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Block to Variable Length Coding-III: Huffman Coding 

 

Welcome to the course on an Introduction to Information Theory. So, we will continue 

our discussion on block to variable length code. In this lecture, we will talk about 

optimal block to variable length codes, which are also known as Huffman coding. 
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And then we will talk about how we can encode a source. We have so far talked about a 

coding a single random variable, how the same concept can be extended to coding a 

source of length l. So, the property which I am going to show for optimal prefix-free 

code is as follows. So, let us first consider a binary prefix-free code. So, we are 

considering a codeword consists of zeros and ones. So, a binary tree corresponding to an 

optimal binary prefix-free code does not have any unused leaves. So, the first claim that 

we are making is if you have a binary prefix-free code which is optimal and if we map it 

to a binary tree then there should not be any unused leaves in this binary tree. 

Now if there are. So, let us prove this. So, let us do by method of contradiction. So, let 

say if there are unused leaves then this unused leaves must be at the maximum depth, 

otherwise we can always bring in a codeword from higher depth to smaller depth in the 



 

 

process reduce the expected codeword length. So, if at all there are unused leaves, they 

must be at the maximum depth; otherwise a code would not be a optimal. Now, if so they 

are at the maximum depth then one of these two things can happen. Since, it is a binary 

tree, so there are two leaves. So, either one of this is assigned a codeword and the other 

one is just an unused leaf or we could have this as unused leaf and a codeword assigned 

to this. 

Now, in this situation, you can see in either case, I can use this codeword here, I can 

move this codeword here and in the process, I am decreasing the expected codeword 

length by one. So, by deleting this last digit of the codeword we still have a prefix-free 

code and this new code has smaller expected value of W, hence my earlier claim that 

there are unused leaves at the maximum depth for optimal code is false. So, by method 

of contradiction, we have shown that this cannot happen. If you have an optimal binary 

prefix-free code then the binary free code corresponding to this prefix-free code cannot 

have any unused leaves. 
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The next result which you claim, which I am going to make is if there is an optimal 

binary prefix-free code such that two least likely codewords let us call them u k minus 1 

and u k. So, u k minus 1 and u k are the two least likely codewords. So, these should 

differ only in their last digit. So, if you have two least likely codewords they should 

differ only in their last digit. So, the proof is like this. So, this is our least likely 



 

 

codewords and then the next least likely codeword is this. So, we have situation like this. 

So, we have a node at highest depth where you have two codewords u i, u j, u i, u j we 

can have something like this.  

Now, what we can do is if let see our j is not equal to the least likely codeword then we 

can always replace u j by codeword corresponding to u k. So, if j is not equal to K we 

can always switch the leaves of u j and u k, because u j probability of u j is more than 

probability of u k; and we are moving u j to a smaller depth in the process this swapping 

would not increase expected value of W. In fact, it can decrease; it is possible that the 

expected value of w can decrease. So, if this j is not u j is not same as the leaves likely 

codeword u k, I can always swap wherever my u k was and I bring it here and I can 

move u j back to where u k was right. And this process would not increase my expected 

codeword length. 

Similarly, if my u i is not same as u k minus 1, which is the second least likely codeword 

then I can always swap where my u k and I minus 1 was and bring it here and move u i 

back to where u k minus 1 was. Now, since probability of u i is more than u k minus 1 

and since my u i was already at the maximum depth, when I swap them my expected 

codeword length is not going to increase, in fact it can decrease. 

So, hence what I have shown you is if at maximum depth, you have codewords like this 

u i and u j then I can make this u i u j as u k and u k minus 1 then without actually 

increasing my expected codeword length. Hence, if I have and what is my optimal code 

the one which will minimize my codeword length expected value of w. So, what I have 

shown you is I can have a situation where the two least likely codewords are the part of 

the leaves or the highest depth and this will result in average codeword length which is 

minimum. Hence, we can see that if they are part of the coming out from the same node 

then these two codewords will differ only in the last digit because before this the path 

from the root to this node is same for both these codewords. So, two least likely 

codewords then differ only in their last digit. So, what we have shown is the new 

optimum code which has the minimum expected value of w will have two least likely 

codewords and they will only differ in the last digit that is because from root to this node 

the bits are all same, they are only differing in the last digit.  
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So, now, lets us give the algorithm using these two results we will give algorithm for 

constructing optimal binary prefix-free code. So, we are interested in optimal prefix-free 

code for a random variable U which takes K different values. So, let us designate these K 

different values as u 1, u 2, u 3, u k and we assign probabilities to each of these vertices, 

which is equal to the probability of u i. and we will designate these vertices as active 

vertices. 

Step 1: We create a node that ties to two least likely active vertices please note we have 

said in the previous lemma that a for optimal binary prefix-free code two least likely 

codewords will differ in only one location - one last bit locations. So, we consider two 

least likely active vertices and we combine them and join them and create a new node; 

and a probability of that node is equal to sum of the probabilities of the two vertices. So, 

this new node that we are creating is probability is equal to the sum of probabilities of 

the two nodes that get just got joint. We are going to activate this new node and 

deactivate the two vertices that were joint. So, now, those two vertices got deactivated, 

but we have created a new active node which has probability equal to sum of the 

probabilities of those two earlier vertices. Now, we continue this process until we are left 

with only one active vertex and if that is the case will make it root vertex and we stop 

and that is how we are going to construct optimal binary prefix-free code which is a 

Huffman code. 
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So, let us take an example. We have a binary Huffman code which takes 6 different 

values. So, u 1 has probability 0.05, u 2 has probability 0.1, u 3 has probability 0.15, u 4 

has probability 0.2, u 5 has probability 0.23 and u 6 has probability 0.27. So, first thing 

we do is we just write down a vertex call is corresponding to each of the six possible 

values of u, and we write the corresponding probabilities of these u i which is given by 

here. Now, note we are interested in binary Huffman codes; there are two branches from 

each node. So, we look at two vertices which have the least probability and which are 

those two vertices this one corresponding to u 1, another corresponding to u 2. So, what 

we do is we combine these two vertices and we create a new vertex which is the sum of 

probabilities of this and this. So, this new vertex which is formed is its probability is you 

know that we are forming a probability 0.15. Now, we deactivate these nodes. So, now, 

the active nodes are this one, this, this, this and this. 

Next step, what are the two least likely active nodes. So, clearly the least likely nodes are 

at this point is this one and this one. So, we combine these two and create a new node, 

now what is the probability of this node, the probability of this node is probability of this 

node which is 0.15 plus probability of this node which is also 0.15. So, this probability is 

0.3. Now, we deactivate these nodes. So, now, our active nodes are this one, this one, this 

one and this one. Now among these four active nodes which two have the least 

probability the 1 cause point 2 u 4 and u 5. So, we combine these two and create a new 

node and what is the probability of this node 0.2 plus 0.23. So, that is 0.43. Now, we 



 

 

deactivate these nodes and we activate this node. So, now, our active nodes are this one, 

this one and this one. So, we have three active nodes. 

Now out of these three active nodes which one has the least probability 0.27 and 0.3? So, 

we combine these two nodes, we create a new node whose probability sum of probability 

of these two, so 0.3 plus 0.27 that is 0.57. Now, we deactivate these two nodes now what 

are the active nodes left now, one is this node, another is this node. So, we combine these 

together, we get a new node this probability of this node is 1, and now we have only one 

active node remaining. So, we make it a root node. And now each of these two branches 

which are starting from each of these nodes we find one of them as code bit 0, other as 

bit 1. 

Now, you can trace back the path from root to each of these codewords to get the 

corresponding codeword. So, for example, u 1 is nothing but 0, 0, 0, 0 so that is my 

codeword corresponding to u 1. What is u 2? 0, 0, 0, 1, 0, 0, 0, 1; What is u 3? That is 0, 

0 and 1 that is u 3. What is u 4? u 4 is this one so that is 1 and then 0. What is u 5? u 5 is 

1 1. And similarly, what is u 6? u 6 is this one so that is 0 and 1. So, this is the optimal 

binary prefix pre coding for a source which has six possible values and whose 

probabilities are given by this. So, this is the optimal Huffman coding for this particular 

source. 
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Now, we will try to extend this result for a D-ary prefix-free code. So, first we will go to 



 

 

prove a result which says the number of leaves in a finite D-ary tree is given by D plus q 

D minus 1 where q is number of nodes now counting the root node. So, what we are 

saying here is the number of leaves in a D-ary tree is given by D plus q times D minus 1. 

So, how do we prove this result? So, let us look at. So, let us construct a tree from a root. 

So, if we are constructing a tree from a root. So, initially, what is going to happen; 

initially we are going to have D leaves starting from this root. Now, initially you will 

from a root, you will have D leaves. Next, if you try to extend any of the leaves, what is 

going to happen is you are going to create D new leaves, but in the process this leaf 

which was earlier a leaf now become a node. So, effectively we are adding D minus 1 

leaves.  
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So, then at each subsequent step, if you are trying to extend a leaf, we are getting D new 

leaves; however, we are losing 1 old leaf, because that particular leaf now has become a 

node. So, if you do q such extensions of this tree, what we are going to get is we are 

going to get D plus q times D minus 1 number of leaves where q is the number of leaves 

not counting the root leaf, because if we start from root leaf we get D leaves. But 

subsequently when we are trying to extend a leaves, we create D new leaves; however, 

that particular leaf now becomes a node. So, effectively we are adding D minus 1 new 

leaves. So, this is the total number of leaves that we can have in a D-ary tree. 
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So, first result we are going to show for a D-ary prefix-free code is optimal D-ary prefix-

free code is there are at most D minus 2 unused leaves. For an optimal D-ary code and all 

of them are at the maximum length. Now, proof is very, very similar to the case for 

binary source. If there are unused leaves and if they are not at maximum depth then we 

can always decrease our average codeword length by moving leaf from maximum depth 

to those locations. So, if at all there are unused leaves, it has to be at the maximum depth. 

So, this is clear that if there are unused leaves they have to be at the maximum depth. 

Now, how many such unused leaves can be there? 

So, note that there are maximum D leaves possible; this number of leaves is basically we 

can have D leaves possible. Now, if there are D minus 1 unused leaves that means only 

one of the leaves is been used all others are not used. If such a situation happens, we can 

always move this leaf to this node without increasing our average codeword length. 

Hence, we cannot have D minus 1 unused leaves, so at most we can have D minus 2 

unused leaves and those D minus 2 unused leaves have to be at the maximum depth 

otherwise we can always reduce expected codeword length by moving some of the 

codeword to lower depth. 
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Now, in the previous result, we have shown that utmost there can be D minus 2 unused 

leaves and those unused leaves have to be at the maximum depth. In this result, we are 

going to calculate how many unused leaves are there in an optimal D-ary prefix-free 

code. So, for a random variable U that takes K different by values where K is greater 

than D then the reminder obtained by dividing K minus D into D minus 2 by D minus 1 

that number will give us number of unused leaves in our D-ary prefix-free code. And 

remember all of these unused leave have to be at the maximum depth. So, number of 

unused leaves is given by number of leaves in a D-ary tree minus number of possibilities 

of this random variable U, which is K, because U takes K different values. 

And what is the number of leaves in a D-ary tree that number is given by D plus q times 

D minus 1 where q is number of nodes minus the root nodes. So, number of unused 

leaves is then given by this expression. Now, I do some algebraic manipulation I can 

write this as this particular way. So, you can think of as number of unused leaves as if I 

divide D minus K by D minus 1 whatever reminder I get that is the number of unused 

leaves. Or I can do some more manipulation if I add K minus D into D minus 1 to both 

sides I can write this expression in this particular fashion. So, I can then see that if I 

divide K minus D into D minus 2 if I divide this by D minus 1 whatever reminder I get is 

my number of unused leaves. So, for an optimal D-ary prefix-free code, the numbers of 

unused leaves are given by if I divide K minus D into D minus 2 by D minus 1, whatever 

reminder I get that is the number of unused leaves and those unused leaves must be at the 



 

 

largest depth.  
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So, then I can write that there is an optimal D ary prefix-free code for a random variable 

U with K possible values such that the D minus r least likely codewords they differ only 

in their last digit, and this r is computed as we shown earlier by dividing K minus D into 

D minus 2 by D minus 1. Now, this prove that D minus r least likely codewords differ in 

only one position this proof is very similar to the proof that we did for binary optimal 

prefix-free code where we showed that there two least likely codewords differ in only 

one bit location. So, I am not going over this proof this is very, very similar you start off 

with some codeword u i, u j and if they are not the least likely codewords you can always 

swap it with least likely codewords and you can show that this process of swapping 

would not increase your expected codeword length. So, this proof is very, very similar to 

the proof that we did for optimal binary prefix-free code. 



 

 

(Refer Slide Time: 25:56) 

 

So, then I can state the algorithm for optimal prefix-free code for D ary prefix-free code. 

So, you have U that takes K different values lets designate those vertices as u 1, u 2, u 3 

u k minus 1 and let us assign probability P U i to each of these u i. Now, we will 

designate this is what is the active vertices. The first thing that we are going to do is we 

are going to compute how many unused leaves are there at the maximum depth that is r. 

And how do we compute that that is computed by dividing K minus D into D minus 2 by 

D minus 1 and whatever reminder we get that is my number of unused leaves. 

So, in the first step, what we do is we create a node that ties together D minus r least 

likely vertices with D minus r branches of a D-ary branch, node that this r of the leaves is 

unused and total there are D branches. So, in the first step, we are going to combine only 

D minus r vertices D minus r least likely vertices and we will assign probability to this 

newly created node which is nothing but sum of probabilities of these D minus r vertices. 

We will activate these vertices and deactivate the D minus r vertices that were joined. 

Now, in the next step, we are going to combine because you remember the unused leaves 

can only be at the maximum depth. So, in the next time, when we combine we are going 

to combine D vertices, D active nodes together and then combine them into a new node 

whose probability will be sum of probabilities of these D nodes, D vertices. And we will 

continue this process until we all left with only one node and that would be our root node 

with probability one. 
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So, let us illustrate this Huffman coding algorithm with an example. So, we are 

considering a ternary Huffman code. So, D in our case is 3. We are considering the same 

example which we use for binary Huffman code. So, in this example, my key is 6. So, u 

takes 6 different values u 1, u 2, u 3, u 4, u 5 and u 6; and these are the corresponding 

probabilities of these u i(s). The first step is I write down all my u is and the 

corresponding probabilities. So, this is my u 1, u 2, u 3, u 4, u 5 and u 6 and these are my 

corresponding probabilities of these u i(s). 

Now, the first step is I need to compute how many unused leaves are there. So, how do I 

find unused leaves, I divide K minus D D minus 2 I divide this by D minus 1. So, what is 

K minus D that is 3, D minus 2 is 1, so 3 divide by 2 reminder is 1; that means, in this 

example I have one unused leaf and remember that unused leaf has to be at the maximum 

depth. So, what do I do, in the first step, I only combine two vertices which have the 

least probabilities; and what are those two vertices this is u 1 and u 2. So, combine these 

two and this is my new node which has probability equal to sum of these two nodes this 

is 0.15; clearly I have an unused node here. 

Next, I deactivate these nodes and now my active nodes are this one, this one, this one, 

this one and this one. So, I now have to pick three least likely active nodes and what are 

those that is 0.15, 0.15 and 0.2. So, least likely nodes are this I create a new node its 

probability is given by sum of probabilities of these two nodes is 0.15 plus 0.15 plus 0.2, 



 

 

so that is 0.5. Now I deactivate these nodes. So, at this point, my active nodes are this, 

this and this. So, three active nodes, I combine all of them and what I get is so 0.5, 0.23 

and 0.27, I get basically this. So, I get this, I get this, and I get this. So, this one node left, 

I deactivate these nodes, so has only one active node left. So, I make that as my root 

node. 

And next I will assign a bit 2 each of this three branches, I am calling it 0, 1, 2 and then 

you can trace back the path from root to each of these codewords and that is your 

codeword. For example, u 1, what is u 1, u 1 is this 2, 0, 0 that is your u 1. U 2 is 2, 0, 1 

similarly you can find out the corresponding codewords for each of these u i(s). So, again 

I repeat the difference from the binary case here is here in the final step in the maximum 

depth you can have some unused leaf, so you have to first find out that. So, in the first 

step, you are only going to combine D minus r active vertices; and subsequently, you will 

be combining D vertices until you are left with only one vertex which is basically your 

root. 
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Now, what we have done so far is we have shown you how to encode a single random 

variable. So, we have a single random variable U which takes K different values, how 

can we optimally encoded using block to variable length coding. Now, what about if you 

have block of data, so I have an information sequence U 1, U 2, U 3 and I want to encode 

block of let say block of L bits how do I apply whatever we have studied so far to a block 



 

 

of data. So, what I need to do then is I have an information source which is giving you 

the few is I need to partition this into blocks of data. Let us say I am partitioning this into 

source parts of what we does it, it divides the output sequence into messages, which will 

be encoded by this source encoder message encoder. So, it is creating blocks of so each 

block will have L bits of u i(s). 

So, we consider an L blocks source parser. So, you can think of us V 1 as U 1 to U l, V 2 

as U L plus 1 to 2 L, V 3 as U 2 L plus 1 to U 3 L, like that basically the source parser 

what is doing is you are getting bits of data it is partitioning into a block of L bits. Now, 

you are sending this block of l bits to the message encoder which is going to do block to 

variable length coding. 
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So, we can show that there exist prefix-free codes a D-ary prefix-free code for this block 

of L bits which are coming from a discrete memory less source which satisfies this 

condition that average number average codeword length per block size is upper bonded 

by this and lower bounded by this term. Now, we already have computed bounds on 

optimal codeword length for a coding of single random variable we are going to 

extended result for the case when we want to encode a force of length L.  
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So, we have a source U which is consist of length component of this U i(s). This is L i i d 

component. So, in that case, uncertainty in V can be return as uncertainty in U 1 plus 

uncertainty in U 2 plus uncertainty in U 3 up to U L. Since they are identically 

distributed and they are independent H of U 1 is same as H of U 2 is same as H of U L is 

same as H of U and since they are independent for we can write uncertainty of V as L 

times H of U. Now, we know if we have a prefix-free code for V, we have shown earlier 

that, expected codeword length is lower bounded by entropy by log 2 and its upper 

bounded by entropy by log 2 plus 1 this we have proved in the earlier lecture. 

So, if we plug in the value of uncertainty in V, what we get here is L times H of U by log 

of D this must be less than expected codeword length and expected codeword length if L 

times H U log D plus 1. Now if we divide 1 by L, what we get here is this relation that 

average codeword length per this length L is basically lower bounded by this quantity 

entropy and upper bounded by this quantity. Of course, if L is very large you can see this 

upper and lower bound are very close. So, with this, we will conclude our discussion on 

block to variable length coding. 

Thank you. 


