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So in the last class, we were discussing first we discussed Hermitian matrices and then 

positive definite matrices. Hermitian matrices, we have seen that they can be 

diagonalized; then Eigen vectors corresponding to define Eigen values are orthogonal. In 

fact, they can be normalized also, so that norm square of each Eigen vector is unity. 

Then, any Hermitian matrix we used showed that it can be replaced like you know it can 

be expressed as a product of three matrices T D T Hermitian, where T is a unitary matrix 

or I do not which notation you used E D is Hermitian possibly and D is diagonal matrix; 

consider the Eigen values Eigen values are always real. 

Further, I consider positive definite matrices; Hermitian matrices we had a motivation 

because we have shown that all correlation and covariance matrices are Hermitian 

matrices. Then we considered another class we called positive definite matrices positive 

if a positive definite matrix has to be Hermitian and it should satisfy all property 

therefore, all non-zero x vector x Hermitian R x. If r is the matrix R x must be greater 

real and greater than 0 greater than equal to 0; if it is positive semi definite greater than 

0, if it is positive definite that is where we stopped we proved that property also. That 

Eigen values are I mean for positive definite matrices Eigen values are not only real they 

are greater than 0 for positive semi definite matrices; Eigen values are not only real, but 

greater than equal to 0 that is where we stopped. 
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Now, suppose I give you a set of random variables x 1 x 2 dot dot dot say x p. This set of 

random variables; I will be calling them linearly independent if any of them cannot be 

written as a linear combination of the rest. Actually, this I will elaborate further when I 

teach linear algebra later, but why do not you say that they form a linearly independent 

set if no x i can be written as a linear combination of the rest; that is it is not that x 1 is 

equal to some c 1 some you know some c 1 x 2 plus c 2 x 3 plus dot dot. You understand 

what I am saying that there is no linear relation there is no linear relation between this. 

I mean this a set of variables x 1 to x p there is no linear relation; that is you cannot have 

x 1 as a linear combination of x 2 up to x p that is c 2 x 2 plus c 3 x 2 plus dot dot dot 

plus c p x p or x 2 as a linear combination of x 1 x 3 x 4 dot dot x p so on and so forth. In 

that case, it is called a linearly independent set. One way to check whether they are 

linearly independent or not is you form a linear combination like this. This, I will 

elaborate I tell you when I am deal with vector spaces, but I am telling something 

beforehand.  

Here, c 1 c 2 c p they are constants not random variables, but x 1 up to x p they are 

random variable. So, this summation is a random variable this random variable equated 

to 0 means 0 random variable; that is the random variable which always takes 0 value. If 

we form an equation like this and if I say that the only way this can be satisfied is by 

taking c 1 equal to c 2 equal to dot dot equal to c p equal to 0. If that be the 



 

 onlypossibility the only solution for this equation because you see if you have c 1 

equal to 0 c 2 equal to 0 up to c p equal to 0 left hand side is 0, but if this is the only 

possibility then only they are linearly independent. 

I will repeat this when I discuss vector space theory, but please see why because suppose 

you have a solution where c 1 c 2 up to c p they are not 0 some of them at least are non-

zero. Suppose, c 1 non-zero c 2 non-zero others are 0; then you can take c 1 x 1 plus c 2 

x 2 equal to 0, which means x 1 is writable as it in terms of x 2. Suppose, c 1 x 1 c 2 x 2 

plus c 3 x 3 equal to 0, where c 1 c 2 c 3 not 0; then x 1 can be written in terms of x 2 x 3 

so on and so forth. If suppose just now one of them is non-zero others are 0; say c 1 non-

zero that mean c 1 x 1 is 0 vector 0 random variable, but c 1 non-zero; that means, x 1 

must be the 0 random variable, but 0 random variable. 

If you have 0 random variable in this set becomes linearly independent, because any 0 

random variable is a linear combination of any of set of variable say 0 x x 1 plus 0 x 2 

like that. If they have the coefficients equal to 0. So, any 0 random variable if you add to 

the any set that set becomes linearly independent; because 0 random variable can be 

written always as a linear combination of any set of random variables. So, when there is 

such linear relation existing between a set of a random variable; we say they are linearly 

related linearly dependent, but if there is none they are linearly independent. 

Now, you know very rarely only we have situations in real life there is a linear relation 

involving random variables. In practice, most of the random signals we do not have such 

equation you know governing; I mean saying that one of the random variable is a linear 

combination of the other there is nothing like that. Occasionally that arises and they lead 

to beautiful algorithm and structures and all that that is a separate story; that is a separate 

story, but otherwise not. For example, if you give a sinusoidal signal you sample it say 

for three or four periods sinusoidal signal with amplitude A; A is random. 

So, then every time you measure sinusoidal signal the amplitude fluctuates. So, it is a 

random process random signal because the amplitude A is changing. But the samples 

that we have in successive sample I mean suppose in three full periods they form a 

linearly independent set; because the sample that you have in first period that will occur 

again in the second period and occur again in the third period. So, if you want to 



 

 independent as a linear combination of the rest of the sample you we put 0 values to 

other coefficients take one value to the repetition case.  

So, there you have got the linear relation linear independence, but in practice especially 

when you dealing with real life random signals unless there is a structure that is 

governing the generation of the random process. I will to leave there are such cases 

which occur rarely, but they occur and they are very well defined cases and have 

potential applications. Except for those cases especially for our case, we do not have 

situation, where one random variable is say summation of some other random variables 

because that will imply redundancy. 

Suppose, x y two random variables and you say no x y is not enough you take x plus y 

equal to z also I say no x and y enough; in terms of them I can have z; so x y z in that 

case form a linearly independent set, but not x y not x y. So, in practice we will deal with 

we deal with sets set of random numbers or random variables, which are linearly 

independent there is not linear relation involving them. That is none of them expressible 

as a linear combination of the rest that is what happens most of I mean on most of the 

occasions. 
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Now, let us consider a random sequence x n; again I assume random sequence x n and 

you form a vector call it x n vector, in general complex valued you call the find out this 

correlation matrix R x x. This autocorrelation matrix you all know we have defined; it 



 

 you could have taken covariance matrix also because, but whatever I am saying that 

is equally valid for both correlation matrix and covariance matrix. And also I will be 

most of with dealing with 0 mean variables, which means correlation covariance 

meaning the same no question of subtracting mu because mu will be 0. Most of n I will 

throughout this course rather, I will be dealing with 0 mean random processes.  

That is a correlation or covariance they always would mean the same because mean will 

be 0 in our cases. Anywhere, take a form like this; we all know R x x is Hermitian about 

that there is no doubt, we have seen in the past that R x x is Hermitian. Now, so first 

thing is R x x Hermitian that we know we have seen earlier. Next, you take any vector 

choose any vector any u not equal to 0 any vector. Then, if you take and u equal to where 

u is equal to say u 0 u 1 dot dot dot u p; u 0 to up take any non-zero vector.Then, if I 

form this summation they can be any complex valued coefficients; if you form the 

summation u H R x x u.  

I will show that R x x is not only Hermitian; it is positive semi definite and if there is no 

linear relation between x n up to x n minus p that is if they form a linearly independent 

set; it is not only positive semi definite is actually positive definite. Positive semi definite 

always, Hermitian done other property you have to prove that for any non-zero vector u 

if you take a product u Hermitian or R x x this is a real quantity and greater than equal to 

0. If I can prove that then it is positive semi definite or equivalent equal non-negative 

definite, but further I will show that if there is no linear relation involving this elements 

of the vector. 

That is, if the elements of the vector form a linearly independent set; there is none of 

them no x n is a writable as a linear combination of the others and that is what happens 

most of it. You do not observe a random process in lab, where one sample is some 

summation of or linear combination of the past few samples exactly. There would be an 

error, but is not an exact summation of some previous samples. So, then this matrix is not 

only positive semi definite. In fact, positive definite that is what we will show and this is 

independent of whether x n is WSS stationery or not. 

I am not remaining assuming that correlation depends only on lag and all that. So, 

whatever I say now that is independent of this is more general that applies both to the 

case, where x n is stationary and x is not stationary. I am not using WSS property of x n 



 

 here; whatever I say this is most general. Now, consider this u H R x x u; R x x you 

know this, u is constant no random there is no random variable in u, u consist of scalar 

constants R x x is E of this and followed by again u. So, both u H and u can be pushed 

inside expectation operation because they are constants. 

This x n is random it consists of random variables, but not u consist of only constants. 

You know constants can be brought inside the expectation operation after all expectant 

value of two x is two into expected value of x two can go out or can come in the reverse 

way. So that means, this is same as u the expected value u H x n and x Hermitian n u. 

Suppose, u H x n, what is u H a row vector what is x n column vector. So, it is a scalar 

and what is this row vector column vector scalar. If you call this a my claim is this a 

Hermitian which is nothing, but a star because a is scalar has no meaning of 

transposition. 

You can see if you take this a if you take the Hermitian of this; x will come first with x 

Hermitian this will go as the second guy Hermitian on Hermitian the Hermitian goes you 

get back u. So, a Hermitian and a is a scalar; so a Hermitian means a star only no 

question of transposition. So, this quantity is real, because mod a so is a real quantity 

mod a square. So, non-negative quantity expected value of mod a square mod a square 

can never be negative; mod a square can never be negative. So, this is always greater 

than equal to 0 always. So, positive semi definite or non-negative definite is always true. 

Why it is equal to 0? If it is equal to 0, then a should be the 0 random variable that is 

whenever you measure a you only get 0 then only expected value of mod a square will be 

0. If a is 0 random variable; that means, u Hermitian x n is a 0 random variable that is a 

equal to 0 implies u Hermitian x n; that is u 1 star u 0 star x n plus u 1 star x n minus 1 

plus dot dot u p star x n minus p that is equal to 0 random variable this 0 is random 

variable. What does it mean? You chose u as non-zero vector; that means, not all the 

coefficients of u are 0 that is say all suppose the coefficients are I mean not all the 

coefficients are 0.  

This means there is a linear relation between the elements of x n; x n x minus 1 u p to x n 

minus p that is they are linearly dependent. So, only if the linearly dependent I can find 

at least one u and therefore, many u for which this will be equal to 0, for other choice of 

u it will be greater than 0. So, when the dependent this is indeed greater than equal to 0. 



 

 But when they are not dependent when this is this set extended to the up to x n 

minus p they are what I am saying you see they are linearly independent set. In that case, 

this can never be equal to 0 because you told me u consist of u is a vector, which is non-

zero. So, all the coefficients are not 0 simultaneously. 

You also told me that this is linearly independent vector, that is all the elements are 

linearly independent and then this summation can never be equal to 0 because that will 

mean they are linearly dependent contradiction that is not possible. So that means, if 

there is no relation no linear relation involving the set of random variables at hand, then 

this quantity is actually greater than 0 positive definite. So, in any case a correlation 

matrix will have real Eigen values, which are always greater than equal to 0, but in most 

of n when there is no linear relation involving the random variables Eigen values will in 

fact be positive. 

Therefore, the correlation matrix should be invariable because after all determinant of the 

correlation matrix will be same as determinant of product of the Eigen value that you 

have seen last time. Now, these kinds of processes are called full rank processes. If you 

take any arbitrary number p can be one p can be two; you can take two samples of the 

random process three or thirty or thirty thousand. If there is no linear relation amongst 

them if no random variable can be expressed as a linear combination of either one or two 

or three or any number of I mean any other samples in that sequence that is called the 

full rank process. 

For our case, if it is a linearly dependent up to p it is where I am taking only correlation 

matrix of order p. So, you understand why I was seldom talking about Hermitian 

matrices, because correlation matrices or covariance matrices they are not only 

Hermitian they are positive semi definite always. So, you have seen it here and most of it 

positive definite; in fact, because the processes are full rank processes. 
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So, with that I know start the basis Weiner filter or optimal filter. So, long whatever we 

discussed this is our background, this is our background material; again we will develop 

background material afterwards, but this is the key. That is, suppose I have got a random 

sequence x n 0 mean WSS 0 mean. So, mean will be stationary of course, because mean 

is 0 everywhere and correlation depends only on lag. So, start with assume that it is WSS 

0 mean WSS process. I want to find a filter FIR filter may be with some coefficients w 0 

dot dot w p. So, what is the output y n? y n is you all know w 0 x n you know this.  

Again, I forgot to mention one thing to make life simple to start with we will be dealing 

with only real valued case; we will develop Wiener filter then we will develop adaptive 

filter from this all for real value. Then, again I will come back this I will generalize the 

case to complex valued because the treatment has to be different there. Two different 

treatments exist for the complex cases things are defined in a different way. So, for the 

time being I am dealing with real valued cases. So, even when I use the Hermitian 

symbol, I simply would mean transposition nothing else, there is no complex conjugation 

required. 

Because there is nothing complex for the time being this is same as w transpose vector x 

n vector. Then, you understand what w vector is? I do not think I have to tell you w 

vector is a column vector w 0 to w p; x n is a column vector x n to x n minus p. This is 

the filter output, now the filter output I want to be because input random means output 



 

 also random. So, I want this to be a good estimate of another signal target signal d n 

some target signal. That means, what should I do you cannot say that let y n be equal to 

dn. Because for a particular index n you can equate the two you have only then you get 

you get y n equal to d n.  

So, you can have one equation with so many unknowns you find some solution fine. But 

immediately the next index comes y n will be not only be d n; there is a huge difference. 

So, y n equal to d n will not work and also these things are random; d n minus y n the 

error this is that also that error also is random. Only thing is x n is stationary means y n is 

stationary x n and d n they are jointly stationary. Jointly stationary means if you take the 

correlation between x n and d n again that will depend only on the lag they are jointly 

stationary. 

I write down that is what is given R, I am dropping R x x just R R replace for the input 

E. I am writing transpose here no point input is Hermitian. Hermitian also will not do 

any go will not do any harm, but still for your conjugation I am doing this. R correlation 

matrix and covariance matrix are same here, because I am dealing with 0 mean cases this 

is given and we see this is independent of n; obviously, because I assume WSS input that 

is why R does not depend on n. Another thing is its given is cross correlation; you excuse 

me instead of w 0 to w p may be I just.  

So, because p I will be using p using something else. So, instead of w 0 to w p maybe I 

can make it just make this changes; E of say x n d n minus say k. So, correlation but with 

not on with x with itself between x and d lag is k. If I say jointly stationary then this 

correlation also depends only on the lag; then the two processes are jointly stationary in 

the second order that is in correlation. So, that will be then a function of k only. You can 

call that p this p notation is used. This job there in all books for that that is we have to 

change from p here to something else; p k and we define the vector p as p 0 p one dot dot 

p n which is nothing, but these are my definitions. 

You can make it d n though it will be same in this case d n x n minus k. For the real case 

you know that correlation between d n and x n minus k or x n and d n minus k they are 

same; correlation is Hermitian as such or if it is real correlation at a lag k at correlation 

lag minus k they are same, only when they are complex there is a problem there not only 

same they conjugate of each other. So, I could as well keep x n here d n minus k here, 



 

 but for your conjugation for your to avoid confusion I am changing it. So, that when 

you write E of x n into d n you indeed get this, what is x n vector after all. 

First element is x n x n into d n p 0 second element is x n minus one x n minus one into d 

n that is p 1 x n minus one d n p 1 dot dot dot that is why I change it to confirm to this. 

But even if I had kept x n here and d n minus k things would not have been different 

because in the real case expected value between this two that should not change anyway 

this is the definition. Now, you see now comeback to the physical problem what is our 

purpose I am trying to filter design a filter; so that this output becomes a good estimate 

of d n. 

As I told you, no point in equating y n equal to d n and solve the equation with so many 

unknowns and only one equation because even if you find some solution of that equation 

next for the next index data changes immediately equality goes. And see input is random 

this is random d n is random d n minus y n, e n is random so; that means, you have to 

minimize some statistical property of e n, which gives the power of E n. If the E n power 

goes then; that means, e n itself becomes a low power signal it never takes very high 

value. It has to be again I have to apply average because there is no point in taking says e 

n square.  

Because for a particular experiment, you observe one e n you try to minimize e n square 

and you get some set of coefficients. Suppose, that may not do good because next the 

time data changes you from the next experiment that time you get a new sequence e n for 

that even this coefficients are not optimal. So, that is why it has to be some average 

power of e n, which is called the mean square value. You understand one thing, if x n is 

0 mean y n has 0 mean; d n also I am telling 0 mean. So, d n minus y n that also has 0 

mean. So, e n has 0 mean. 

So, around 0 mean how much is the average how much is the instantaneous power e 

square n. Capital E of e square n will be the expected power average power and because 

of stationarity; y n is stationary and x n and d n they are jointly stationary. So, overall e 

of e square n we will evaluate that will be independent of n. That also then that is the 

measure that will give you the average power of p n, I want that to go down not a 

particular e square not e square n for a particular observation observed by form of e n. 



 

 Because that will not work for the next observation that is, why you have to bring in 

statistics here you have to apply e operator. So, you take the mean square error. Square 

means around the 0 mean deviation that is the power AC power you can say and mean of 

that. Now, you can say that will depend on what after all e n depends on is d n minus y n 

and y n is this this summation. So, if you take the square of e n what will happen? d n 

minus this entire thing that will be squared up then expected operation. Second thing will 

consist of terms of terms like w 0 square w 1 square dot dot w p square w 0 w 1 w 1 w 2 

w 2 w 3 is a second order term in w 0 to w p.  

So, it is a function of second order function of it is a quadratic function of the filter 

weight. Any quadratic function has got a either unique minima or a maxima in this case 

it will be a minima only w z w 1 dot dot dot consisting of what mean square error that 

will give you the optimal set of weight.  
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Anyway, in fact this e n since I know that it will be independent of n, I have already 

calling epsilon square, but we will see that this indeed independent of n because of 

stationarity. What is epsilon square? Mean square error of the output error, which is a 

quadratic function of all the filter weights and I want to minimize it. So, what I do? and I 

suggested you will follow the way it teach you now, because some books might do in a 

very elaborate way and term by term definition all that do not do that. We will do things 

in a smart way. This is your e n this is e n, d n minus w transpose x n please see this; w 



 

 transpose x n we should divide here forget this is the output y n, w transpose x n 

vector w transpose x n vector there is your output y n d n minus that. 

This is your e n, but it is e square n. So, I have to repeat it I have to repeat it, but what I 

will do I will repeat it, but if it is a scalar and these are the smart tricks I will apply this is 

scalar and scalar quantity or its transpose they are same. So, I will write it as its 

transpose. Now, you expect there are this multiply there will be four terms, first term will 

be d n into d n transpose that is d n square itself, which does not depend on your filter 

weight there is external signal d n, it will give the power of d n first term. This is 

independent of filter weight this is the power of the d n and if d n is a stationary process; 

I am assuming d n d n also to be WSS it will be the power average power of d n it can 

remain 0. 

This is independent of n because of stationarity of d n, you can call it sigma d square 

minus there is a cross term linking this two and there is a cross term linking these two. 

Now, can you see that w transpose x n into d n if you take and if you take the transpose 

of that you get back this other one. Say such things you get accustomed this kind. 
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I mean, w transpose this cross term we are in the initial phase of the course. So, I am 

doing step by step, but very often this matrix tricks and all I will apply at random; w 

transpose x n into d n and the other cross term is d n x transpose n transpose w n, my 

claim is both are same. See, this is a scalar w transpose x n w transpose row vector x and 



 

 column vector so scalar scalar into scalar scalar. Here also, x transpose row vector 

w is column vector. So, scalar scalar into scalar scalar and my claim is they are same; all 

are real my claim is they are same. 

That is not difficult, you take this guy the scalar n transpose if you take the scalar or take 

its transpose they should be same, but if you take the transpose transpose of this and 

transpose of this. So, first transpose of this means w transpose n x n and then d transpose, 

but d n is a scalar. So, transpose of d n is d n. You can do it by elaborately you know 

expanding x n w n and term by term, but do not do that. You got this idea. So, the two of 

cross diagonal elements the two cross elements; actually they are same are you now 

convinced. 

So that means, twice I can write E plus the last term E w transpose x n and transpose of 

this; w does not come here I have to minimize it as a function of w all the weights, but w 

does not come here w comes here and here this is where you will get the quadratic terms 

because two w occur here only one w occur. 

Anyway w is a constant, I can take w transpose out and E of x n into d n; w transpose are 

you getting me w transpose into x n into d n then E. Why not take E on x n d n and then 

pre-multiply w term you will get the same thing. You understood my logic, suppose a 

transpose b and b consist of random vector a consist of constants E of that. One way is to 

multiply all the elements term by term and add and E applies, but constants remain 

constant. So, you will see we will get the same thing. If you take out a transpose and do 

this expectation first and then to a; we will get the same thing. 

So, w transpose can come out here similarly w transpose can come out here this w can go 

out here. First, you take out w transpose here remaining thing on that E x n x transpose n 

consist of random data that times w; on that E operation. Why not take out the w to the 

right hand side just apply E on this is that difficult or you cannot see. Whether we 

multiply first and take w take expectation operation or E on this part and then multiply, 

you will get the same thing because w is independent w is not random w transpose is not 

random. 

So that means, this will give rise to twice w transpose, you remember I gave a definition 

two things are given to us R and p; R consist of the R is the input autocorrelation matrix; 

p is the cross correlation vector between this. After all you are trying to estimate d n, you 



 

 should have some kind of knowledge between d n and x n; there is a cross 

correlation, what kind of cross correlation they have; d n and x n are you following me. 

This vector p suppose given to you; R is given p is given what is p p is E of x n into d n. 

It consists of the cross correlation terms. 

So, you get w transpose out E of x n into d n that is p E of this on this that is your p and 

w transpose comes out w go out E of only this part which is R, R is we are assuming 

positive definite it is always positive semi-definite, but we are also assuming positive 

definite so invertible and all that. There is a full length process no the linear relation 

amongst the samples of the process x n. Now, here you see w transpose p p is a column 

vector real data all real w transpose row vector consisting of w 0 w 1 up to w n. So, if 

you multiply get only first order terms w 0 only w 1 only no second order w 0 square.  

But here, R w first R w this is a column vector each element will be function of w 0 up to 

w n then multiplied from here. So, you will have square terms on that side that is why it 

is a quadratic function. So, what I have to do I have to now differentiate it with respect to 

w 0 also; w 1 also dot dot dot; w n also equating each of them to be 0 get a set of 

equation solve that will give me w 0 to w n the optimal one. I will get a unique solution 

because it is a quadratic function; it has only unique minimal or maxima all that theory 

we know. But instead of doing like that again, let us do things in a smart way. So, we 

will derive some matrix results. 

Suppose, I have a thing like this; w transpose p you call this quantity A; I want to 

differentiate del A with respect to particular weight say w k. Now, what is w transpose p 

w 0 p 0 dot dot dot w k p k plus dot dot dot w n p n. So, very simply what is del A del w 

k that this is p k. So, I will define a vector now del w del this is my notation please 

follow the notation, del w is a operation del w working on A by by definition this is the 

definition is nothing, but derivative of A with respect to w 0 put in the first place 

derivative of A with respect to w 1 put in the second just arrange them one after another 

in a vector form. 

I am doing nothing new I am only deriving collecting all the derivatives, but putting it in 

a vector form that is why I am giving it and then giving a compact name here del w of A. 

That is A is differentiated by the w vector basically, this will be del A del w 0 del A del 

w 1 dot dot dot del A del w n. So obviously, what is this vector here? In general case you 



 

 have seen del A del w k is p k del A del w k is p k. So, what is this vector first 

element is p 0 p 0 p 1 dot dot dot p n which is nothing, but p vector. So, whenever you 

have got a form like this A equal to w transpose p first order; if you take the del of A del 

of that term with respect to w you get back this this fellow always remember this. 

I will be doing this kind of operations every now and then in this course for a while. So, 

w transposes p this kind of first order term; if you differentiate with respect to w you 

should get back p if you differentiate with respect to p you should get back w, w 

transpose p and p transpose w are same. This was simple so remember this formula, but 

there is another result I have to prove. 
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If you have a thing like a w transpose, R w is a scalar row vector matrix column vector 

matrix column means one column row into column scalar you call it B. Given that R is 

Hermitian in fact, it is real it is a real matrix. So, R is given. Since you are dealing with 

real case R Hermitian means basically, R is just symmetric R transpose equal to R R 

meaning R i j and R j i they are same. R 1 3 R 3 1 R 1 4 R 4 1 they are all same; this is 

given to us and we are evaluating this. 

This is a scalar again a function of all the weights w 0, w 1, up to w n. So, I can 

differentiate them differentiate with respect to each put them in a vector form. So, that 

will be my del w B. Any scalar is a function of the weights w 0 to w n and if you 

differentiate with respect to each of them differentiate with each of them put them in a 



 

 vector form I say compactly that this is del w of B, which is nothing. But again the 

same definition del B of del w 0 dot dot dot del B of del w k dot dot dot del B by del w 

fine this is what you have to find out we have to find out this. 

Now suppose, I want to find out this this general guy generally you have to find out del 

B del w k k can be 0 k can be one up to k can be capital N this I have to find out. So, let 

us see this B fellow let us evaluate what is this B fellow; B first you form this vector then 

0 th element of this guy 0 th element of this vector first element of this guy first element 

of this vector so on and so forth. That means, B is w i, i equal to 0 to n and then this 

vector R w i. So, simple R w is a vector that times I mean the i th element of that any w 

I; R w it is i th element what will be the i th element? 

Now, consider R w. First row of R times w will give the first element; second row of R 

times w will give the second element dot dot dot. So, i th row of R times w will give the i 

th element. That means this summation remains as it is here i th row. So, R i j j will vary 

from 0 to n and w j this much i th row. So, R i R i 0 w 0 R i 1 w one you that scanning 

that row. R i 0 R i 1 R i two dot dot dot say w 0 w 1 w that is what I am doing. These 

quantities then you see this is how B depends on all the weights including w k and you 

ask me to find out this derivative. 

So, the way I will go about is this first consider this outer summation in this outer 

summation I will become equal to k ones that case I will separate out and i not equal to k 

that case I will write separately. So, this I will write as and i equal to k means w k, i 

equal to k case separately I am writing. So, there is w k summation R is k here R k j 

wherever I had I am replacing that by k. Now, you differentiate B with respect to w k. 

First here in this outer summation w k is never occurring, but for each w i here there is 

an inner summation in which w k will occur only once that time I will get R i k so R i k 

w i. 

Here there is something more it is a product. So, first you differentiate with respect to w 

k. So, you get one this remains as it is. So, that you write. And next time you hold it as it 

is differentiate this with respect to w k; you get R k k only where w j becomes w k you 

get R k k otherwise 0. So, R k k R k k so R k k w k; this R k k w k if I club here you see 

this first summation i equal to k case was missing; if I equal to k this becomes R k k w k, 

but that has come here. So, this two can be clubbed and this fellow will go this thing will 



 

 go. Here, if it is I really will become k if I included this i equal to k case there we 

have got a term R k k w k, but that that has come already so; that means, I can club the 

two and remove this. 

Secondly, here in this summation R k j, because of the Hermitian property is same as this 

you can write same as R j k and then why carryout with carry on with j call it i or R i k w 

i you get the same summation and have a local sum local index; R k j I am calling that R 

j k because R is Hermitian symmetric matrix j k th element k j th element are same. So, 

R j k j and j k they are same. So, this is R k j w j and then why call j you again call it i R i 

k w I, which is same as what you get here. 

So that means, this will give rise to twice this summation R i k w i. In fact, let me call it 

instead of R i k rather you call it R k I; I should have instead of changing here instead of 

changing here, I should have changed here R k i that makes it better. R i k instead of that 

R k i; R k i w i again R k j w j call this j as i, so twice R k i w i. So, look at what is an i is 

changing from 0 to N. So, look at this now R k 0 w 0 R k 1 w 1; that means, k th row of 

R is scanned R k 0 R k 1 R k 2 dot dot and similarly w 0 w 1 so; that means, k th row of 

R times w vector. 

So, this is nothing, but what if it is R matrix this is the k th row k th row times this w 

vector k th row of R into w that is what this is this is that will give you del B del w k. So, 

if it is w 0; that means, first row times this vector that will give you derivative with 

respect to w 0, if it is del B del del w 1 second row times this vector. So, if you put them 

in a vector form this will be nothing, but R time w. So, this is equal to R w are you 

getting me. So, this is twice R twice R w rather there is a two here twice R w. Things are 

not so easy in the case of complex case in the complex case. So, I have to generalize in 

the real. So, I could say just simply think R i j and R j i no conjugation there because real 

symmetric. So, then this is what you get here? 
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So, now I want to do this equal to 0 0 dot dot 0 that is derivative with respect to w 0 0 

with respect to w one 0 with respect to w n 0; because I am deriving I am trying to 

minimize. So, all the partial derivatives must be equal to 0. So, del w epsilon square 

equal to 0 you can call it 0 vector. But we have already defined derived this derive this 

and this is independent of w it will go. So, this will give rise to minus two p w transpose 

p if differentiated with respect with respect to w will give you p if differentiated with 

respect to p with give you w. So, this two p and this fellow gave twice R w. 

So, you take two two cancels and take p on the other side this will give rise to that 

optimal filter. W equal to w opt or sometimes in some books denoted with a cap w opt 

which is nothing, but R inverse p. I assumed R to be positive definite invertible. So, I can 

write inverse R inverse p this is the Wiener filter Wiener FIR filter. So, if you want to 

design the filter you must know R and p, but often you do not know R and p because R 

and p. R will depend on the R is given the input autocorrelation matrix that will depend 

on the circumstances, which is generating the input like in the case of your this thing you 

know equalizer. 

The received signal depends on the channel property also. So, its correlation involves the 

channel information. Moreover, R and p their value may change their statistics may 

change from time to time. So, you cannot design it once for all that is why you have to 



 

 do it adaptively. So, from here I will march towards the basic elements algorithm in 

the next class.  

Thank you very much. 


