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Welcome to the course on an introduction to information theory. So, today we are going 

to talk about Gaussian channel in the last class we talked about entropy for continuous 

random variable one of the important channels continuous values channel is this 

Gaussian channel. 
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And today we are going to talk about capacity of a Gaussian channel, we will first talk 

about capacity of a Gaussian channel and we are going to prove the achievability of 

Gaussian channel capacity subsequently. We are going to show the converse to the 

coding theorem for Gaussian channel and finally, in this lecture we are going to talk 

about band limited Gaussian channel and we will compute the capacity of band limited 

Gaussian channel. 
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So, as I mentioned Gaussian channel are very important continuous value channel. If we 

write is corresponding discrete motion, we can write it. Let us see the input is x i and 

noise is additive which is Gaussian distribution denoted by z i what we get as output is y 

i this is a discrete motion of a continuous value Gaussian channel. So, first result that we 

are going to show you is the capacity of the Gaussian channel, with power constraint p 

and noise variance n is given by this expression. Where the maximum is attained when, x 

is Gaussian distributed with 0 mean and variance k. Now let us first look at what is the 

capacity. If we do not have these constraints power constraints or if you do not have 

noise it is very easy to see, if the noise is 0 then, whatever we send will be reliably 

received. So, the channel capacity is infinite in that particular case similarly is there is no 

power constraint.  

We can make other input arbitrarily large such that it is received correctly at the receiver. 

So, if we do not have this power constraint then also the capacity of this channel is 

infinite. Now let us look at the capacity of this Gaussian channel, when we do have a 

power constraint and we do have a noise variance given by n. So, from the definition of 

channel capacity its maximum information between the input x and output y and this 

maximization is taken over all input distribution p of x. Remember, we have a power 

constraint here it is as an average power constraint. So, expected value basically of x 



square is less than p. So, we need to compute maximum mutual information under all 

input distribution given this power constraint, from the definition of the mutual 

information. 

(Refer Slide Time: 03:46) 

 

We can write mutual information between x and y as differential entropy of y minus 

differential entropy of y given x. Now what as I said y is the output of the channel which 

is nothing, but input x plus additive noise additive y additive Gaussian noise, which is z. 

So, i can write this as differential entropy of y minus differential entropy of x plus z 

given x. Now what is the uncertainty also what is the entropy of x plus z given x that 

only depends on z given x. So, we can write this expression as differential entropy of y 

minus differential entropy of z given x, now z is which is noise is independent of the 

signal x. So, the differential entropy of z given x is equal to differential entropy of z 

because z the noise is independent of the signal x. . 

So, we can write this mutual information between x and y as differential entropy of y 

minus differential entropy of z. Now we know that z is Gaussian distributed and if we 

have a Gaussian distributed random variable. We know what is its differential entropy is. 

So, if we assume that z is Gaussian distributed its mean. Let us say 0 and variance n then, 

the differential entropy of z is given by half log of 2 pi e times n 2, we can compute the 



expected value of y square y is nothing, but x plus z. So, this can be written as expected 

value of x plus z square which is nothing, but expected value of x square plus expected 

value of z square plus 2 times expected value of x and expected value of z. Now since 

the expected value of z is 0 this term will be 0. So, what we would get is expected value 

of y nothing, but expected value of x square plus expected value of z square now 

expected value of x square is p and expected value of z square is n. So, expected value of 

y square is p plus n. 
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 Now we have just shown that the mutual information between x and y can be written as 

differential entropy of y minus differential entropy of z. Now we know, what is the 

differential entropy of z that is because, z is a normal distributed with 0 mean and 

variance n, the differential entropy of z is given by this. We also know if y is a random 

variable which has variance p plus n then the differential entropy of y is upper bounded 

by the differential entropy of Gaussian random variable. So, we can upper bound the 

differential entropy of y by the differential entropy of a Gaussian random variable with 

same variance and in this case expected value of y square is p plus n. So, we can upper 

bound this differential entropy of y by differential entropy of a Gaussian random variable 

with variance given by p plus n, now variance given by p plus n.  



So, now, basically what we have said this results follows from a theorem, that we have 

proved for differential entropy that is y is the random variable with variance p plus n then 

its differential entropy is upper bounded by differential entropy of a Gaussian random 

variable with same variance. So, clearly this is equal when y is also Gaussian and y is 

Gaussian, when x is also Gaussian because y is x plus z we know z is Gaussian 

distributed, If x is also Gaussian distributed then y will be sum of 2 Gaussian distributed 

random variable will also be a Gaussian distributed, in that case y will also be a Gaussian 

distributed random variable and in that case this would have been equality.  

So, combining the terms, this is log e minus log v kind of term which can be combined. 

So, that becomes this. So, what we have shown is mutual information is upper bounded 

by half log of one plus p times n now remember the maximum is attained. When x is also 

Gaussian distributed with mean 0 and variance p in that case as i said y is also going to 

be Gaussian and this inequality would be equality. So, what we have shown is capacity 

of a Gaussian channel with power constraint p and noise variance n is given by this 

expression. Where the maximum is attained when input x is also Gaussian distributed 

with mean 0 and variance k. 
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Now, we are going to show the achievability of this. So, all as long as we choose rate less 



than this capacity we are going to get reliable communication. So, let us prove the 

achievability part of this capacity theorem. So, we are going to use the same ideas that 

we have used earlier to prove channels, noisy channel, coding theorem the difference 

here is, now in that case we had discrete random variables.  

Here we have continuous random variables this difference here we also have this average 

power constraint which we did not have let me prove a channel noisy channel coding 

theorem. So, we are going to use a same ideas as the as we have used including channel 

coding theorem for discrete channels and what was those ideas we are going to use 

random randomly. We are going to generate this code word and we are going the 

receiver, we are going to use typical set coding we are going to use this ideas of random 

codes and joint typical decoding as i said, we are going to take into account that now 

there is a constraint on powers is that is violated basically that is the error and the 

variable are now continuous not discreet. So, that is the difference from the proof that we 

had done earlier. 
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So, first step is generation of the codebook. So, we are going to generate a codebook in 

which all code words are going to satisfy the power constraint. So, to ensure this we are 

going to generate code words with each element identically or independently generated 



according to Gaussian distribution, with variance given by p minus epsilon. Where p 

epsilon whether is small positive number now by choosing noise variance p minus 

epsilon we are going to ensure that the average power constraint is not violated. So, we 

can see from last large numbers.  

If we generate each code word normal distributed variance gained by p minus epsilon by 

law of large numbers the average value will basically tend to p minus epsilon and hence 

the probability that a code word does not satisfy, this average power constraint will be 

small. Let x i w where w are these 2 raise power n minus n r code words be i i d 

distributed and as we said we are generating this code words with variance given by p 

minus epsilon. So, let these code words be x n 1 x n 2 x n 2 raise power n r. So, these are 

n length code words which are randomly generated with Gaussian distributed with 

variance p minus epsilon. 
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So, after the generation of the codebook the codebook is revealed to both the sender and 

receiver. Now if we want to send message w, what the sender does it sends the wth code 

word x n w in the codebook. Now at the decoder we are going to do typical set decoding. 

So, how does typical set decoding works. So, we are going to see which code word is 

jointly typical with a received codebook and, if there is only 1 code, code word which is 



jointly typical with this and there is know the code word which is jointly typical with a 

received codebook then, the decoder will correctly decode otherwise there is a decoding 

error also if the power constraint is valid then also there is an error.  

So, the receiver is going to look down the least of code words which are just denoted by 

this x and w and it searches for this one code word which is jointly typical with this 

received vector y n w, it tries to find that one code word which is jointly typical with this 

received vector. Now if there is one and only one note this if there is one and only one 

such code word then, the receiver and let see that code word is x and w then, the receiver 

is going to declare that the transmitted code word was w otherwise the receiver will 

make an error since. There either more than, 1 code word which is jointly typical with 

the receive sequence or there is no code word which is jointly typical with the receive 

sequence then, the decoder will make an error also when power constraint is valid it then 

also receiver will make error. So, as I said the receiver also declares an error if the 

chosen code word does not satisfy this average power constraint. 
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Now, let us compute what is the probability of error. So, when the decoder is doing joint 

typical set decoding. Let us compute what is the probability of error when, we are 

sending this wth code, word over this Gaussian channel. So, without loss of generality 



we will assume let say the code word one was sent. So, we are going to assume code 

word 1, was sent without loss of generality then the received code word y n is going to 

be x n 1 plus z n this is a noise this is the code word that was transmitted and this is what 

we have received.  

Now, let us define the error events the first error event which i am defining by e0 is the 

error event corresponding to the violation of average power constraint. So, e naught is if 

the average power constraint is violated then, the event e 0 happens. So, this corresponds 

to violation of power constraint the average power constraint that we had let e i be the 

event where, x n i and y n belongs to this jointly typical set. So, e i corresponds to the 

event when x n I and y n are jointly typical. So, clearly an error happens if event e 0 

occurs or if e 1 compliment occurs why because, we have sent code word 1. So, there 

will be no error if y n is jointly typical with x n 1; however, event e 1 com compliment 

will occur. If x 1 x n 1 and y n are not jointly typical and that is this event e 1 

compliment.  

So, if the transmitted code word and the receive sequence are not jointly tip typical that 

corresponds to the event e 1, compliment then also error happens or if any of these 

events occur e2, e3, e4, e2 raise power n r; that means, if any other codeword other than 

the code word number one is jointly typical with the receive sequence y n then there is an 

error and that that is denoted by this union of events e2, e3, e4, e2 raise power n r. So, 

this corresponds to a wrong code word which was not sent to be jointly typical with the 

receive sequence. 
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So, now that we have a numerated error events let us compute the probability of error 

given in the code word 1 was transmitted. So, let e denotes the event that what, which is 

an estimate of the code word that we sent is not same as w and let p be the conditional 

probability of error given w is 1. So, this is given by probability that event e0 happens 

which corresponds to violation of power constraint union with event e1 compliment 

which is the event that x and 1 and y n are not jointly typical or union with e2, e3, e4, e2 

raise power n r which corresponds to the event that are wrong code word is jointly 

typical with the receive sequence y n.  

Now this can be upper bound bit using union bound using union bound, we can upper 

bound this probability of union of these events by. So, we can upper bound this using 

union bound this is probability of e 0 upper bounded by probability of e 0 plus 

probability of e one compliment plus probability of e 2 plus probability of e 3 up to plus 

probability of e 2 raise power n r.  

Fine next now, we are going to evaluate these probabilities now first let us, look at 

probability of e naught now remember we were generating these code books with 

variance p minus epsilon where epsilon is a positive number small number close to 0. So, 

if we are generating our code books like this by law of large number probability of 



occurrence of this event e0 is 0 as n is very large. So, this probability can be upper 

bounded by small quantity epsilon similarly, let us look at this probability of occurrence 

of the event that e one that x n one is not jointly typical with y n. Now we know from the 

property of joint ep which we proved in the last class that probability of this event is also 

0 as the n goes to infinity. So, this can also be upper bounded by epsilon. So, we have 

upper bounded this by epsilon we are upper bounding this by epsilon. 
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Now, let us look at this error event now since the way we are generating our codebooks x 

n one and x n i where, I is the mother code, codeword they are independent. So, y n and 

x n i are also going to be independent and we have shown that we have shown a result in 

the last class that what is the probability that if xn, xn i and y n which are chosen 

independently. What is the probability that they will be jointly typical? So, what is the 

probability that x n i and y n are jointly typical this we have proved in the last class by 

the property of joint a e p this is upper bounded by 2 raise to power minus n times mutual 

information between x and y minus 3 epsilon. So, if we let w to be uniformly distributed 

over all these 2 raise power n r code words then subsequently the probability of error is 

given by this average probability of error. 
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Now as we said average probability of error without loss of generality can be written as 

probability of error given code word 1, was send using a union bound this was upper 

bounded by sum of these error events we have already shown, this is upper bounded by 

epsilon this is upper bounded by epsilon and this is upper bounded by this quantity this 

follows from the properties of joint a e p which we have proved in the last class. So, then 

this term does not depend on i. So, I can sum over all i going from p to 2 raise power n r. 

So, i get this epsilon will be 2 epsilon and this summation over i from 2 to 2 raise power 

n r this will be this term and then, we have this one which is this now combining the 

terms containing n i get this this can be written as 2 raise power 3 n epsilon into 2 raise 

to power minus n mutually is a minus r and this quantity.  

If we choose our r to be less than mutual information being x and y minus 3 epsilon see 

this term, we can write as 2 raise to the power minus n mutual information between x 

and y minus r minus 3 epsilon can write in this way. So, if we choose our r to be less than 

mutual information between x and y minus 3 epsilon then, this term will be positive and. 

So, for large n this will also go to 0. So, this whole term can be upper bounded by 

epsilon. So, in other words this probability of error can then be upper bounded by 3 

epsilon provided my rate is less than, mutual information between x and y minus 3 

epsilon. So, this shows that there exists good codes with rate given by this and in that 



case the probability of error will go towards 0 as n goes to infinity. 
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Now, if we delete half of this words code words, we obtain a code with low maximum 

probability of error in particular the power constraint will be satisfied by this remaining 

code words because we are already throwing of these. So, called gauss code words and 

hence we are constructed a code that achieves a rate arbitrarily goes to capacity and 

gauss probability of error which is which goes probability of error which goes to 0 as n 

goes to infinity. So, this proves the achievability of Gaussian channel capacity. 
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Next we are going to show the converse of the channel coding theorem for Gaussian 

channel. So, we are going to show that we prove that a channel capacity of Gaussian 

channel is given by this and we prove that rate greater than capacity is not achievable or 

we are going to show that; if probability of error goes to 0 then the rate is less than, 

channel capacity. Now the converse proof is very similar to the proof of discreet channel 

there is one additional constraint that we have here now, which is the average power 

constraint. So, we are going to show you now that this probability of error goes to 0 for a 

sequence of code given by these parameters for a Gaussian channel, with power 

constraint p as long as rate is less than capacity which is given by this expression. 
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So, we are considering a 2 raise power n r comma n code which satisfies average power 

constraint which is given by this expression and this is satisfied by all code words w 

going from one to 2 raise power n r. Let w be uniformly distributed now this uniform 

distribution over this index set induces a distribution of input code words which in intern 

induces distribution on the input alphabet and we can show, that w x n w y n and w hat 

they form a mark of chain. So, w is my code word index x n is my encoder encoded 

codebook y n is the received codebook and w hat is an estimate of w based on what I 

receive which is y n. 
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Now, we are going to take help of Fanos lemma to relate probability of error and to 

mutual information. Now we in the class has used this version of Fanos lemma which 

was given by now we did each of p e plus p e log of l minus 1 we use this portion and we 

said this can be weak end because binary entropy function is less than equal to 1. So, this 

can be weak end also 1 and this can be we further we can p e log of all the possibilities l. 

So, number of code words here is 2 raise to power n r. So, if we take log of that this will 

become less than equal to one plus n times r n probability of error.  

So, this is the version that we are using uncertainty in w given w hat is upper bounded by 

1 plus n r times probability of error and as we said here we are going to show that, if 

probability of error goes to 0 for large n then the rate has to be less than c. So, this is you 

know. So, uncertainty in w given w hat is less than equal to n times. So, small value of 

epsilon where epsilon goes to 0 and probability of error goes to 0. Now w is uniformly 

distributed over this index said 1 2 2 raise power n r. So, uncertainty in w is given by log 

of 2 raise power n r which is nothing, but n r now from the definition of mutual 

information we can write uncertainty in w in terms of mutual information between w and 

w hat plus conditional entropy of w given w hat. Now if probability of error goes to 0 as, 

n goes to infinity we have shown that this term is upper bounded by n times.  



So, I can write then uncertainty in w is upper bounded by mutual information between w 

and w hat plus n times epsilon. Now we just saw in the last slide that w x n w y n and w 

hat they form a mark of chain. So, then from data processing lemma we know that 

mutual information between w and w hat is going to be less than mutual information 

between x n w and y n. So, this follows from the data processing lemma. So, then we can 

write this that the mutual information between w and w hat is less than equal to mutual 

information between x n and y n. So, that is what we are writing here and this comes as n 

times epsilon n now following the definition of mutual information, we can write the 

mutual information between x n and y n as differential entropy of y n minus differential 

entropy of y n given x n and this is n times epsilon.  

Now what is y n y n is the output of the Gaussian channel which is x n plus z n where z n 

is the Gaussian noise this 0 mean n variance n. Now uncertainty in y n differential 

entropy of y n given x n can be written as differential entropy of x n plus z n given x n 

and this is nothing, but uncertainty in z n given x n now note that the noise z n and the 

signal x n are independent and hence this can be written as uncertainty in differential 

entropy of z of n. 
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So, I can write differential entropy of y n given x n as differential entropy of z n next. So, 



what we have shown. So, far is n r is actually less than equal to h of y n minus 

differential entropy of z n plus n times epsilon. Now this can be upper bounded by this 

again this is straight forward to prove we have prove this using chain rule we can write h 

of y n in terms of y1 y2 y3 yn conditioned on these y i and we know that conditioning 

cannot increase entropy. So, from that we get this result similarly we can write h of z n as 

less than equal to summation over i from 1 to n h of z n. So, this is what we are writing 

here plus n times epsilon n this is this term here now, we have just shown h of z i is same 

as h of z i given x i and this is same as h of x i plus z i given x i which is same as h of y i 

given x i. So, this is differential entropy of y i this is differential entropy of y i given x i. 

So, then this can be written as mutual information between x i and y i.  

(Refer Slide Time: 39:17) 

 

So, from this result and this result we can write n r is upper bounded by summation of 

mutual information between x i and y i where, summation is over I going from one to n 

plus n times epsilon now let x i be w i w where x i w where w is drawn uniformly over 

this index set and let p i be the average power of the I th column of this codebook we 

know the x i signal and z i the noise they are independent.  

So, the average power of the received sequence y i can be written as p i plus n where p i 

is the power of x i n is the noise variance now again this result will have proved in the 



previous class that if, y has y i have the same second order movement then Gaussian 

random variable will have the maximum differential entropy. So, h of y i is upper 

bounded by the differential entropy of an equivalent of differential entropy of Gaussian 

random variable with same variance. So, basically h of y i is an upper bounded by half 

log of 2 pie e times p i plus n. So, the differential entropy of y i is upper bounded by the 

differential entropy of Gaussian random variable which has 0 mean and variance given 

by p i plus n actually mean can be anything because translation does not change the 

differential entropy. 
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Now continuing with the inequalities that we had we just had the expression that n of r is 

upper bounded by summation over all I. So, I 1 to n h of y i minus h of z I, now we just 

have now showed you that differential entropy of y i is upper bounded by this quantity 

and since z i is Gaussian distributed with variance n is differential entropy is given by 

this expression. Now, combining these 2 log times this term and this term we get this 

expression the n r is upper bounded by summation from I goes to one to n half log of one 

plus p i divided by n plus n times epsilon. Now the way we generated these codebooks 

code words they all satisfied average power constraint. So, they all satisfy power 

constraint because we were we are generating these code word with variance given by p 

minus epsilon. So, this code words satisfying power constraint. So, that average is also 



going to satisfy the power constraint. 
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Now we know that log is a concave function and if a function is concave, we know from 

jensens inequality that expected value of the function is less than equal to function of 

expected value. So, this is what we know from jensens inequality. If f of x is a concave 

function in this case log is a concave function of x. So, then here we have this expression 

that n r is less than equal to summation over all I one half log of 1 plus p i n plus n times 

epsilon n if I divide this by n what I would get is this will go away this will go away and 

I will have here one by n.  

So, have I have this expression r is less than equal to 1 by n summation this term plus 

epsilon now I know that log one plus x is a concave function of x. Then expected value 

of log function will be upper bounded by log of expected value of this x. So, that is what 

we are doing here. So, this is expected value of the log function this is from jensens 

inequality upper bounded by function is log of the expected value alright now this one by 

n summation p i is nothing, but average power constraint. So, what we have shown here 

now is that r is less than equal to one half log 1 plus p by n plus epsilon. So, what we 

have shown is if probability of error goes to 0 then, r is also less than channel capacity. 

So, r is less than channel capacity if probability of error goes to 0 as n goes to infinity. 
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So, this proves the converse of the channel coding theorem for Gaussian channel next, 

we are going to talk about what is the capacity of a Gaussian channel. If the Gaussian 

channel is band limited to w hertz and the noise power spectral density is given by n 

naught by two. So, we are going to show you that if, the Gaussian channel is band 

limited to w hertz and its noise power spectral density is given by n naught by 2 then, the 

capacity of this band limited Gaussian channel is given, by w log of one plus p divided 

by n naught w this is the capacity of the band limited Gaussian channel and if we let w 

go to infinity then the capacity is given by this expression. 
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So, let us prove this. So, if the channel is band limited to w then we can sample this 

signal at rate 1 by 2 w and that would be sufficient to reconstruct the signal from the 

samples this follows from the criteria. Now if the noise has power spectral density given 

by n naught by 2 and the band width is w then the noise power is given by n naught by 2 

times w. So, you have basically noise power spectral density given by n naught by 2 and 

you have band width of w to w. So, this noise power is given by n naught by 2 into 2 

times w which is n naught w and over of period from 0 to t have, many noise samples 

because we are sampling at rate one by 2 w.  

So, each of these 2 w t noise samples in time t will have variance given by n naught w 

times t divided by 2 w t which is nothing, but n naught by 2. Now let us use the channels 

over time 0 to t, power per sample will be p times t divide by total samples which is 2 w t 

and that comes out to be p divided by 2 times w. So, similarly we can compute noise 

variance per sample is n naught into 2 w t divided by 2 w t which is n naught by 2. 
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So, capacity per sample is given by half log one plus power per sample this is noise per 

sample if you go back here, noise variance per sample is n naught by 2 and power per 

sample is given by p by 2 w. So, then the capacity is given by half log of one plus p by 2 

w divided by n naught by 2 and this is nothing, but half log of one plus p divided by n 

naught w now this is capacity per samples and how many sample we have per second we 

have 2 w samples per second.  

So, then the capacity is given by w log of 1 plus p divided by n naught w bits per second 

this is signal power this is noise power and we can similarly compute, if you let w go to 

infinity and take the limit the capacity comes out to be this expression p times p divided 

by n naught into log of e bits per second. So, this is the expressions for capacity for band 

limited Gaussian channel. So, with this we will conclude our discussion on Gaussian 

channel. In the next lecture we will talk about parallel Gaussian channel. 

Thank you. 


