same store accumulator
operation but this time, the value will be stored in the location which is assigned to variable C
and at the same time, the printf command it says that we want to get print out of these value of C
which is also available in the accumulator.

So the operation that we will perform is out, some other PORT say PORTB. So we find that we
have read in the values of A and B from PORTA and we have printed the value or outputted the
value to PORTB. So this simple instruction or set of instructions in assembly language tells you
that what may be the resources which are necessary in the CPU of a computer or in the computer
system as a whole. So from this you find that for this in operation, the data is read on PORTA
and it is saved in the accumulator. That means the CPU of the computer must have a register
called an accumulator.

Similarly we are saving this data to a memory location which is allocated to this variable A. So
which again tells that we have to have some memory associated with the computer and along
with this register in this particular case it is accumulator and the memory unit. We also have
some input output device because you find that the values of the variables are inputted from a
PORT. Similarly values of the variable C are outputted to another port. So as a whole in a
computer we must have a CPU which executes the program. We must have at least one register
and we will see that one register may not be sufficient. We will have more than one registers out

4

of that one particular register is a special purpose register called accumulator in this particular
case and we also have to have some input output devices.

(Refer Slide Time: 00:13:05 min)

So at the high level view a computer must have the following hardware resources. We have to
have a CPU or center processing unit. We must have some memory and we also must have some
input output device or in short it is called I/O device. So I stands for input and O stands for
output and we must have some inter connection between the memory and CPU. We must have
some inter connection between the I/O device and the CPU. Now find that I have a put these
links or these paths as bidirectional paths because the data may come from the memory to CPU.
In case of reading a value from the memory location, the data may also move from the CPU to
memory in the case of writing a data from the CPU to memory location.

Similarly if you wants to read a data from an input device then the data moves from the input
device to the CPU and if you want to write a data to the output device then the data moves from
the CPU to the output device. So this is the basic high level view of a computer. Now we will see
in details that what are the components inside the CPU, what should be the architecture of the
CPU, what should be the nature of the I/O devices in our subsequence lectures. Now today to
give an overview that what are the contents in the CPU or what are the resources which are
available in the CPU.

5

(Refer Slide Time: 00:15:14 min)

Now for that what we have done is coming back to our, this initial program, the assembly
language program we have said that when the data is read from the PORTA, the data is saved in
the accumulator. So accumulator is one of the registers and next operation that we have
performed is from the accumulator we have returned the data to a memory location A. This is a
memory location which is allocated to variable A. Similarly the next operation, from PORTA the
data is read in the data goes to the accumulator then again from the accumulator the data is return
to register B.

Now we have to perform this write back operation to the memory because we have assumed that
we have only a single register in a CPU till now. Now let us say that what advantage we will
have, if we have more than one registers. So in addition to the accumulator, if I assume that there
is one more register let us name that register as register R1. Then instead of this store
accumulator to the memory location A, here I can simple have an operation like MOV R1, A. It
says that the data is moved from the accumulator to register R1, R1 is an additional register
within the CPU.

Similarly in the next case when you are imputing the data from PORTA, the data goes to the
accumulator and you find that the other data is already available in register R1. So I don’t need
these operations at all. These three operations can be replaced by simple ADD R1 because the
value of the variable B it is already available in the accumulator which is done by this second
input statement that is input A and the value of the variable B is already available in register R1
because we have moved the value of variable A from the accumulator to register R1. So by doing
this the advantage is I can perform the same task using less number of instructions and not only
that this operation of moving the data from accumulators to memory has been replaced by the
operation of moving the data from the accumulator to another register R1. Here because both
these registers are available in the CPU, the time taken to perform this data movement can be
much less than the time taken to move the data from the accumulator to memory which is
actually a memory write operation.

6

Here again after performing this addition operation, you find that this the sum is already
available in the accumulator. So this STA C which of course in the previous case also was not
necessary, here also it is not necessary until and unless we want to use the value of C for some
other purpose. So here we find that instead of having a simple register called accumulator, if I
have more than one registers in that case I can write my program or the program can be executed
in a more efficient manner. The other component so this other registers, the other component that
you need is an unit which performs this addition operation. Here it is add with memory, here it is
add within the registers. So this particular unit which will perform the addition operation or the
logical operation is called an arithmetic logical unit or ALU.

(Refer Slide Time: 00:19:47 min)

So in a CPU I must have an ALU which is symbolically represented like this ALU or arithmetic
logical unit. I have an accumulator, I have to have some more registers or general purpose
registers for storage of the data. So I can have register R one as we have just seen. I can increase
the number of registers as you increase the number of registers, you can write more and more
efficient codes. So I can have a number of registers R1, R2, R3 and so on. So if we increase the
number on registers in the CPU, I can write more and more efficient code but of course there is a
limit. I cannot have infinite number of the CPU. So I will have a finite number of registers not
just one, more than one but having a reasonable number of registers.

Now find that coming back to this particular instruction. After each of these instructions are
executed, the CPU must know that what is the next instruction to be executed. Now how these
instructions are actually stored in the memory. each of these instructions will be converted to a
machine language code which is a binary number sometimes represented as hexadecimal number
and those instructions will be read or machine level instructions will be read from the memory.
The instructions will be decoded and corresponding action will be taken. Once a particular
instruction is executed then the next instruction has to be executed. So I must have a resource
which acts as a pointer to the next instruction which I must execute. So that particular resource in
a CPU is called a program counter. So in addition to these general purpose registers I also have

7

to have another register within the CPU which is called a program counter or a PC. I may also
need some more registers. Say for example when you execute a program and if you write a
structured program, in that case you may find that for execution of a particular task you have to
call a function.

So that function can be written as a module of software and when you call any particular
function, in that case all the previous intermediate results that were generated, those results you
has to save somewhere. Similarly if I call a function in that case the previous program counter
value, it also has to be saved somewhere because whenever I call a function, the program counter
because it is pointed to the next instruction to be executed, this program counter must be loaded
with the first address of the first instruction in the function which is called. So the previous value
of the program counter must be saved so that when execution of that particular function is
complete and I come back to my main routine where from the function was called, so I must be
able to restore the value of the program counter, the previous program where from the function
was called.

So to save all these information’s, I must know that where in memory this information’s are
saved. So these information’s are saved in some memory locations which are called stacks and
the addresses to those stacks are given by another register which is called a stack pointer or SP.
So here we find the program counter points to an instruction which is to be executed next and
stack pointer points to a stalk where we saved some values of some of the registers which can be
called back when we come back from the subroutine or when we come back from the function
which has been called from memory.

Now another important part of the computer is that instruction you have interpretation. Before
execution of the instruction, the CPU must know that what that instruction is supposed to
perform. That means the CPU has to decode the instructions. So if the CPU has to decode the
instruction then the up code, the code of the instruction which is the machine level code has to be
read from the memory and it is put in another register in the CPU which is called an instruction
register. Now from this instruction register, this instruction code goes to what is called an
instruction decoder. Instruction decoder decodes the instruction and after decoding this
instruction then only the CPU knows that what this instruction is supposed to do.

8

(Refer Slide Time: 00:26:01 min)

So before coming to further details let us assume, let us take a very simple instruction like MOV
say R1, R2. So what this instruction is supposed to do? R1 and R2 are two general purpose
registers in the CPU and this instruction will move the data from register R2 to register R1 and
this is the convention which is mostly used that the first operand that we mentioned in the
instruction, that is the destination and the second operand that you mentioned in the instruction
that is the source. So this operation will simply move the data from register R2 to register R1. So
for performing this particular operation because I am moving the data from register R2 to R1 that
means this register R1 must have a control input called load or latch and the register R2 must
have a control input which is called output enable.

So when this output enable of register R2 is active, the data from register R2 is ready to be
transferred to some other destination. When you make the latch input or load input of register R1
active in that case whichever data is available to the input that is loaded in to register R1. So for
performing this particular operation, I have to activate the output of register R2 and at the same
time I have to activate the load input of register R1. So these two are called the control signals,
one is controlling output of the register R2. The other one is controlling the input of register R1.
So all these registers will have defined such control units and this control signals are to be
generated in proper way so that the specified task can be executed.

So within the CPU I must have another unit which is called a timing and control unit. So let us
put it like this. We have a timing and control unit. So this timing and control unit, it generates all
the control signals in a proper sequence so that a specified task can be a executed. You find that
the task which is to be executed that is dictated by the instruction which is under execution and
that is interpreted by this instruction decoder. So this instruction decoder, after decoding that
instruction gives some signal to the timing and control unit and after getting this signal, the
timing and control unit generates all the control signals in a proper sequence so that the specified
task can be executed.

9

So you find that all the units in the CPU they get the control signals from the timing and control
unit, all of them. So there are various such control signals which are generated by timing and
control unit and these control signals are distributed to all other units in the CPU.

Now in many case you find that you have some instruction or jump instructions. The jump
instruction you decide that whether to take a jump to some other instruction or whether to call a
subroutine, these decision depends upon the result of computation. Say for example we gave an
instruction like jump with carry. So after doing some arithmetical logical operation, if a carry is
generated in that case the next instruction to be executed is taken from some function or from
some other location in the simple program. It is not the immediate next instruction which comes
out after jump. So I have to have some unit or some resource in the CPU which can save the
status of CPU or what is the nature of the output after execution of any arithmetic logic unit. So
these resources are called flags which saves the status of execution of some arithmetic or logical
operation. These flags are also sometimes known as processor status lot. Now these other
resources that I need in a CPU for execution of any particular task.

Now in addition to the resources, I also must have some agent which can move the data from one
resources to another resource. So I have to have a data path using which the data can be moved
from one resource to another resource. So all these units whether these are general purpose
registers of the CPU, whether this is instruction register of the CPU, whether these are program
counters or stack pointers, whether this is accumulator and of course the output of the
arithmetical and logical unit, all of them are contacted to this data path. Now coming back to this
ALU, the ALU for operation in most of the cases needs two inputs. So one of the input to the
ALU comes from the accumulator and the other input to the ALU say for example coming to this
particular operation add R1. Here one of the operands is already in the accumulator and the other
operand is available in register R1. So from register R1 I have to bring the data to some location
so that from there it is fit to the ALU. So this particular register in some of the CPUs is called a
data register or DR. So one of the inputs to the ALU is given from the accumulator, the other
input to the ALU is given from this data register DR and obviously this data register also should
have a connection to the data path.

So in general this is the internal architecture of any of the central processing unit. Now next part
which comes is that once I have this internal architecture of the CPU and if I take this CPU as a
block then what I have to see is how this CPU has to be interfaced with the external memory,
how this CPU can be interfaced with the input output devises. So for that some of the interfacing
signals which are taken out of the CPU.

10

(Refer Slide Time: 00:34:35 min)

So if I represent this CPU by a single block, so this is the central processing unit. It will have a
number of pins using which we can interface the CPU with external memory or we can interface
the CPU with input output devices. A state of such pins are called the address lines or address
box. A state of such pins is called the data lines or data box and we have some more state of pins
which actually generates or provides the control signals. So these other lines which are available
for interfacing the CPU with external memory and also to interface the CPU with input output
devices. So we can put a memory block, we can also put an block for input output devices. So we
have this block of memory, we have a block corresponding to input output device and for
interfacing this memory block and input output device to the CPU, we have to make use of this
address lines. We have to make use of this data lines. Similarly for this I/O device we have to
make use of the address lines. We have to make use of the data lines and we will also have to
make use of this control signals.

Now here we find that I have put this address lines as unidirectional or else the data lines I have
put as bidirectional. The reason is whenever the CPU wants to read something from any memory
location, it is the responsibility of the CPU to specify the address of the memory location from
where the CPU wants to read the data. Similarly whenever the CPU wants to write some data to
any of the memory location, it is the CPU which will specify that what is the address of the
memory location to which the CPU will write the data. Similarly for input output devices. So
addresses are generated by the CPU, address is not generated by the memory neither it is
generated by input output device or else in case of data if the CPU wants to write the data to
memory in that case the data will move from the CPU to memory or if the CPU wants to write
the data to any of the output device, the data will move from the CPU to output device. Similarly
if the CPU wants to read data from any of the memory then data will move from memory to CPU
or if the CPU wants to write any data from an input device, the data will move from the input
device to CPU. So this memory lines, data lines they are bidirectional whereas the address lines
are unidirectional.

11

Now coming to this control lines, what are this control lines that we would like to have in case of
CPU, control lines which are to be generated by the CPU? You find that we have two basic
operations that are to be performed. there are other operations as well, we will come to all of
them in our subsequent lectures but here let us see that two basic operations with the memory or
with the I/O devices which are performed by the CPU is one of the operation is read operation.
That is read a data from memory or read a data from one of the input device. The other basic
operation that you have to perform is writing the data to one of the memory location or writing
the data to one of the I/O devices. Now to identify what kind of operation is to be performed
whether it is read operation or it is write operation, the CPU has to generate the control signals.
For read operation the control signal which is generated is a read control signal. In most of the
cases this comes in negative logic or we put it as read bar. For write operation the control signal
which is generated is write control signal. Again it is given as a negative logic that is write bar.

So here if read line is low the control signal, read control signal generated by the CPU is low. In
that case the CPU wants to perform a read operation. If the write bar line is low in that case the
CPU performs a write operation. Obviously both read bar and write bar cannot be low
simultaneously because in that case what operation has to be performed whether it is read
operation or it is write operation that is not defined. So you find that whether the read bar signal
has to be low or the write bar signal has to be low that is decided by the CPU and it depends
upon the instruction that is going to be executed. So as we have said that in case of CPU, we
have a timing and control unit. It is this timing and control unit which will generate the
corresponding control signals after it gets an information from the decoder that which particular
instruction it is going to execute.

So this timing and control unit or timing and control circuit in the CPU plays a very very
important role. In fact if this timing and control circuit does not perform properly, the entire
operation of the CPU will be totally erratic. So this just tells you that what is the basic structure
of a computer. So what basically we have defined here is the organization of a basic computer.
So in a basic computer we must have a CPU because without CPU, the computer is meaningless
because it is the CPU which performs every task. We must have some memory unit interfaced to
the CPU or the data can saved or the data can be read from the memory and we must have some
input output devices to feed some data to the CPU for processing or to get the output from the
CPU or the processed data from the CPU. So when we have these three interfaced together, what
we have is a basic computer. Now coming to the memory you all might been aware of that we
have various kinds of memory. We have cache memory, we have primary memory and we have
secondary memory. So this memory is actually a hierarchy of different types of memory.

12

(Refer Slide Time: 00:43:18 min)

So at the topmost level, the type of memory that we have is called the cache memory. At the next
level we have the main memory and we have at the next level in the hierarchy what is called a
secondary memory. So all the disks say for the example floppy disk or hard disk or compact disk
they are all in this category of secondary memory. We can also have other kind of secondary
memory like magnetic tape. The hierarchy is like this, whenever the CPU wants to access
something, it first tries to find whether that particular data is available in the cache memory or
not. If it is not available in the cache memory then CPU tries to find our if it not available in the
main memory.

Now this cache memory and main memory, the CPU has direct access over the cache memory
and main memory but the CPU does not have direct access over the secondary memory. So if the
data is neither available in the cache memory nor in the main memory then data has to be read
from the secondary memory and then it has to be put in main memory or cache memory and then
only the CPU can access it. Now size wise the cache memory is the smallest among all of them.
Main memory size is medium and secondary memory is high. Speed wise cache memory is the
fastest, main memory is medium and secondary memory is very slow. So we find that the nature
of access of these different kinds of memory are very much different because the CPU has direct
access over the cache or it has direct access over the main memory. So these memories, from
these memories the data can be accessed as well as data can be written byte by byte. Whereas for
secondary memory the data has to be accessed or written in the form of a block. The CPU, the
data from the secondary memory cannot be accessed byte by byte or character by character.

So this is about the memory hierarchy. we will elaborate on each of these topics in our
subsequent lecture and this particular CPU architecture or CPU organization that have told, this
forms the basic of one of the simplest CPUs which is very popular which is known as 8085

13

manufactured by Intel. Per this registers R1, R2, R3 they are represented as register b c d e h l
and so on. So we will elaborate on each of this topics in our subsequent lectures.

