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In today’s and tomorrow’s lecture, we will consider one topic which is very useful, very 

important thing in the domain of statistical signal processing and adaptive signal 

processing. You can call it and treat these lectures as a kind of appendix to our main 

lectures that ended in the last class. This particular topic, I repeat, it is very important in 

signal processing is called singular value decomposition. 

Singular value decomposition, that is SVD of a matrix and pseudo inverse of a matrix; 

this is very useful in communication controls signal processing. I thought that will be a 

good occasion to introduce this topic to the students, but before I get into this; I have to 

derive certain properties of matrices and all that, which I will do today. In the next class, 

I will use these results to get into SVD theorem and its extension to pseudo inverse. We 

have already done some exercise on vector space theory. 
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Suppose, I consider a finite dimension vector space V and a linear operator T, which 

maps V to this say, another space V prime. That is, there is V and this is V prime 



towards some field; field is either real or complex, and T maps it to some domain within 

V prime. We call it R. R is called the range; R is the range space. In fact, R will be vector 

space we will shortly, see range space of T. 

Then, what is R? R consists of all vectors of V prime for which, there is a vector in V. 

So, that T working on that vector V, gives you this vector nr; that is R consists of V 

prime. V prime is element of this, and so, that there exists at least one v element of V 

with TV v prime; loosely read this. This is the R is vector space, because if you take say, 

1 vector v 1 prime which is say, T T 1 equal to v 1 prime and again say, TV 2 equal to 

say, V 2 prime. V 1 v 2 element of v and of course, v 1 prime and v 2 prime element of v 

prime, then C 1 v 1 prime plus C 2 v 2 prime; this is nothing, but T of c 1 v 1 plus c 2 v 

2, but this element, this is an element of V. 

That means this is an element of R, because R consists of all maps of V. That is any 

vector R consists of all those vectors of V prime for which, there is a source in V. That is 

if we pickup any vector v prime from R, we must find at least 1 vector in small v and in 

capital V. So, that T working on v gives you that v prime. Now, you understand here, 

that V 1 prime is this part of R and V 2 prime belongs to R, then any vector linear 

combination of them also, belongs to R, because you find another vector as an element of 

V that is c 1 v 1 plus c 2 v 2 on which, if  T works, gives you this. 

That means this is closed and therefore, this vector space this called range space. 

Dimension of this range space, dimension of R, in fact, I will call it RT. This range of T; 

you should call it RT dimension of RT is called the rank of the operator T. Similarly, 

there is another space that is important, that is called null space of the operator T; that is 

null space NT; NT is a subspace of V. NT consist of all vector elements of V. So, that 

TV maps to 0; that is T working on those vectors match to the 0 of V prime. If you 

collect all these vectors, then it also becomes a space, subspace and is called null space. 

It is a subspace, because if you take v 1 v 2 element of NT, then obviously, c 1 v 1 plus c 

2 v 2 also, element of NT. Because, if you apply T over this vector, T is linear. So, you 

can apply T over v 1, which is 0; T 2 v 2 which is 0; and summation is zero, which 

means, c 1 v 1 plus c 2 v 2 also belongs to NT, which gives NT as subspace, which is 

called null space. Dimension of NT is called nullity of T, and we will show this very 

elementary result, that for any operator T which takes a vector space V, and maps into 

another,  a sub set of another space; subspace of another space V prime. 



If dimension of V is given to be say, n; that is V has dimension n; final dimension null,  

V has dimension n, then n is equal to the dimension of RT, that is rank plus dimension of 

NT, that is nullity. That is rank plus nullity is equal to dimension of the original vector 

space V. That is very important, it is not difficult to prove; we can prove it. 
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Suppose, you start with vector space V and there is this N. Let alpha i equal to say, 1, 2, 

dot, dot, dot, r; B, a basis of N; that means, nullity of T is r, because that is the dimension 

of r. Then, I can take 1 vector say, alpha r plus 1, element of V and not element of NT. 

That is from within V, but outside N; I would say NT; then, if I append alpha r plus 1 to 

this set, which is a linearly independent set, you have seen. You have seen this exercise. 

You can call it Wr plus 1 is the, I mean, you can say that alpha i; i equal to now 1 to r 

plus 1, is a so linearly independent set. This you have seen already, when we started 

discussing vector space, you have done this kind of exercise, that if you have this set of 

linearly independent set of vectors, consider the space spanned by them; that is NT; take 

any vector from outside, that append that vector to this. So, it becomes r plus 1 here. 

Then, again it is a linearly independent set, simply because, the new guy cannot be 

written as a linear combination of these fellows, because that new guy is already outside 

N of T. If you now consider Wr plus 1 to the space, the span of i equal to 1 to r plus 1 

that is, then obviously, NT is contained in Wr plus 1 then you take another vector, alpha 

plus 2 element of V, not element of Wr plus 1, that is outside Wr plus 1, but inside V. If 

you append this, then again, append this to this set, then again, there is i equal to 1, dot, 



dot, now r plus 2; this also LI, linearly independent. You consider this span of this Wr 

plus 2, so on and so forth. Finally, this process will stop, when r equal to, when you  

have got number of elements in this set, equal to the dimension of this vector space; that 

is equal to n. Then, you get a basis, I mean, this continues. So, finally, you get alpha i, i 

equal to 1, dot, dot, dot, n, and span of this is nothing, but V. 

So, this way you get a basis of V, but again there is a nothing unique about it. Because, 

you are always picking any arbitrary alpha plus 1, alpha plus 2; just alpha plus 1 should 

be outside NT, inside V, so on and so forth. But there is no fixed choice. We have 

already done this exercise; there is nothing new on this, going to be first here. This is V. 

So, this way you can obtain the vector space, basis of giving the vector space V, one of 

the basis. Now, my claim is that, if I consider, I already know that if I apply T on alpha 

1, I get 0; T on alpha 2, I get 0; dot, dot, dot, T on alpha r, I get 0. Because, alpha 1 to 

alpha r belongs to null space of T, but if I apply T on alpha r plus 1, or if I apply T on 

alpha r plus 2, or dot, dot, dot, if I apply T on alpha n, what do I get? I get definitely 

some vectors, belonging to the range space of T, and those vectors also, will be linearly 

independent; that is what, you can show easily. 
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That is, if you consider T alpha i, i from r plus 1, dot, dot, dot, up to n, these vectors 

alpha r plus 1, alpha r plus 2, alpha n; they themselves are also linearly independent. 

Because, they are part of a linearly independent set, that is basis. Given a linearly 

independent set, any subset of it, is also linearly independent. If I do not consider from 



alpha 1 to alpha n, but consider from alpha r plus 1 to alpha n, then they are also linearly 

independent. On each of them, I apply T; I get T alpha i. T alpha i, it belongs to RT. Are 

these T alpha linearly independent? Answer is yes. That is, if you take this, may be, I put 

a bracket here. If you take this and sum, I have to r plus 1 up to n equal to 0. Is it the only 

choice, only solution, for this is, that C r plus 1 should be 0; C r plus 2 should be 0; dot, 

dot, dot, C n should be 0; that is all the coefficients should be zero and no other choice is 

possible?  

If so, then it will be linearly independent, but this means, using linearity. It means, T 

working on C i alpha I, 0; that means, belongs to null space of T, because T working on 

this vector is giving you 0. This works on null space T, but at the same time I know, that 

alpha r plus 1 dot, dot, dot, alpha n, they are not element of null space. They are outside 

null space. So, the only, that is, if you consider; that means, if you consider span of only 

these people alpha r plus 1 to alpha n, this span, because this left hand side vector is a 

linear combination of alpha r plus 1 to alpha n. That means, this vector belongs to here, 

belongs to this span, but again, by this equation this belongs to NT; that means, this 

belongs to the inter section of NT and span of these. 

The intersection between N of T and the span of this, is only at 0, because each of these 

vectors, I found, I told you that lies outside N of T and I consider that span. I call it, if I 

take that span, if I take NT, the only way, the only place, where they can interact without 

intersect is 0. Therefore C i, that means, this summation C i alpha i is 0, i equal to r plus 

1 to n, but again, alpha is themselves are linearly independent. That means, C i equal to 0 

for i equal to r plus 1 dot, dot, dot, n. So, that shows, that this vector T alpha i, i from r 

plus 1 to n, there are how many vectors; n minus r vectors. They are all linearly 

independent, though they remain in, they belong to R of T. They do not belong to V. 

They belong to R of T. They form a linearly independent set, fine, but what do you do 

with them? 

We will show now, that these n minus r vectors, which are linearly independent and 

which belong to RT; they are, in fact, a basis; they constitute what? Basis of R of T, 

which means, dimension of R of T is nothing, but n minus r, because total number of 

elements is n minus r here. 
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To show that, they form a basis is not difficult. That is, if you take this R of T, if you 

take vector say, any vector, this is V prime; this is V, if you take a vector say, V prime 

here. There must exists at least 1 vector v, so that, T 1 V; T working on V, gives you V 

prime, that is, for each V prime element of R of T, there exists at least 1 v element of V, 

so that, T working on v gives you v prime. But I already have a basis of this vector space 

V. So, I can write this vector as a linear combination of those basis vectors, alpha i and i 

will now go from 1 to n, v prime is equal to this. Now, using linearity I can apply T on 

each of the alphas, but from alpha 1 to alpha n, they belong to the null space. So, T 

working on them will give you 0. So, essentially, what you get is C i T alpha i, i equal to 

r plus 1 to n. Earlier, I have shown that T working on alpha i from r plus 1 to n; they 

constitute a basis of RT. 

They constitute, they are linearly independent set. Now, I will show not only linearly 

independent, any vector v prime belonging to RT, can be written as a linear combination 

of those linearly independent vectors. This proves that T alpha i, i equal to r plus 1 dot, 

dot, dot, n, is a basis of R of T; that means, rank of T which is the dimension of R of T. 

This is nothing, but total number of elements in this basis, which is n minus r. What was 

r? Nullity of T was r, by assumption; we talk that to be r. This implies rank T plus nullity 

of T is equal to n, which is the dimension of original vector space V. This is a very 

important result. This one result will need, since, I do not know your linear algebra 

background; I have to do all these things by myself. Otherwise, I would have skipped 

this. What is the implication of this null space? 
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Suppose, I say that if T is 1 to 1, that is, it takes 1 vector, gives you 1, say, takes v and 

gives you v prime. And no other vector gives you v prime, that is v points to v prime and 

v prime points to v. Then, the relation is 1 to 1. Given v, I can get v prime, and given v 

prime, I can find out who generated v prime; that is v, uniquely. In that case, we say T is 

invertible. That is given v prime, I know it is mother; it is its origin; that is on whom, by 

working on T, by using T, I could get the vector. T 1 to 1, and thus invertible, if and only 

if null space, that is NT, consists of only 1 vector, that is 0, implying nullity of T is 0. 

This is very easy to show, that suppose, it is given that NT consists of 0 vector, and this 

is V; this is V prime; say, R of T. You take a vector V prime here. 

Suppose, it is not 1 to 1, I have a situation like this. Then, there is at least a case like this, 

where there are two vectors beyond v 2, which under T map to the same vector. In that 

case, I will say that T is not invertible, because given v prime, I do not know, whether its 

inverse is v 1 or v 2; because more than 1 possibility exists. So, it is not invertible there. 

Suppose, we have a situation like this; that is TV 1 equal to v prime, equal to TV 2. 

That means, if you take this and this; that means, T of using linearity v 1 minus v 2 is 

equal to 0, which means v 1 minus v 2 belongs to NT; that means, v 1 minus v 2 is 

simply 0 vector, because NT consists of 0 vector by assumption, which means v 1 has to 

be equal to v 2. So, in that case; that means, it is not possible to have 2 different v 1 and 

v 2. So, that T of V 1 gives you V prime; also T of V 2 gives you V prime; it is not 

possible. If it gives so, then v 1 and v 2 must be same. 



So, given the null space consists of only 0 vector that is nullity 0, T definitely is 1 to 1. 

But, on the other hand, given that, if NT not equal to 0 vector, implying nullity T greater 

than or equal to 1; that is it has at least 1 vector, I mean, it was just, I mean, its dimension 

is not 0. That means, it has many vectors; many non 0 vectors. Suppose it is so, if it is 

only having 0 vector, T is 1 to 1; we have seen. If it is not having only 0 vector, that if its 

dimension is greater than or equal to 1, then also, is it that you can have T 1 to 1 and 

status? No, you cannot have, because for any TV, say, equal to v prime; choose any u 

element of NT, so that u not equal to 0. 

And T V plus u will also give you v prime, because T u is 0; because u belongs to null 

space. Therefore, v and v plus u, two distinct vectors, give rise to, after mapping, give 

rise to the same vector in RT that is v prime, which means obviously, T is not invertible. 

So, if NT consist of 0 vector; 1 to 1. If it is not, it cannot be 1 to 1. That means, T is 1 to 

1. If and only if, the null space consist of only 0 vector and nullity 0, which means, rank 

should be same as the equal to n; that is the dimensional original vector space v. Then 

only t is invertible. This, we are doing in case of using this abstract notion of linear 

operator and all that, but in the case of matrices, because you have to now come to 

matrices. 
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You consider matrix A belonging to say, real matrices; m cross n. What does this do? A, 

it takes say, n cross m, it takes R to the power m; that is real valued vectors of length m; 

it maps to R to the power n. How? Because you take the vector, then apply, I mean, pre 



multiply the vector by A, you get another vector of length n. So, that is the relation and 

that is of course, linear relation, we all know. So, it is a linear operator working on R m 

give you R n. This is a special example of that case. In this case, what is RA? A is the 

operator; what is RA? Now, if you see a matrix, it has got a column, say C 1, another 

column, not c 1; call it A 1; another column say, A 2 dot, dot, dot, another column say, 

A; how many columns, m columns? 

If you multiply these, if you take a vector from R n, say, C 1 dot, dot, dot, C m, then, this 

is nothing, but a linear combination of these columns. These columns are of length n; n 

cross 1. These columns belongs to Rn. That means, what is the output vector, that is, 

after this mapping, after this multiplication, you get a vector from Rn. What is that vector 

is nothing, but linear combination of some specific column vectors, belonging to Rn. 

What are these column vectors? Columns of this matrix; that means, Ra is nothing, but 

Ra is what is given by, each element of Ra is given by linear combination of the columns 

of a; that means, the column space. 

What is the column space of this matrix? Set of all possible linear combinations of the 

columns of this matrix, that is same, as the range space of this matrix. Because, in the 

range space, if you pick up any vector, that is nothing, but some linear combination of 

the columns, because when you multiply a vector by a matrix, by this matrix, you get 

nothing, but linear combination of the columns, as shown here. So, this range space 

consists of nothing, but the column space of the matrix, I repeat. Because, any vector of 

range space is linear combination of certain columns, and this columns are nothing, but 

the column vectors of this matrix. 
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Now, some results, relevant to SVD, you consider such matrix A, belong to say as 

before, R n cross m. Then A transpose A and A; they have the same null space; this is 

theorem. That is null space of A transpose A is same, as null space of A. This can be 

proved easily. Suppose, you take a vector say, v from null space of A; that means, Av 

equals to 0. V is of length m; 0 is of length n vector, because A is n cross m, but then, 

this implies A transpose A, if it works on v, that also is 0; because Av is 0, isn’t it? 

That means, if v belongs to NA, then v belongs to N of A transpose A. This means NA, 

this is very trivial, is contained in this, because any vector belonging to NA means, A 

working that is 0 and in that case, A transpose A working on that also is 0; that means, 

that vector also belongs to the null space of A transpose A. But you have to prove the 

other way also, that LHS is containing RHS, and then RHS also containing LHS. This is 

all we have to prove and this is not difficult. You pick up, firstly, LHS and RHS. These 

two subspaces have to have one thing in common; that is 0. At 0 at least, they have 

something in common; they are same. 

Now, pick up a vector x belonging to the null space of A transpose A, and x is not 0. 

Because, at 0 they are common. So, no point of taking up 0s here. This means A 

transpose A working on x is 0; that means, 0. Now, if I premultiply this by x transpose, 

here also, I get scalar 0 here. But, left hand side is Ax norm square, in the Euclidean 

norm sense, equal to scalar 0. This is possible, only if this is the 0 vector, you know 

norm square is 0 and norm is 0, only if vector is a 0 vector; this is 0 vector; which means, 



x belongs to null space of A. Then, we prove that this null space of A contains this also. 

That means, we proved this. 
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What is the implication of these? That, we had a situation like this. This was under map 

A, and this was under A transpose A, mind you, A transpose A is a matrix of size, what; 

A was m cross n. So, it will be m cross m. That means, it takes a vector from R n and 

gives you the vector, I mean, generate some vector from R m only. That is, while I know 

that range of A is a subset belongs to R n, range of A transpose A belongs to Rm. But 

null spaces are same. That is, if there is a space, this is n of a equivalently, n of A 

transpose A. So, under A, Rm is mapped to Rn, and there is a null space. Under A 

transpose A, you can show that this is mapped to itself; A transpose A map to itself. But 

this operator and this operator; both have the same null space this. Now, that means, 

what is rank of A? Rank of A is the dimension of this range space, and rank of A 

transpose, this is R of A transpose A.  

Rank of A means dimension of this range space. That is nothing, but n minus, that is, 

sorry, m minus; m is the dimension of r m; m minus nullity of A. What is rank of A 

transpose A? That is the dimension of this space, which is equal to again, dimension of 

the original space, that is same as m, minus nullity of this, and nullity of this, is same as 

nullity of A. That means m minus nullity of A transpose A; that is rank of A transpose A. 

That means, A and A transpose A; they have the same rank. 
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Similarly, by the same, I will not do it, you can similarly do. AA transpose, N of AA 

transpose is same as N of A. This can be proved implying rank of, sorry, this is A 

transpose; means, rank of AA transpose is same as rank of A transpose, and those who 

know elementary matrices, they know rank of A transpose is same as rank of A. We have 

seen only rank of A is nothing, but rank of A transpose A. This shows that A transpose A 

and AA transpose; they have the same rank. Now, remember one thing. A transpose A 

and AA transpose, both are symmetric matrices; real hermitian matrices. That is 

symmetric matrices. 

So, we have, they can be diagonalised. They have got a set of orthogonal Eigen vectors. 

Their Eigen values are real and non negative; they can be 0 or positive, this we have 

done on plenty of occasion in this course. Remember that both these; though AA 

transpose is of size n cross m, and this is of size m cross n. So, Eigen vector is of 

different size. But this also has set of Eigen vectors, A transpose A, m number of Eigen 

vectors, which are mutually orthogonal or orthogonal one, and corresponding Eigen 

values are real and non negative. Here also, we have got n number of Eigen vectors 

which are mutually orthogonal, and the corresponding Eigen values are real and non 

negative, mind you. In fact, we will show them, that rank of such symmetric matrix is 

also given by number of non negative Eigen values.  

If Eigen values repeat, I will count it, if it repeats twice, I will count it as 2, and that way, 

I count number of non negative Eigen values , but remember these. Now, again I will be 



going to the Eigen values, Eigen vectors side and we all know what they are, but we have 

to do quickly. 
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Again, I will to come back again to this abstract notion of operators and all that, but this 

time T is working on v to v, and v is a finite dimension of vector space. Then, small v 

element of V is an Eigen vector of T, if v firstly, is not 0 and Tv is some scalar times v 

itself, that is you work on, you use T 1 v, you get a vector in the same direction. Just it is 

either amplified or attenuated by a factor lambda. Lambda scalar belonging to the field is 

called Eigen value. Then w lambda, suppose, set of all that is mathematically, you collect 

all elements of v. So, that T v is lambda v, then w lambda is not only a subset, we will 

see it is subspace; it is called the Eigen subspace, belonging to lambda. How? 

Just simply, if you see, if v is the Eigen vector, 2 v is also the Eigen vector, 3 v is also 

the Eigen vector; it is scalar multiple, because T on some constant times v, constant will 

go out, the constant times T v, that is constant times lambda v, which lambda is into 

constant times v. So, that is an Eigen vector. Remember that Eigen vector is not unique 

for a Eigen value lambda. For each Eigen value lambda, there are many Eigen vectors 

possible. Suppose, I consider all such Eigen vectors, belonging to the same Eigen value 

lambda, and I give it a name w lambda. Then, this is subspace, because if you take v 1 v 

2 element of W lambda, then c 1 v 1 plus c 2 v 2, this also belongs to W lambda. 

Because, if you apply T on it, you can apply use linearity c 1 into T v 1, which will give 

you lambda v 1 and c 2 in to T v 2, which will give you lambda v 2. So, lambda you can 



take common. Again, you get c 1 v 1 plus c 2 v 2; that means, this fellow implies c 1 v 1 

plus c 2 v 2 belongs to W lambda. 

That means, W lambda subspace, not just a subset; it is a subspace, called Eigen 

subspace, corresponding to Eigen value lambda. Now, we will show that if we have two 

distinct Eigen values, well as distinct Eigen values; lambda 1, lambda 2, dot, dot, dot, 

say, lambda r. 
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The corresponding Eigen vectors are linearly independent. We will show that, but before 

that, that is we want to show, that if lambda 1, lambda 2, dot, dot, dot, lambda r are 

distinct Eigen values, then corresponding Eigen vectors v 1 v 2 dot, dot, dot, vr form a LI 

set; linearly independent set, we have to prove it. But before we prove it, some properties 

1- suppose, consider a polynomial; polynomial p of say, anything, say t; just for the 

polynomial, something like this, a 0 plus a 1 t plus a 2 t square dot, dot, dot, say 

anything, aq t to the power q. 

Then, you found the polynomial operator p capital T, that is wherever, you have got 

small t, variable coming; just replace it by capital T, a 2 T square. T square means, T 

followed by T. That is T square working on a vector means, first one T on it, whatever 

comes, again one T on it, so on and so forth, and aq t to the power q. Then, you see one 

thing, if there is a vector Tv equals to lambda v, then instead of T, if I apply this 

operator; polynomial operator p T on v, what I get is a 0 times v. So, a 0 plus a 1 times 



Tv, Tv is lambda v. So, a 1 lambda, then a 2 T square v; T square v means, first Tv 

which is lambda v, again T on that; means, lambda square v. 

So, a 2 lambda square plus dot, dot, dot, plus a q lambda to the power q v; I repeat again, 

pT, you replace pT by this expression. a 0, what we want, v means, a 0 v a 1 into Tv 

means, a 1 into lambda v; lambda comes here; a 2 square v means, a 2 T working on Tv; 

a 2 T Tv, Tv is lambda v, take lambda out. Tv again lambda v. So, you get lambda 

square. So, a 2 lambda square and v dot, dot, dot. So, you get these. This is nothing, but 

same polynomial which you started with, but instead of T, we have got lambda. So, p 

lambda v. If you have got your operator in a polynomial form, that works on a Eigen 

vector, resulting thing is the Eigen vector, multiplied by a scalar where, you in case of 

the operator, you replace the Eigen value. This is one property.  
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Another property is, another thing is that, we are given lambda 1 not equal to lambda 2; 

not equal to; dot, dot, dot, not equal to lambda r; corresponding Eigen values are Eigen 

vectors are v 1 v 2 dot, dot, dot, vr. You have seen it. I have to prove that, if ci vi equal to 

0, that I have to show that each coefficient is 0; that is, v 1 to vr; these are linearly 

independent set; that is the objective of this theorem, I mean, that is the objective to 

prove actually. That shows that the Eigen vectors corresponding to distant Eigen values; 

they are linearly independent. So, I pick up those Eigen vectors here, v 1, v 2, up to r, i 

equal to 1 to r form a linear combination, equate it to 0. I have to show that, this is 



possible, only if c 1, equal to, c 2 equal to, dot, dot, dot, equal, cr equal to 0, and no other 

solution exists. Then, that will show this is linearly independent.  

How to show that? So, I pick up from i equal to 1 to r, a particular case, say, m. Take m 

less than equal to r, greater than equal to i. I will show that cm equal to 0 and then, you 

can pick up m, to be anything, from i to i plus 1 to i plus 2 to r. So, that will show that 

each coefficient is 0. Because n is general thing, generally. Suppose I form a polynomial 

Pmt as this. Here, I take lambda m minus lambda 1, lambda m, these are all scalar 

numbers, lambda 2, dot, dot, dot, lambda m, I go up to lambda m minus 1. Then, I skip 

lambda, go for this, dot, dot, dot, lambda m minus lambda r. Here again, t minus lambda 

1, t minus lambda 2, dot, dot, dot, t minus lambda m minus 1, and then, t minus, just 

follow, the denominator, m plus 1, dot, dot, dot, t minus lambda r. 

What is the property of this? You know, if you replace t by lambda m, what you get? 

Lambda m minus lambda 1, lambda m minus lambda 1; cancels, lambda m minus 

lambda 2, lambda m minus lambda 2; cancels. All the terms cancel, you get 1. If you 

take any other lambda j equal to 0, for j not equal to m, and in general, j equal to 1 to r, 

but not equal to m. Then it is 0. So, I can always construct a polynomial like this. I 

picked up a particular index m, I am looking at m eth Eigen value lambda m, the 

corresponding coefficient here, is cn, Eigen vector is vm, I am focusing on that, keeping 

that in mind, I consider a particular polynomial. 

Now, on this equation, if I apply PmT on that; right hand side, of course, is 0, because 

this polynomial operator working on 0 vector, will be 0 vector, because of linearity and 

this is a polynomial operator, I mean, whether you have the operator as T or a linear 

combination in a polynomial form, linearity remains. So, PmT can be applied 

individually on vi s. That means, working on vi equal to 0, but this means, I have already 

proved one property; this polynomial working on vi means, resulting thing is the vector 

itself, multiplied by a scalar value. What is the scalar value? Instead of T in place of T, 

put the corresponding Eigen value. That means, left hand side is ci Pm corresponding 

lambda i times vi, and this is equal to 0, but Pm lambda, you have seen, only when i 

equal to m; this is 1, otherwise,  this is 0; that means, cmvm is equal to 0. So, one 

possibility is, either vm equal to 0 or cm is 0, but vm is an Eigen vector by definition; vm 

cannot be 0; that means, cm is 0 and m, you take as i or i plus 1 dot, dot, dot, up to r; 

each coefficient is 0, which proves that Eigen vectors belonging to different distinct 

Eigen values; they are linearly independent. 
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That means, if T is from v to v and you have got these distinct Eigen values; lambda 1 

dot, dot, dot, lambda r, you form the corresponding Eigen subspaces. Eigen vectors 

becoming to w lambda 1, if you can find a basis of this subspace; if you find out basis of 

w lambda 2, you can find a basis w lambda r, so and so. Since, this basis, I mean, vector 

from here; w lambda 1, vectors from w lambda 2; they are linearly independent; that 

means, you can form a direct sum of them. If this direct sum appears to be same as V 

then, if this, then we say, T diagonalizable. This is because suppose, it is diagonalizable; 

w lambda 1, you have got a basis, alpha 1, 1 to say alpha 1, r; W lambda 2; what I want 

to say is this; you can form a basis if this is so; you can form a basis of v by taking one 

basis of w lambda 1, another basis of w lambda 2, dot, dot, dot, basis of w lambda, just 

appending them.  

That will form a linearly independent sum, because it is direct sum, because I told you; 

Eigenvectors (( )) to distinct Eigen values, they are linearly independent; you are picking 

at basis already from w lambda 1, already from w lambda 2; just appending the basis. So, 

you get a basis for v. If any vector in that basis, we apply t; this vector is an Eigen vector. 

So, you get nothing, but that vector itself multiplied by the corresponding Eigen value; 

that means, this kind of operation, that means, if you have, I mean  if you take any vector 

small v, belonging to the capital v, write it as a linear combination of this basis; capital T 

works on that. So, what you have to do, simply capital T work on each individual basis 

vector, and the corresponding same, since, each individual basis vector is an Eigen 

vector, some Eigen value or other; you will get nothing, but that Eigen vector coming 



back multiplied by the corresponding Eigen value. Now, when I come to matrices, then 

this will be further clear, but before I go to matrixes, just one more thing, I want to do so. 
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That suppose, T takes v to v and you have got lambda 1, you have got suppose 0 0 Eigen 

value and then, lambda 1, lambda 2 dot, dot, dot, lambda r and v is given to be, that is 

also, T is given to be diagonalizable; that is v is nothing, but w 0 direct sum w lambda 1; 

direct sum w lambda 2; direct sum dot, dot, dot, direct sum w lambda r; this is given to 

you. In that case, if you take any vector, small v element of V; T working on v; that will 

be what? That will be given by a linear combination of, that first, we have to find out the 

basis of w 0. Suppose, this Eigen value is w 0; this has got a basis say, say alpha 0 1 

alpha 0 2 dot, dot, dot, alpha 0; total number is something, may be, m 0. 

W 1 has a basis; alpha 1, 1; alpha 2, 1; dot, dot, dot, alpha 1 m1; then w lambda r has a 

basis; alpha r 1, alpha r 2, dot, dot, dot, say, alpha r mr. Obviously, you have got how 

many elements here; m 0, you have got m 1, you have got mr. So, m 0 plus m 1 plus dot, 

dot, dot, plus mr; so, v equal to the dimension of v, because if you append the basis, all 

these basis, they form a basis for v, that you have seen. Because the operator is 

diagonalizable, because you have got the, I mean, therefore, you have got the direct sum 

decomposition of v in terms of this. But there is a difference between Eigen subspaces w 

0 and the other one; Eigen subspaces corresponds to w 0, and the other one corresponds 

to this thing, but non 0 Eigen values. Now, if you pick up any v element of v, you can 

write v as a linear combination, in terms of these basis vectors.  



C ij alpha ji, i equal to 1 to mj and then, j equal to 0 to r. For j equal to 0, you have got 

these ones; alpha 0 1, alpha 0 2, dot, dot, dot, alpha 0, up to m 0, and likewise. This is 

nothing, but this is notation and geometry. Actually, I am doing nothing, but I am 

linearly combining them. If I apply T over v, then T can be applied directly on this 

vector. So, remember, for j equal to 0, you have got alpha 0 1, alpha 0 2, dot, dot, dot, 

alpha 0 m 0; T working on each of them will give rise to the same vector, but multiplied 

by 0 Eigen value. So, they give rise to 0. So, I do not have to consider them. That means, 

I have to consider from here to here; that means, Tv is nothing, but from j equal to 1, I 

have to start, to r and then, i equal to 1 2 mj cij alpha ji times, because T working on, 

times, the corresponding Eigen value. Eigen value will be just a minute. There are two 

indices; lambda ij and alpha ji. 

So, this actually shows that range space of T, any vector belonging to the range space, 

that is nothing, but of this form Tv, is nothing, but a linear combination of whom, this 

Eigen vector corresponds to the non 0 Eigen values. These Eigen vectors form a linearly 

independent set, because I mean, within w 1 itself, it was forming a basis, means, they 

were linearly independent; within wT itself, other one was forming a basis of w 2, it was 

linearly independent so on and so forth. When I appended them, it was still linearly 

independent, because they corresponded to, I mean, Eigen vectors corresponded to 

different Eigen spaces; they are linearly independent. That means, I got a set of linearly 

independent vectors; one set here, I mean, it consists of Eigen vectors, I mean, this dot, 

dot, dot, this all appended. 

I got a set of linearly independent vectors, which are Eigen vectors, corresponded to the 

non 0 Eigen value. So, that any vector of range space is a linear combination of them. 

That means, range space is actually is nothing, but the all the span of the, what, actually, 

range space is nothing, but this part; range space is nothing, but this part, because any 

vector belonging to the range space, is a linear combination of these vectors; that is the 

basis vectors of w lambda 1; basis vectors of w lambda 2; dot, dot, dot, basis vector of w 

lambda r. It is a linear combination of them. They are all linearly independent. So, this 

part corresponds to range of T; R of T, and this part corresponds to null space of T. 

Because any vector from there, if you pick up, if you apply T over there, you get 0. All 

right. So, I stop here. In the next class, I will use this result and get into SVD.  

Thank you very much. 



 


