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Welcome to the course on an introduction to information theory. So, in this lecture we 

are going to solve from problems related to channel capacity computation.  
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Since problem one, number one, we are going to compute capacity of this discrete 

memory less channel. So, you can see this channel has two inputs 0 and 1, and eight 

outputs which are given by 0 0 dash 0 double dash 0 triple dash 1 triple dash 1 double 

dash 1 dash and 1. So, these are the eight outputs of the channel, and these are the two 

inputs to the channel. The channel transition probabilities are given here. So, probability 

of 0 given 0 is 0.309, probability of 0 dash gains 0 is given by 0.191, and similarly you 

can see the transition probabilities are given here. The first question is, find the capacity 

of this channel. 

So, first we will try to see whether this is a symmetric channel or not. So, clearly this it is 

not a strongly symmetric channel, because you can see this is not uniformly, like it is not 

uniformly focusing; for example if you consider this particular output the probabilities 

are 0.309 and 0.006, but if you consider this output, the transition probability of 0.191 



and 0.017. So, clearly this is not a strongly symmetric channel, but we need to see 

whether this is a symmetric channel, whether we can decompose this channel into 

strongly symmetric channel. So, let us look at this output 0 and output 1. If you look at 

the probabilities this is in the decreasing order 0.39, and this is 0.006. What about this 

particular output. Again the probabilities, transient probabilities 0.309 and 0.0006309 

and 0.006, which means zero and one have the same focusing. Let us look at 0 dash and 

one dash, this is 0.191 and what about this, is 0.017.  

Similarly this one is 0.191 and this is 0.017. So, these two are also uniformly focusing. 

Similarly, look at 0 double dash and one double dash. This is 0.191, and 0.044. This is 

also 0.191, and this one is 0.044. And finally, this, these two also have same focusing, 

you can see this is 0.150, this is 0.092, and one triple dash is 0.150, and this is 0.092. So, 

you can see now, that we can decompose this output into four uniformly focusing set; 

one corresponding to these two, one corresponding to these two, then one corresponding 

to this, and one corresponding to this. So, to compute the capacity we will first try to 

decompose this into strongly symmetric channel. 
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So, if you try to do that, as I said 0 and 1 they have same focusing 0 dash and 1 dash as 

same focusing 0 double dash and 1 double dash as the same focusing and 0 triple dash 

and 1 triple dash are the same focusing. Now, if I decompose the same channel into four 

such strongly symmetric channel, I can write the equivalent decompose channel in this 



particular fashion, where I am selecting this channel consisting of output 0 1 1 with 

selection probability q 1. I am selecting this channel which gives output 0 dash and 1 

dash with selection probability q 2, and selecting this channel which gives output 0 

double dash and 1 double dash, which selection probability q 3, and similarly I am 

choosing the fourth channel with selection probability q 4. And each of this individual 

channels are binary symmetric channels. 

So, I am just writing this cross over probability as epsilon 1, epsilon 2, epsilon 3, and 

epsilon 4. Similarly these probabilities are 1 minus epsilon 1 1 minus epsilon 2 1 minus 

epsilon 3 and 1 minus epsilon 4. Now the first thing that I need to do is to find out the 

value of q 1 q 2 q 3 q 4 ,and epsilon 1 epsilon 2 epsilon 3 and epsilon 4. Now how do I 

find out these values? So, I am just going to map these transition probabilities. So, if you 

look at let say transition probability from. So, transition probability of 0 given 0, what is 

this in this diagram - it is given by q 1 times 1 minus epsilon 1; that is this, and if you go 

back to this diagram the transition probability of 0 given 0 is given by 0.309. So, what 

we can do is, we can write q 1 into 1 minus epsilon 1 is equal to 0.309. 

Similarly, what is the transition probability of 1 given 0; that is given by from this 

diagram, this is q 1 times epsilon 1; that is this. And let us go back to original what is the 

transition probability of y 1 given 0; that is 0.006. So, q 1 epsilon 1 is 0.006. I have 2 

equations, and two unknowns q 1 and epsilon 1. So, I can solve them to get q 1 and 

epsilon 1. So, I get epsilon 1 is to be equal to this, and q 1 to be this. I follow exactly the 

same procedure to get q 2 epsilon 2, q 3 epsilon 3, q 4 epsilon 4. I am just writing it here, 

we can do it once more. Let see look at transient probability of, what is the probability of 

o dash given o 0 0 dash given 0 that is given by q 2 times 1 minus epsilon 2; that is equal 

to q 2 times 1 minus epsilon 2, and this is nothing, but if you go look at the original 

figure probability o dash given o is 0.191. So, this is equal to 0.191, and that is what we 

have written here. 
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Similarly, we can write this and solve for epsilon 2 q 2, is exactly the same procedure 

that we get to find q 1 and epsilon 1. We can repeat this process to get q 3 epsilon 3. So, 

this is the value of epsilon 2 q 2, this is the value of 3 q 3 that we get, following the same 

procedure, and this is the value of epsilon 4 and q 4 that we get. So, now that we have 

this selection probabilities of each of these, so strongly symmetric channel, and each of 

these channels are binary symmetric channel which is the strongly symmetric channel.  

So, we know the expression for capacity for each of these channels. So, then the overall 

channel we can capacity, we can write as summation of capacity of each of these 

strongly symmetric channel multiplied by their selection probability. So, if you sum that 

up, you get the capacity of a symmetric channel. So, and what is the capacity of each of 

these channel, these are a binary symmetric channel. So, it is capacity a binary 

symmetric channel is given by this. So, we plug that value in here, we know what epsilon 

is, we know this, we know what is q 1. So, we can calculate the overall capacity of this 

channel, and this comes out to be 0.477 bits. 
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The next question what we have saying is, if you use the hard decision demodulation, 

then we would combine these four outputs in those into one symbol, call it zero. And we 

would combine these output symbols into the output symbol, let us call it one. Now I am 

asking so that would then result in per binary symmetric channel. So, this question ask, 

what is the capacity of the resulting binary symmetric channel, if you combine all these 

inputs 0 0 dash 0 double dash 0 triple dash into 1 output 0, and do the same thing with 

these 1 1 dash 1 double dash and 1 triple dash. So, that resulting channel would 

something like this. So, you have two inputs 0 1 1 and we will also have two output 0 1 

1, and what are these transient probability. What is the probability of getting zero given 

input zero that would be probability of, equal to probability of zero getting zero plus 

probability of 0 double dash given 0 plus probability of 0 triple dash given 0, so that 

would be this probability.  

And similarly we can compute the other probability as well. So, the resulting channel 

that we have is given by this, and this cross over probability as I said is given by 

probability of 0 given 1, probability of 0 dash given 1, probability of 0 double dash given 

1, and probability of 0 triple dash given 1. So, if you add them up, we get epsilon to be 

this. Now this is a binary symmetric channel. So, it is capacity will be given by 1 minus 

(Refer Time: 13:39) to be function of epsilon. So, this is nothing, but this many bits. 

Now, if you compare this capacity to the capacity that we computed for their original 

channel. The original channel capacity was 0.477 bits per use; whereas, capacity of this 



channel is 0.368. So, as you can expect if you are doing the hard demodulation of the 

output we are losing information. So, our channel capacity decreases. So, the loss in 

capacity compare to the previous case is around 1.13 db, this is 10 log of 0.477 divided 

by 0.368; that is 1.13 db. 
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Now, the third part of this question is as follows. There are three different sensible ways 

of converting this channel into a binary symmetric erasure channel. Now what is a binary 

symmetric erasure channel? So, in a binary symmetric erasure channel you have two 

inputs 0 and 1, and you have three outputs zero erased output and 1. So, one second, let 

me draw the model for binary symmetric erasure channel. So, let say this is a delta 

probability of bits getting erase, let say this is an epsilon probability of bits b in error. So, 

this will be 1 minus delta minus epsilon 1 minus delta minus epsilon. So, this is a binary 

symmetric erasure channel. 

Now, I am mentioning there are three different sensible ways to convert this original 

channel into a binary symmetric erasure channel. Now what are those three different 

ways; one way is I club 0 dash 0 double dash 0 triple dash 1 1 dash 1 double dash and 1. 

I convert all of them into eight bits in a map 0 to 0 and 1 to 1; that is one way of doing it. 

Second way of doing it I map 0 and 0 dash 2 0 1 and 1 dash to 1. and I map 0 double 

dash 0 triple dash 1 double dash and 1 triple dash, I map it to the erase bit, or I can do 0 0 



dash and 0 double dash, and map it 2 0, 1 1 dash and 1 double dash I map it to 1, and I 

map 0 triple dash and 1 double dash I map it to the any aspect. 

So, there are three ways in which I can convert this particular channel into a binary 

symmetric erasure channel. Now this question asks, find the capacity of the channel, and 

find the capacity for the way that gives the greatest capacity. So, out of this three 

different ways in which we can convert this channel into a binary symmetric erasure 

channel, which one will give us maximum capacity; that is the first part of this question, 

and second part of the questions says find also the decibel loss compare to the eight level 

demodulation, and the decibel gain over hard demodulation. So, is asking us to compute 

the losing capacity, compare to this original channel, and gain in the capacity compare to 

the binary symmetric channel that we did in the problem 1 b. 
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So, they said this is our binary symmetric erasure channel. This is erase bit denoting by 

delta, and these are the other received bit zero and ones. With delta probability the bits 

are getting erased bit probability epsilon the bits are getting in error. So, the probability 

of receiving the bits correctly is 1 minus epsilon minus delta. Now this binary symmetric 

erasure channel can be decomposed into two strongly symmetric channel; the one which 

as input 0 and 1 the other which has this erase bit. You can see if you look at this output 

0, the transient probabilities here are 1 minus epsilon minus delta, and epsilon similarly 



if you look at this input these transient probabilities is a 1 minus epsilon minus delta, and 

this is epsilon. So, 0 and 1 have the same focusing. So, they can be clubbed together. 

However it is focusing it is difference from to focusing of delta which is delta and delta. 

So, this is not a strongly symmetric channel, but we can decompose it into two strongly 

symmetric channels; one which has output zero, and one the other which will have 

output delta, and that is what we did here. We decomposed into two channels; one which 

is output zero, and one other which as this erase bit.  

Now following the same procedure then we need to compute what is the selection 

probability of selecting this channel which has in output zero and one, which we denote 

by probability q 1. And similarly we need to find the selection probability of selecting 

this channel whose output is this erase bit delta, and that is denoted by q 2 on this 

corresponding probabilities are similarly denoted by x and 1 minus x, and this is denoted 

by y. Now we will again check the transient probability of each of this output given 

input, and compare it with the original binary symmetric erasure channel, to get these 

probabilities. 

So, we can see q 1 times 1 minus x is 1 minus epsilon minus delta. So, if you look at 

probability of 0 given 0, this is given by q 1 times 1 minus x this is q 1 times 1 minus x 

and let us go back to the original probability of 0 given 0; that is this, that is 1 minus 

epsilon minus delta. So, that is why we wrote q 1 times 1 minus x is 1 minus epsilon 

minus delta. Similarly we can find out what is the probability of 1 given 0, this is 

nothing, but q 1 times x, so this is q 1 times x now let us look at. Now let us look at it is 

original channel probability of 1 given 0, this is given by epsilon. So, the epsilon is equal 

to this and that is what we wrote here. So, we have two equations; this is equation one, 

this is equation two, and we have two unknowns; one is q 1, other is x. We solve for it 

and we get the value of x to be this, and q 1 to be this. Similarly we can find out what is 

q 2 and y. 

We can find out that. So, if you do that y comes out to be 1 and q 2 comes out to be 1 

minus q 1 which is delta. Now the first set of channel this, this channel which I denoting 

by c 1 this is the binary symmetric channel. So, it is capacity is given by one this, and 

capacity of this channel is zero. So, we plug that in. this is the capacity of channel one, 

where this cross over probability x is given by epsilon divided by 1 minus delta, and the 



capacity of the second strongly symmetric channel is zero. The overall capacity is given 

by q 1 times c 1 plus q 2 time c 2, which comes out to be this. 
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Now, as I said there are multiple three different ways, in which I could combine the 

outputs. If I combined 0 triple dash and 1 dash to be delta, my epsilon in this case comes 

out to be 0.067, and delta comes out to be 0.242. So, capacity in this case comes out to 

be this, and similarly for the two other cases I can find out the capacity. So, you can see 

somewhere out of the three ways of combining, this case should be the best to the highest 

capacity. So, what I do is, I map 0 and 0 dash and 0 double dash to 0, I map 1 1 dash and 

1 double dash, I map it to 1, and I map 0 in triple dash and 1 triple dash I map it to delta, 

see if I do that I get the maximum capacity which is 0.31 bits.  

Now, if we compared this with the capacity of the original channel which was 0.477 bits. 

So, this is a 0.44 db loss; however, if you compare it to the capacity of the binary 

symmetric channel in problem 1 b. This is a gain of capacity of around 0.69 db. So, let us 

look at this problem, which shows a channel with feedback. So, you have a source u bit 7 

coded into x, and this is said to a discrete memory less channel whose output are y, but 

now this is a feedback from the output to the input. 
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So, the channel output is fed back found is fed back to the input side. So, now, this 

selection of x depends also on what is been fed back. So, subsequent selection of x 

depends not only on u, but it also depends on y, which is the symbols which have fed 

back from the channel. Now we want to show that, the channel capacity of this channel 

with feedback, for a discrete memory less channel with feedback.  

Feedback does not increase channel capacity. So, a capacity of a discrete memory less 

channel is not increased by results of presence of feedback from the receiver to the 

transmitter. Now, the question is, a feedback does not increase the capacity of a discrete 

memory less channel, why should we do feedback from the output to the input. So, let us 

prove this. now this want to make comment that, if the channel is, channel has memory 

then feedback can increase the capacity of the channel; however, if the channel is 

discrete memory less then feedback does not increase the capacity of the channel. So, we 

want to prove that, presence of feedback does not increase the capacity of this channel. 

So, let us do that. So, the mutual information between u 1 u 2 u 3 u k and y 1 y 2 y 3 y n 

can be written using definition of mutual information like this. So, this is joint entropy of 

y 1 y 2 y 3 y n minus conditional entropy of y 1 y 2 y n give u 1 u 2 u 3 u n, which using 

the chain rule can be written in this particular function. So, this is h of y 1 y 2 y n minus 

h of y 1 y 2 y n given u 1 u 2 u k, and this using chain rule can be written like this. Now, 

what I did was, I further condition this on x 1 x 2 x 3 x n. Now, since I am further 



conditioning on x 1 x 2 x 3 x n, we know that, this will be greater than equal to this 

particular term, is equal to happening if x would not. So, we know that uncertainty in let 

say a given b is more than equal to uncertainty a given b c right. So, that is why this term 

was larger than this term. So, since we are subtracting a smaller term, I have written here 

greater than equal to. 

Now, what is the uncertainty in y n given y 1 y 2 y n minus 1 and u 1 u 2 u 3 u k and x 1 

x 2 x 3 is x n. given x 1 x 2 x n y n is independent of u 1 u 2 u k. So, I can write this as 

this. So, this then becomes joint entropy of y 1 y 2 y 3 y n. you can see here given x n, y 

does not depends on u. So, that is why you could write this like this. Now using chain 

rule I can also write this joint entropy as uncertainty in y n given y 1 y 2 y n minus 1, 

where n goes from 1 to n minus this is come from here. Now from the definition of 

mutual information, this can be written as mutual information between x 1 x 2 x n and y 

1 y 2 y n. So, what I have written so far is mutual information between u 1 u 2 u k and y 

1 y 2 y 3 y n is less than equal to mutual information between x 1 x 2 x 3 xn and y 1 y 2 

y 3 yn. 

Now, proceeding further I can write this mutual information between x 1 x 2 x 3 x n and 

y 1 y 2 y 3 y n, using chain rule for mutual information I can write this in this particular 

form. So, I have applied to chain rule for mutual information. So, I can write this mutual 

information in this particular form. Now from the definition of mutual information I can 

write it in terms of entropy. So, this can be written as uncertainty in y n given y 1 y 2 y n 

minus n 1 minus uncertainty in y n given y 1 y 2 y n minus 1 and x 1 x 2 x n. Now, what 

is the uncertainty in y n? Given - x 1 x 2 x 3 y 1 y 2 y n minus 1.  

Now, note that we are talking about a discrete memory less channel. So, what is the 

uncertainty in y n given x n x n minus 1 and y 1 y 2 y n minus 1, it only depends on xn. 

So, then we can write this as, uncertainty in y n given x n. So, this term comes as it is, 

and because it is a discrete memory less channel uncertainty in y n given x n and all 

other parameter, because it is just depend on x n. 

Now, we can further simply this term, this is entropy of y n given y 1 y 2 yn minus 1. 

now we know that conditioning cannot increase entropy. So, each of these individual 

terms will be less than uncertainty in y n. So, invoking that property we can write this as 

less than equal to h of y n, and then we do it like this we write it like this. Now what is 



uncertainty in y n minus uncertainty in y n given x n. this from the definition of mutual 

information is nothing, but mutual information between x n and y n and we know what is 

the maximum mutual information in x n and y n over all possible input distribution that 

is given by capacity c. So, this can then be written as equal to n times c. So, what we 

have shown is, mutual information between ui's and yi's is less than equal to n time c. So, 

feedback from the output to the input does not increase capacity for a discrete memory 

less channel. However it does reduces the complexity of the encoder and decoder, and 

that is why we do commonly use feedback in our communication systems. Let us look at 

the first problem. 
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So, Arjun is a meteorologist with a TV station let us call it K TV his records for 

predicting the weather in Kanpur city is given below. So, this is what the actual 

happening. So, this is whether the rain happens or whether the rain does not happen, and 

on this column, I have the prediction of Arjun. So, when actually rain happens, and it 

predicts rain that probability is 1 by 8. And when there is no rain, and it predicts that rain 

is going to happen that probability is 3 by 16. Similarly, one day actually rain and it 

predicts that there is no rain that probability is 1 by 16. And probability that there is no 

rain, and you actually predict is correctly there is no rain is given by 10 by 16. So, these 

are related frequency of prediction.  



Now a student Amrita notice that this weatherman Arjun is right only 12 by 16 times, he 

is right when he predict correctly the rain happens, which is this probability and it is 

correct when there is no rain and you predict you correct there is no rain. So, Arjun is 

right only 12 by 16 times. So, it is 3 by 4 times is correct, and 1 by 4 times it is wrong.  

Now she notices that if you always predict no rain, what is the probability. You always 

predict if you always predict. So, he could be right 13 by 16 times by always predicting 

there is no rain. So, if you predicts always there is no rain. now Amrita explains this 

situation to an information theorist, he is supervisor she explains this situation, and 

applies for the job of weatherman forecast weather forecast reporting; however, her 

supervisor Rakesh who is an information theorist, he rejects her application. So, you 

have to tell why Amrita's application was rejected, why her prediction, her way of 

splitting the weather which is right 13 by 16 times, was rejected by her supervisor 

through the information theorist. So, the answer to this question lies. So, we are going to 

look at actual weather and prediction as input output relationship, and we are going to 

look at the capacity of such channel. And he will show that Amrita's channel gets less 

mutual information compare to the channel of Arjun, and Rakesh who is an information 

theorist that is why rejects the application of amrita. 
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So, let us define a random variable x representing the actual weather. So, when x is equal 

to 0; that is there is no rain, and when x is 1, it means rain has occurred. He also defines 



another random variable, we call it y, and this is the prediction of weatherman. So, when 

y is equal to 0; that means, the weather man is predicting there is no rain, and then y is 1 

the weather man is predicting that there is a rain. Now, if we view this weatherman has a 

channel that conveys some information about an underline process.  

In this case the event is whether there is rain or there is no rain, then we can define 

transition probabilities. So, what is the probability that a weatherman will say there is no 

rain, given there is no rain. What is a probability that weatherman will predict, there is 

rain when there is actually no rain. What is a probability that the weatherman will predict 

more rain, when there is actually rain? And what is the probability of rain when there is 

actually rain. So, we can use these four transition probability to describe this weather 

men’s channel. Similarly we could also define a prior probability of having rain or no 

rain. 

So, you can compute probability of x being 0, which is nothing, but if you sum of this 

joint probability of x being 0 and y, is a more all y's that comes out to be 13 by 16. 

Similarly probability of x being 1 comes out to be 3 by 16. Next this transition 

probability for the Arjun channel, we compute. So, probability of y given x equal to 0, 

can be given as, can be written as probability of x equal to 0 y equal to 0 divided by 

probability of x equal to 0, and that is given by 10 by 13. similarly probability of y equal 

to 1 given x equal to 1, can be written as probability of x equal to 0 and y equal to 1 

divided by probability of x is equal to 0; that is probability 3 by thirteen. And similarly 

we compute the probability of y being 0 given x equal to 1 that comes out to be 1 by 3, 

and probability of y being 1, given x 6 1 comes out to be 2 by 3. 

So, this is Arjun's channel; one denotes there is rain, zero denotes there is no rain. This 

actual value, this separated value, and these are the transition probabilities. These are a 

prior b prior probability on x. So, we can find out what is the probability of y being 0 that 

is 11 by 16, and probability of y being 1, that is 5 by 16. If you use this compute the 

mutual information, Arjun's channel is going to be worse roughly 0.09 bits of 

information. Now, let us look at Amrita's channel. Now what is Amrita's channel do 

Amritas channel always predicts no rain. So, no matter whether actually there is rain or 

no rain, Amrita's channel always predicts there is rain. Remember y denotes reflected 

value, x denotes actual weather. So, this is Amrita's channel.  



So, similarly we could compute probability of y being 0 given x equal to 0 that is 1, this 

probability of y being 1 given x equal to 0 comes out to be 0, probability of y being 0 

given x is 1 comes out to be 1, and probability of y being 1 given x equal to 0 comes out 

to be 0. If you compute the probability of y equal to 0, in case of amrita's channel that is 

always one, because she is always predicting that there is no rain and probability of y 

equal to 1 is 0. So, if you compute the capacity of Amritas channel that comes out to be 

zero.  

And this is the reason the weatherman's supervisor Rakesh, who was information theorist 

rejected Amrita's application, because her channel conveys zero information. Whereas, if 

you go back and look at Arjun's channel, it gives 0.09 bits of information, and that is 

why Arjuns channel in the information theoretic cells is better than Amrita's channel. 

Now let us look at next problem. So, we have y 1 and y 2, and they are given (Refer 

Time: 44:39) and they are conditionally independent, and conditionally identically 

distributed. So, what do we mean by identically distribution given x, what do we mean 

probability of y 1 and y 2, given x is given by probability of y 1 given x into probability 

of y 2 given x. show that mutual information between x and y 1 y 2 is 2 types mutual 

information of x and y 1 minus y 1 y 2, and use this relation to conclude that capacity of 

this channel is less than twice of capacity of this channel. 
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So, mutual information between x 1 y 1 y 2, using definition of mutual information I can 

write this as, entropy of y 1 y 2 minus entropy of y 1 y 2 given x. now this joint entropy 

between y 1 y 2 can be written as uncertainty in y 1 plus uncertainty in y 2 minus mutual 

information between y 1 y 2. And this particular term, because given y 1 y 1 y 2 are 

conditional independent. So, uncertainty in y 1 y 2 given x can be written as uncertainty 

in y 1 given x plus uncertainty in y 2 given x. So, this term can be split into these two 

terms all right. Now we can take this term and this term. This is nothing, but mutual 

information between x and y 1, and take this term and this term, this can be as mutual 

information between x and y 2, and this we write as it is. So, mutual information this 

comes out as mutual information between x and y 1 plus mutual information between x 

and y 2 minus mutual information between y 1 and y 2.  

Now let us look at capacity of channel with single look. So, that capacity is given by 

mutual information between x and y 1, where we maximize mutual information over all 

input distribution. Now, let us look at this capacity of this channel with two independent 

look. So, we have just now showed that mutual information between x and y 1 y 2 can be 

written like this. Now mutual information is greater than equal to 0. So, then this whole 

term is less than equal to this, this is less than equal to two times the capacity of a single 

look channel. So, this proves our result that capacity effect channel with two independent 

looks, is not twice of capacity of a channel with single look. 
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Next consider a pair of parallel Gaussian channel. So, we have two parallel Gaussian 

channel; first channel the output y 1 is given by x 1 plus z 1. Now the second Gaussian 

channel x 2 is y 2 is given by x 2 plus z 2, and z 1 z 2 is Gaussian distributed with this 

mean, covariance matrix is this. There is a power constraint which is given by expected 

value of x 1 square plus x 2 square is less than 2 times p. And let us assume that the first 

channel is bad compare to the second channel. So, sigma 1 square which is the noise 

variance corresponding to the first channel; this is higher compare to the noise variance 

of the second channel. 

So, the question is at what power the channel stops behaving like a single channel with 

noise variance sigma square 2, and begins like a pair of channels. So, if you recall from 

our discussion on water filling algorithm. So, if you have pair of Gaussian channel, we 

will starts first flouring, we first start giving allocating power to the channel which is less 

noisy until. So, it will continue to behave like a single channel, until it reaches a point, 

when the sum of power and noise variance becomes equal to the noise variance of the 

second channel. So, once that happens, and then power will start getting distributed in 

both the channels. So, this is very straight forward. 

So, we will put all signal power into the channel with less noise this follows from the 

optimal power allocation strategy, until the total power of noise and signal in that 

channel equals the noise power in the other channel. And subsequently what is going to 

happen is we are going to split the power between those two channels. So, the combine 

channels begin to behave like a pair of parallel channels, when the signal power is equal 

to a difference of the noise powers. So, when this happens it start behaving like a pair of 

Gaussian channel. Now, let us look at what is the mutual information if Gaussian 

generated random and multivariate Gaussian random variable, with distribution given by 

this.  

So, let us compute mutual information for various values of rho correlation. So, as we 

are given that, this is a multivariate Gaussian distribution random variable. So, we know 

what is this entropy; entropy of a multivariate Gaussian random variable is given by half 

log of. So, here any tools of the 2 bit 2 pi e square and the determinant of this covariance 

matrix. The covariance matrix determines is sigma 4 into 1 minus sigma square. So, you 

joint entropy in this case is given by this expression. Now, let us look at what is the 

differential entropy of these individual random variables x and y. this is given by half log 



of 2 pi e sigma squares. So, the mutual information between x and y can be written as 

mutual information between, can be written as differential entropy of x plus differential 

entropy of y minus joint differential entropy of x and y. this follow from the definition of 

mutual information. So, we know the values of this. We also know the value of this, we 

clubbed this in what we get is mutual information is given by minus half log of 1 minus 

rho square. 
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So, let us compute mutual information for different values of rho. So, when rho is 1. So, 

when rho is 1, this is log of 0. So, that would be, mutual information will be infinite, and 

this agrees with the fact, because x is y x m y have complaint information of each other. 

When rho is 0 this corresponds to the case, when x and y are independent. So, in that 

case we expect the mutual information to be 0. And similarly when rho is minus 1; that is 

a negatively correlated x is minus y, and then also we expect the mutual information to 

be infinite.  

So, with this we are going to conclude our discussion on problem solving session. In the 

next class we are going to talk about rate distortion theory. 

Thank you. 


