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Last time I was discussing, I have very little time actually I just started discussing 

gradient adaptive lattice, but I just only mention, what is it I could not discuss it all. So, I 

will take that up today.  

(Refer Slide Time: 01:22) 

 

First let us consider the original lattice filter any stage p th stage. This is the thing, this 

you have familiar with, but to construct this lattice we must know only one thing that is 

K p. And K p I am assuming to be real for time being, let us assume that we are dealing 

with as far as the gradient adaptive lattice is concern, let us consider only the real valued 

random sequence. And therefore, all the correlations of variances a coefficients and all 

they are real, so that is why K p originally it should be K p and K p star, but I have made 

it K p and K p no conjugate because, we are considering all only the real case. 

So, then K p was this we all know n minus 1 divided by any of the two both are same e p 

f m square or e p b n minus norm square this is K p. So, you need to construct this 

particular lattice stage, you need to have K p. And K p means you need to build the 



 
 

correlation between these two prediction error as given in the numerator and various of 

any of them as given in the denominator. 

 Now, if it is stationary and statistics is known you can even eventually get all this things 

in terms of the correlation of the original process x n that we have seen, we can 

recursively update these norm square. And also using the predictor coefficients, you can 

evaluate this numerator thing, we can called as delta p. So, essentially giving the 

statistics correlation values auto correlation values of the original process x n the input 

the very first input stage input x n, you can find out this K p. 

But, suppose you do not know the correlation values or it is totally changing with time 

statistics. So, therefore, you need to have recursively by which this multipliers they learn 

their value, they adjust, they adopt themselves with types, so that they finally, I mean 

they learn from the data and added their values to the ideal K p. So, that if the input 

statistics changes afterwards, it will again track and readjust itself to the new set of K p 

values, there is a adaptive. 

So, I want to make it now adaptive, when the input statistics is given input is stationery, 

say statistics is not changing and also correlation is known you can calculate this. But, 

when the correlation is not known or it is changing with time from time to time, then you 

have to have adaptive mechanism by which thus multiply learn, they adjust their values, 

you know regarding manner regarding mean time. So, that they finally, converged on the 

optimal values at least in mean as you did in the elements case. 

And if there is a subsequent change in the input statistics, there is auto correlation values 

change it will again track because, it is a adaptive. So, I want to March towards that 

adaptive version of this lattice now, we know there original values. Now, before we do 

that let us see something, what is e p f, this quantity what is this after all x n minus the 

projection. 

Let us for the time being concept on the this projection, here for this projection your this 

is the soft space, this you decomposes orthogonal span of what, what is the last guy in 

this w 1 to p plus 1 who is the last guy x n minus p minus 1 I take that out. So, it is what 

I am left with is w 1 comma p and the last guy is projected orthogonally on this and that 

error is taken. So, it is an orthogonal decomposition that derived as we have seen is e p b 

n minus 1. 



 
 

This is a span of that component, this you have seen earlier the result I am just going 

back to the simple derivation, let us just try to recall how we derived. This total 

substance was decomposed as what w 1 comma p and the last element was projected 

orthogonal on this and the error taken that was e p b n minus 1. So, span of that and span 

of this they are mutually orthogonal and there is direction of decomposition of this. 

Then I projected x n on this space means, projection on this and projection on this, 

orthogonal decomposition that is why I did. So, this p 1 p comma p plus 1 x n is nothing 

but, projection of x n on this space, projection on this and we add that two and then add 

the two and then you subtract from here, that is how we got this lattice stage, you 

remember or not you got it that way. 

That means what we did there was P 1 p x n plus this component is that this was just K p 

I called it K p f , but latter I showed that K p f n ((Refer Time: 07:21)) mean conjugate of 

each other in this case they are same. So, K p times e p b n minus 1 and that you subtract 

from here, this is repetition mind you, but still I am doing it for some reason I want to go 

back to this derivation again, what we did you have to subtract. So, it becomes x n minus 

this which is e p f n minus this quantity, geometrically try to see this I mean I am not 

making use of any you know geometrically features. 

But, just to have clarity as to what is happening, suppose we have a situation like this 

that, this line it corresponds to a soft space anything on this line, this origin, this line is a 

soft space. Suppose, this line denotes w 1 comma p, this is indicated by this and you 

have got this fellow the last component, what we will do, you will project this on this 

space and take the orthogonal this way, so that is this, this is the axis, this is this 

component. 

So, anybody projected on this the plane will be what, the projection will be summation of 

the projection on this and the projection on this. Because, there are, but I am not making 

use of any angular on that in my derivation, just inner product and all, but just for 

projecting it I am just showing a figure. Now, suppose that external fellow x n is this 

guy, this is your x n, unfortunately you get 2D plane I have to I cannot show 3D plane 

you have to use your imagination and this is actually going lying outside. 

And this have to project on this, this the plane span by this fellow and this fellow or if 

you only this fellow and this fellow. So, and that will be what we all know from basic 

projection that will be that if you project it this is that orthogonal projection, this is the 



 
 

projection, this is the corresponding projection error, this error is this e p plus 1 f n and 

this is that projection, this projection is given by this guy. 

But, what is happening is, what we did here, we wrote that projection as a summation of 

two projections projecting this along this error, which is this component, projecting this 

along this that is this projection will be nothing but, if you project the perpendicular this 

much and if you take a projection on this, this might becomes little clumsy, this is a say 

here, suppose this is here this is 90 degree. Then these two projections, these two fellows 

this fellow and this fellow, they added together will give you this much that is a 

projection are you getting me. 

Incidentally this competent is also orthogonal projection of this fellow, this final 

projection if you take it, project it on this guy you will get the same this much 

component because, after all this component is what total x n minus this error. So, this 

means x n minus error inner product with this will be what, this vertical component and 

this will go. So, again inner product with this divide by norm square of this into this you 

know, so you get the same thing. 

So, whether you take this fellow and project it on this axis or take the total thing x n and 

project it on this axis we will get the same thing same on that side. So, then what is this 

error, this error is this component because, I asked them, so long talking of this 

projection, now the projection error means this fellow. So, clearly this fellow is what, 

this projection error this fellow and this much and this two, this actually this is the 

hypotenuse by the way, it might look to be shorter side. 

But, this is the hypotenuse this is 90 degree, original you see this was the projection, this 

projection is a summation of what I am doing in this diagram is nothing but, it is a 

geometrical description of this equations. This projection is nothing but, this projection, 

this projection that is this, this, this, this, this, then I take the error, error means x n minus 

this projection that is e p f n that this fellow and minus this guy. 

So, this guy minus this guy is this error, this guy minus this guy that is this error actually 

this is 90 degree. So, this the hypotenuse, so how much is this guy, this guy is this vector 

times K p vector, this is e p b n minus 1 that is spanning this line that times K p, suppose 

now instead of K p I have a gene any k. So, that can if I say that suppose instead of 

taking up to this I go up to this, then this error would become this much if I go after this 

error will become this much. 



 
 

So, by varying K this error non will vary and as you understand as K defeats further and 

further from the optimal 1, non square of this error vector will increase, again if you go 

to the left hand side it will increase. In fact, we can now show that it will get quadratic 

function of that K non square of the error vector that will minimum only when we are 

taking at the projection and this, this is orthogonal to this. Because, after all that error 

normally minimum only when it is a orthogonal projection that we have seen in the 

general case are you following me. 

So, if I take instead of putting a K p if I take a general expression e p f n minus some K 

times this, that is a general error vector I take the norm square of that, norm square has to 

be a quadratic function of K, which is seen algebraically, but I wanted to give you the 

geometric inside, quadratic function of K. So, that it has a unique minimum when K is 

correspondent to this point. And as you deviate further from this point, that non square of 

that error vector should increase I do not know whether you understand this is 

algebraically I can always. 

So, but you know I do not like that, you should see the geometrically meaning, this 

projection error is nothing but, this fellow which is e p f n minus this fellow, this fellow 

is K p e p b n minus 1. This is exactly this much when this coefficient is K p, but suppose 

instead of K p I make it just some arbitrary K times e p b n minus 1 that becomes sliding 

along this axis and instead of this some time if I take some K for which this much K into 

e p b n minus 1 is this much, then the error will become this, so on and so forth. 

And as I deviate further and further this was a non square of the error vector; obviously, 

we will increase you can see, you can now if I geometrically also. So; obviously, it will 

be a quadratic function of K non square of the error vector and it will be minimum only 

when I am here. Because, there it will give rise to projection and that is what, you can 

easily see, if I now consider a case like this you know e p f n minus general K and take 

the non square means all are real, so just square it up and E. 

What will you get because of stationarity, you will have sigma P f square K square term 

will come sigma P b square and another minus twice K this into this correlation that 

expected value. So, it will be a quadratic function of K that you can easily see from here, 

but I did not want to just rewrite it that way, that I have look I take a general K it 

becomes a quadratic function I wanted to give this inside. But, why it is quadratic 



 
 

because, the more actually the when you vary K you are sliding along this axis, keeping 

this part intact you are sliding along this axis. 

And that is why instead of this optimal error, sometimes you can have this error, 

sometimes you can have this error depending on the K you choose. But obviously, from 

here also you can see that error norm will increase as K I mean deviate further from the 

point and that you can verify. So; that means, it is quadratic in K and it is in this 

quadratic in K, here itself you know that for there is only one unique K, which is optimal 

for this norm square is minimum that corresponds to orthogonal projection and with this 

mathematical ((Refer Time: 17:04)). 

Now, suppose I carry out the steepest descent now, that I do not know what the optimal 

K is, like you know in the case optimal that adaptive filter, how do will you go to 

adaptive filter. First we started with the optimal filter, we not expression arrangements p 

and then I said suppose I do not know how to computer inverse or R is not although R 

will change from time to time. Suppose I do a any procedure I said, the steepest descent 

search, so what I did I did took an arbitrary with filter with coefficients I took arbitrarily. 

And further I find out that mean square error of the output to the gradient of that with 

respect to the weight, this square will be more and more as you deviate, as the filter 

coefficient deviate further and further from optimal one. So, then I took the gradient and 

I went against the gradient, so that I reach the minimum point that optimal point, similar 

thing I can do here. So, suppose in this stage I have already know what is e p f n, e p that 

is this is crucial, please understand books do not discuss all this I am assuming that up to 

the previous stage of the lattice everything have been done nicely optimally without any 

error. 

So, I am indeed getting the correct e p f n correct e p b n that’s an assumption, which is 

actually not a valid do not a very practical assumption. But, suppose it is, so up to 

previous stage that is everything is fine, but here I do not know this K p value and I want 

to find them out the instead of carrying out the form instead of evaluating by the direct 

formula I want to do a steepest descent business to find out. That means what I have to 

do I formulate this quantity I call when it is K p I know what this quantity, this sigma p f 

square. 

But, for general K it not sigma p f square it is sigma p f square sigma p plus 1 f square 

rather nothing sigma p plus 1 because, when it is K p, when it is this coefficient is not 



 
 

just K, but any arbitrary in the proper K p. Then I have this difference is this and it is non 

square there is variances nothing but, sigma p plus 1 f square, but for a general K it is not 

so, that is the minimum non, but general K it is not it could be anything it could be more 

than that. 

So, I call give it a name sigma p plus 1 is a function of K, say f square I bought in K, so 

this is a quadratic function of K, geometrically you have seen, this quantity this is 

nothing but, what is this quantity this errors. What is this quantity this difference, this 

quantity is either this error or this error or this errors these are function of K, depending 

on the K it depends on the you slide along this axis and you get this error this error or 

this error. So, this is whole thing is that error non square is a quadratic function of K of 

course, and only when K is the optimal K, you get the minimum norm error. 

And here also you consider will be quadratic function of K and what it is actually, if you 

break it up square it up and take expectation sigma p f square minus twice K let me write 

down instead of ((Refer Time: 20:24)) e p f n this what did I call delta p e p f n, this I 

called delta p, this quantity my lattice was delta p plus K square sigma p b square I am 

assuming stationary process and all that for the time being. 

Because, when I remember when I move to steepest descent from optimum filter, I did 

not through stationary I assumed stationary p that is your gradient expression came they 

R matrix was there p was there. Afterwards when I switched to elements I approximated 

R by a very wild approximation x n vector into it is transpose no averaging and all that, p 

vector was this was approximated by x n vector into d n no averaging. But, there is a 

only where I move to elements from there, but up to steepest descent sationarity 

assumption was value it and my gradient was in terms of R and p. 

Here also when I go to steepest descent stationarity assumption will be kept intact, that is 

why quite up I am taking expectation in whether it is n minus 1 or n it does not matter, 

that disappears here from sigma p f square sigma p b square, the only thing is it is a 

quadratic function. So, I know what is this gradient, gradient of this quantity sigma will 

be what I am writing here. 
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So, if now I guess there is no point in I thing partial derivative here because, it is a 

function of only one parameter K in the case of optimal filter I had, so many types w 0, 

w 1 up to w p and that output error variance was a function of quadratic function of each 

of the weights. You remembered e that b warm square that the variance of that error in 

the case of optimal filter there was what was a quadratic function of all the type ways w 

0, w p. 

Since there are, so many I have to use the notation of partial derivative, here I have got 

only one parameter K it is like a lattice stage one term another term, like there I had x n x 

n minus 1 it is just one component another component, they are linearly combined only 

one filter coefficient, which I am calling say K instead of K p, K p is the optimal one 

assuming I do not know. So, I am putting it arbitrarily K and by steepest descent I have 

to find out what the K p is that is the different matter. 

So, you can drop this notation also it should be d according to me, you know this 

difference ((Refer Time: 23:24)). So, this should be according to me b, so what is this; 

obviously, minus twice K E K will not be there minus 2 E and this 2 K is here. So, that 2 

and 2 I take common e p f n e p b n minus 1 plus K times I wrote it sigma p b square I 

am coming back to this form, I am putting them under the folder E operator instead of 

sigma p b square I am writing e p b n minus 1 square and putting it on the E operator that 

is fine. 



 
 

This quantity square it up and there is E, so square it up b and then little trick here 2 E 

there is a minus inside is it. 

Student: Minus K. 

I took it right minus thank you, so and then I suppose I take this e p b n minus 1 

common, then what I get is within bracket e p f n minus K, what is this quantity, this is 

nothing but, this quantity itself this we can call e p plus 1 if prime n prime because, I did 

not put K p here, the arbitrary K. So, it is n it will become e p plus 1 f n, when K is 

replaced by K p because, is a correlation is done that is this quantity is replaced by this. 

So, it is just minus 2 if I mean correlation between these two terms, anyway I just wanted 

you to see this mechanic, that if you will take this thing I told you something in advance. 

If you take this common this comes out, these observation I will make use of later for the 

time being again I can switch over to this because, I do not need this at this moment, 

from here from here I can then derive one simple steepest descent equation as K i plus 1 

as what this off line mind you this is not real time off line. 

Before I start using the lattice I am just doing this off line business, like this all steepest 

descent minus, this minus some constant time, constant it is a mu by 2 I want the 2 and 2 

2 cancel mu by 2 absolutely similar thing you know mu by 2 into this guy Del not del 

again d sigma p plus 1 K f square by d K evaluated that K equal to K i and you replace 

this value of the derivative here K i mu by 2, if you take this expression for derivative for 

the time being I will go back to that little later, actually I should never done that, that will 

come when I actually that is a more handling when I go to LMS from here. 

So, for the time being let us stop here only and we derived this, so if I just take the 

derivative minus 2 delta p. If you want to write it compactly instead of writing, so much 

you can just write it minus 2 delta p and 2 K sigma p b square and then minus 2 and 

minus mu by 2 it will become mu. So, power plus mu delta p if I make any mistake 

correct me minus K, K means K equal to K i, so K i sigma p b square you are given the 

correlation values. 

So; that means, delta p and this also known to you, like in the optimal just steepest 

descent case they are R matrix at p vector we are giving in that process and the gradient 

involved R and p remember p minus R w something that was the gradient in the steepest 

descent business also. I assumed input to be stationary and R and p were given to me and 



 
 

that gradient was available in terms of the R and p, in that p minus R w and w equal to w 

i similar thing here delta p and this are known to me. 

And that gradient is evaluated K equal to K i that was evaluated at w equal to w i it is K 

at K equal to pi. Now, suppose I want to now move from here to LMS, so again I will see 

this procedure is very similar absolute similar. Then first thing was replace i by time 

index n as though I am carrying out the iteration by looking at my watch and getting 

time. You remember that is how you are going to do LMS from steepest descent or I was 

replaced by time index n and this correlations will be replaced by some wildly estimates 

same thing. 

So, i you replace by n delta p, delta p is what I told you this quantity is delta p expected 

value of these two. That means, I should have several such products you know for I 

mean one sample times these, another sample of these times, another sample of these like 

that and then I should have average that will be a good estimate. But, suppose I am 

making a wild estimate, just this into this that is all, that will a very bad estimate, but 

suppose I replace that and sigma p b square is coming that is what expected value of the 

square of this term. 

So, I should have several samples of this terms squared of add it an average, but again I 

replaced that by a wild average, just square of this itself right very much in LMS. So, 

delta p suppose I replace as, then from here I get the LMS version, what is that LMS 

version that is K actually I should have a K subscript p. Because, I am concerning p'th 

stage, but to avoid complication I am not bringing that subscript p also, but at the end 

when I give you the final expression, then there will be subscript with K. 

Because, it is only for the p'th particular stage p'th stage of the lattice I am focus on, each 

stage will have it is own different constant. So, actually this is K p n plus 1 for the time 

being I have dropped that actually that dependents on p, but when I give the final 

expression and all that, that time I will bring that subscript. So, K n plus 1 will be K n 

plus mu times e p f n e b n minus 1 and e p b n minus 1 square and it is here I take e p b n 

minus 1 as common. Something which I was doing earlier I told you that I should do 

rather do it in the case of when I telling this. 

If you put that delta p here, I will not do this steps anymore because, I have already done 

it once. You replace delta p by this and sigma p b square by this, take e p b n minus 1 as 

common because, it is present in this also and this also, so within the bracket what you 



 
 

are left with e p f n minus K i K n into e p b n minus 1, which is my e p plus 1 f n under 

this adaptive situation, not ideal e p plus 1 f n. 

But, under this adoption situation means when the depletion coefficient is not the 

original 1, but whatever you got K n plus 1 or K n or in case you call you do not 

understand then I will write e p f n minus K n, this K n I replace by n K n square of this 

only one term remains. What is this quantity that is in the lattice e p f n what are the 

lattice, in this lattice suppose we have in a adoptive frame work, you get this for current 

values, but this coefficients are changing with time in the LMS manner. So, at any time it 

is K n, K n, so corresponding output is what we have in this expression that is... 

So, please understand there is sight differences that when I write the same notation e p 

plus 1 f n it is not with the optimal K it is under the adoptive equation that I am just 

running an adoptive filter now this is the output. Like in the case of adoptive filter also 

during the turning phase just not converse to the optimal one, but I am not discarding the 

output that time, there is a still output y n at the filter output. 

But, what is that output, the output with non optimal set of coefficient w n that 

corresponding is started as output is y n it is just that, it may converge to optimal one I 

mean when K n, K n be converge in this process to the optimal one. And then converge 

you will get this to be the actual optimal e p plus 1 f n as given by the optimal lattice we 

derived. But, as of now here it is just the one that you get at the lattice output with the 

available coefficient. 

But, static assumption is that the two inputs are correct, that is why their variances were 

indeed those sigma p b square and all those things. Now, the problem is if I just stop 

there, problem is this will say converge ((Refer Time: 35:40)) converge though that 

converge analyze I am not doing because, that is more complicated because, that has to 

take care of the fact that I assume this to be optimal. But, this may not be the ideal one 

because, this also have been generated adoptive from the previous thing error as some 

error as come in. 

So, is a overall thing is much more complicated, so I will not do, but again conversation 

analyzes has been done by people and they found out for that very low I mean mu as to 

be chosen in general. I mean you we have to take very less value of mu and all that some 

range also giving in some complicated expression, but it converges, but up till now the 

problem is, it will converge to some value. But, that some value is what converge will be 



 
 

mean it is not that we finally, exactly converge on the optimal one do we converge it in 

mean. 

And on the mean it will be oscillating and then you have to see how much the variance, 

the variances to be suppressed by clever choice of mu and all that as we did in the LMS 

case. Now, suppose I can do the similar analyses, but with this guy that time I took the 

norms this fellow e p plus 1 f n this projection, this error this will give a geometrically 

interpretation some all that, it become a quadratic function of K and carried out that 

steepest descent followed by LMS. 

So, that this guy converges at least in mean to the optimal one, but I can do a similar 

thing here also, it is a same projection kind of frame work, only the names will differ 

names will change here. This will become x n minus p minus 1, this will become x n, this 

will become w 1 to p it will remain, x n w 1 comma p x n minus p minus 1 similar thing. 

So, there also I can carry out a same thing you know I can put a general K, this norms 

square will be that is this fellow with a general K here it is norms square of variance will 

be quadratic function of K again. 

So, if you go the steepest descent and then LMS you will get another similar set of 

equation. So, that will also give rise to that convergence and that K there will converge 

to the optimal 1, but only mean, but there is no guarantee that the two case, in the two 

branches will always remain same and after convergence this also will remain same. But, 

the lattice once in the lattice filter I have proved that this two must be same, they are 

same under real case they are same that is never assured. 

So, I have to generalize this business somewhat, so that it is guaranteed that in the after 

converges also, if any 1 converges only in mean and not exactly on the optimal K p, this 

two figures are locked each other, to do that it is very simple to generalize this. You see 

one thing, if I replace this by K p thus K p by K I take a general error like this error, this 

error take the norm square variance of that that is of course, a quadratic function of K 

geometrically you have seen mathematically we have seen. 
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Similarly, if it is e p plus 1 b n this I will write down, we have seen this much that 

suppose if you bring a general K here it is a norm square of that that is of course, 

quadratic function of K the physical meaning, geometric meaning have giving all that, 

for this half. But, this is a problem is I from that only if I go for steepest descent and 

LMS, I have that problem that I will not be I mean I will not be able to assured that the 

two case will be locked to each other. 

Similarly, if I do for the lower half that is this guy minus a general K time this, say some 

K prime or say the two case are different let me I mean just even though I use a same 

notation e p f n is here also. If I take the norm square of that, that will be the quadratic 

function of K by the same geometric understanding an algebraic expression and you can 

go for a steepest descent here and finally, LMS in same manner, only when the two case 

they will even after convergence, this will be replaced by K n this also replaced by K n 

or K prime n if you want to use different notation. 

They will not the remain lock to each other, they will not be same after the convergence 

also not only before convergence, after convergence also because, convergence only is in 

mean not exactly on optimal K p. So, two guys have put land on K p and therefore, 

remain equal that situation will not come, they are only oscillating around K p the 

optimal coefficients. 

So, there is no guarantee, but now see one thing, if I just take this fellow with general K 

this was given I take the norm square of this the variance of this that I gave the name 



 
 

sigma p plus 1 I bought in K f square. And if I take the norm square of this or I can give 

the name sigma p plus 1 K b square, now this guy is a quadratic function of K and there 

is an optimal K, K optimal, what is that K optimal the 1 K opt which is same as K p. 

So, this fellow would be a function like this sigma p plus 1 and comma K f square, it will 

be a function like this, this much will be sigma p plus 1 f square that is when K equal to 

K p. This will be having the minimum value and minimum value is the variance of this, 

similarly if you pop plot this it will be a quadratic function again of K that minimum will 

occur at the same K from our theory. Because, we know from the theory that the two 

case two K p’s are same under real case. 

And if you go back to the theory and no LMS now, proper lattice and all, we know that 

this also will I mean b quadratic function it is norm variance will be quadratic function of 

K and that will be minimize at K equal to the same K p under real case. Because, under 

complex K p and K p star, but now K p and K p, if I again take this expression and I 

mean plot it you can even work it out is a square it up and differential and all you get the 

same K p. 

Then it will again be a quadratic function of K and minimum will be under the there is 

important thing the same K. So, it could be something like this, this much is your sigma 

p plus 1 b square, but actually this two are also the same, so it should hit the same point, 

this figure is not correct because, even these two are same. So, I should not, so them to 

be different K opt equal to K p this is sigma p plus 1 comma K square with f of course, 

and this is the other one could be like this. 

What is your problem, the other one could be like this sigma p plus 1 K b square both 

have the minimum value, both are quadratic both have the minimum value of the same K 

from the theory it appears the because, under real both are same K p. And that K of is K 

p and again what is the minimum value in this case sigma that is the norm square of this 

and norm square of this, which are same we have proved that is why it is like this. 

But, earlier in the steepest descent I forgot about one I consider this on this I did steepest 

descent and then LMS approximation I got one recursive equation for K n as I did that 

time this one. But, ((Refer Time:44:17)) you can do at this also, you can get another 

recursive equation on K n and there is no guarantee that the two K sequences will at least 

after convergence will be same. But, in the lattice I want them to be same because, I 



 
 

know from theory that both the arm should have the same coefficient that is not 

guaranteed. 

In that separate business of you know I mean LMS updating the either the multiplier of 

this branch or multiplier of this branch, how to get rid of that problem. Now, question is 

in the each is a quadratic equation of K, this is also the quadratic function, so summation 

also is a quadratic function of K that is how only one minima. So, then what will be 

instead of taking of this or this, we add that two and that we minimize with respect to K, 

that is what is done. 

So, neither this fellow nor this fellow, but they did the addition, so; that means, now I am 

coming to the actual one, you form sigma p square as sigma p plus 1 K square as f square 

just addition of that 2, just add that 2, this function is also quadratic in K with the same 

minima this you minimize. So; that means, your steepest descent will become K i plus 1 

as K i minus mu by 2 into evaluated at K equal to K i and what will this give guys to this 

norm square is if you square it up this and this. 

And differentiate this guy, this guy norm square, norm square this square it up, square it 

up e over this e over this, what we will get actually after differentiation. This is give us to 

what d d K of will be equal to what, you can mentally I mean you can visualize it know I 

mean there is no point in doing that, first you take the square of this expected value and 

differentiate and here also. Here, we will get in both cases minus 2 K will come out, then 

E, E or maybe you can write it in terms delta p and all that, so delta p minus please 

correct me if I make any mistake sigma p. 

Student: K 1 will be not common ((Refer Time: 47:44)). 

K will go know square it up yes K after differentiation K will go yes minus 2 delta p 

minus K into sigma p from here sigma p b square and then from the lower half again 

delta p, please correct me delta p is a right minus K sigma p f square ((Refer Time: 

48:25)) am I correct these are thing. So, this you have to bring back here minus 2 and mu 

by 2 cancels, you get plus mu into this entire quantity and evaluate it to that K equal to K 

i. 

But, I will not stop there I will go to LMS from here I will go to LMS simply same thing 

actually what I did earlier I am just generalized. So, delta p will be approximated by and 

while the estimate there is e p f n into e p b n minus 1 itself, no sample average and all 



 
 

that, sigma p b square sigma p f square there will be replaced by what, this will be 

simply square of the e p b n minus 1 and this will be square of e p f n while we estimates. 

If you put back here, what you get and i replace by n, so K n plus 1 plus mu into you take 

e p f n that thing common, you will see e p b between this two you take e p b n minus 

common. So, e p f n minus K n times, so this is and other one you take e p f n common is 

it this between these two, this is e p f square this e p f b, so take e p f common, this e p b 

n minus 1 minus K n... 

So, this guy into this guy and this guy into this guy, this is the basic form of this called 

gradient adaptive lattice algorithm of course, along with this we have to have the 

equations for e p f n and e p b n that I have wrote up in equations. 

(Refer Slide Time: 50:40) 

 

So, that the p th stage actually will be like this e p plus 1 f n plus simple lattice equation, 

these are I am assuming to be correct one minus K and that instead of K I am calling it K 

p I told you I bring the subscript p to indicates its p th stage K p f n into this you are 

familiar with. Similarly, the other half also we are familiar with again I am assuming the 

that this is correct e p b n minus 1 correct one again K p n. 

And then K p n giving we are giving K p n, we calculated these two we are giving K p n, 

this we are giving K p n, we first calculate these two then we march towards K p n plus 

1. This adaptation, during adaptation also I continued to get these values, like in the case 

of error elimination algorithm for optimal filter for that transversal filter, during 

adaptation also with those incorrect weights, which are under training process is to get 



 
 

the filter output. And using that you get the error that error feedback will be the LMS 

algorithm get better coefficient. 

Then, similarly here also is it incorrect K p’s you get them using this you get new 

coefficient. Then you again use that back to filter in the next time index n plus 1 you 

understand, so this will be e p f n I am making all kind of mistakes no, no e p f n I told 

you see diagonally know e p f n e p plus 1 b n, this will converge. But, usually you have 

to take mu to a very small, there is some expression for mu and all that I mean upper 

bound that I am not giving here. 

So, this is gradient adaptive lattice simple, in the intermediate stage I assume these to be 

these two to be correct and you are getting these. But, these are not correct because, not 

optimal K p has come up, but still this data will be used to in the next stage to update this 

K p’s, but those training will be useless. But, suppose for the p'th stage that the training 

is over and then the K p’s are identical to K p are optimal one are very close to one for 

that moment onwards, whatever is generated you can assume that to be correct. 

And from that moment you wants the training for next stage will become meaningful 

they actually for all the stage it will take more time are you understanding. So, that is all 

for these this kind of business, you know it is called stochastic gradient treatment we will 

basically we will take the gradient of that error thing and then you know stochastic 

gradient. Because, it is depending on the data finally, in the LMS case it is not just 

dependent on the constant condition like R matrix, p vector. 

But, when you move to LMS it inverse data and therefore, it becomes a stochastic 

gradient because, it is just taking stochastic process and evaluating a gradient. So, these 

is one side one side of the adaptive filter, where mean square error is minimized mean 

square is minimized and gradient is computed, we will minimize by first competent a 

gradient, then approximate the gradient by data giving quantities not are my correlation 

values, but data giving quantities and then analyzing the converges and all. 

But, there is another side another approach that is called recursive least square, where is 

more direct, they are we do not do any you know we do not evaluate the mean square 

value of some error and all that and minimization and all that. Whether we take, suppose 

you want to find out to you are looking at the error variance, you just take several 

samples of the errors square them up and average, that average will be minimized with 

respect to the combiner coefficients directly. 



 
 

And that will be done with time recursively, that is suppose you have taken 100 samples 

of an error, error E 0, E 1 to E square 0, E square 1, E square 2, like that you are added 

up to 100 and divided by 100, these errors are function of those linear combiner 

coefficient filter. So, you minimize it you get a set of filter coefficient fine, but suppose 

now 101 100 first data coming 100 and first data come in, so you have to again compute 

the same square of error to minimize that we just to filter coefficient, if you minimize 

you will get a new set of coefficients. 

Question is how to generate it recursively, that suppose I got that set of coefficients 

which are obtained by minimizing sum of square of errors up to 100 terms. If other term 

coming new set of if a better set of coefficient will come up, how to obtain it recursively 

from the previous stage. Exactly, there is no question of when you expectation values 

anywhere not that is, just numerical linear algebra. And it is more tricky and more 

difficult, but again far more interesting than this, so tomorrow next class we will be 

giving this recursive least squares. 

Thank you very much. 


