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Lecture - 10B 

Noisy Chanel Coding Theorem 

 

Welcome to the course on an Introduction to Information Theory. Now in this lecture we 

are going to talk about Shannon's noisy channel coding theorem. We are going to proof 

the achievability part of the result and we are also going to prove the converse of this 

theorem. In the last lecture we have already build up the background to prove our noisy 

channel coding theorem. 
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So, we start our lecture with some basic definition and model of the communication 

channel that we will consider. So, w is have a message that you want to send is encoded 

using this encoder and x of n is the code word, that is transmitted over a discrete memory 

less channel it is transition probability channel transit probabilities are given by 

probability of y given x, yn are the received noisy code words and the job of the decoder 

is to estimate what was the message signal that was transmitted given received sequence 

yn. 
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Now, an error happens if w is not same as w hat otherwise there is no error. So, this is the 

communication channel model that we have. That we are considering was defined few 

terms before i go in to the noisy channel coding theorem. So, we define a code by these 

parameters m and n i will explain these terms in a little while and discrete memory less 

channel is described by this input x output y and channel transient probability which are 

given by probability of y given x. So, this index set will be you basically used to denote 

will be correspond to each of these messages, and what we are going to do encoder is a 

mapping of this in index set to a n bit sequence and this we are denoting by x of n.  

So, we will have m code words this is xn1 xn2 denoted by xn3, xnm. So, these are our 

set of code words, and we will refer to a set of code words as code book. Now as you 

saw once you send these x ns at the channel output at the receiver input you are receiver 

you will received y of n. So, once you receive y of n then you essentially need to find out 

which of these are messages you have transmitted. So, decoding is essentially to be 

operation. So, it is a deterministic rule that assigns a guess to each possible received 

vector n is the length of the codeword and m are number of code words that you have. 
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Lambda i is nothing, but conditional probability of error given that index i was sent. So, i 

sent index i what is a probability of error. Now when will errors happen if the decoded. 

So, decoder function is denoted by g. So, if g of y of n is not same as i and when you 

transmit ith index. So, when x of n is x x of n i when you transmit the ith index, that your 

decode are does not decoded as ith index then the error happens and that is given by this 

you know this is the indicator function indicating, whether error has happened or not and 

this probability yn given x x of n i. So, this is. So, lambda i is a conditional probability of 

error given that you transmitted the ith index. Now you define maximal probability of 

error as maximum of lambda i over all possible indexes.  

So, index i can go for 1 to m. So, maxima of lambda i that is a maximal probability of 

error similarly we can define average probability of error. So, lambda i is the error, when 

ith index is sent. So, when you serve overall lambda is and divide by m you get average 

probability of error is not very difficult to show that this average probability of error will 

be less than this maximal probability of error. Now we are going to show you later in this 

lecture that as long as a transmission rate is below channel capacity our average 

probability of error is about, is very small. It goes is to 0 as block length codeword length 

increases and we will show if the average probability of error goes to 0 then the maximal 

probability of error also it goes to 0 as then becomes large. 
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So, as I said that total m indexes that we are sending. So, that number of information bit's 

or log of m and the codeword length is n. So, the rate of the code is denoted by log of m 

divided by n. 

Now, we see a rate is achievable if there exists a sequence of codes that parameter m 

given by seal of 2 raise to power n R n of length n such that the maximal probability of 

error goes to 0 as n goes to infinity. So, we say a rate is achievable if for that particular 

code with parameter 2 raise to n R n the maximal probability of error goes to 0 as the 

codeword length increases and we defined the capacity of a discrete memory less 

channel as the supremum of all achievable rates. So, so supremum is the smallest it is the 

upper bound of a set. 
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So, capacity is basically supremum of all achievable rates, now for a discrete memory 

less channel Shannon’s noisy channel coding theorem says that all rates below channel 

capacity are achievable. That means, if we transmit at rate below capacity then our 

maximal probability of error will go to 0 as the codeword length increases to infinity. So, 

so specifically for every rate which is less than capacity there exists a code of these 

parameters. So, if that maximal error probability goes to 0. 

Now, we are going to prove that cumulative part of this theorem first. First we are going 

to show that average probability of error goes to 0 as n become large and, then we will 

show that if the average probability. Whenever goes to 0 then the maximal probability of 

error is also bounded and it is it goes to 0. So, first we do is we fix our input distribution 

and generate 2nr code words according to this distribution i had a distribution and we 

considered a rows matrix, where each row is basically randomly generated code words. 

So, this x x1 and x2 and x n is codeword similarly these. So, we generate 2 raise to 

power 2 n R code words and they are start up in a matrix like this. This is randomly 

generated. 

So, probability that we generate a particular code C is given by this probability. So, 

probability of x i w, where is w can go for 1 to 2 raise to power n R and i goes from 1 to 



n. 
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Now, once we randomly generate a code we reveal this code to both the sender and the 

receiver now we assume the channel transition matrix probabilities are both known to the 

sender and receiver. And we chose a message w according to a uniform distribution. So, 

probability that we chose a particular index is given by1 by 2 raise to power 2nr. So, that 

is this probability and the wth codeword corresponds to the wth row of this code matrix 

that we talked about. So, when we select this index w we are actually sending this wth 

row of this codeword matrix, that we talked about that we are randomly generating now 

what the receiver receives is y of n and probability y of n given a particular x n of w was 

sent this probability for a discrete memory less channel with the feedback is given by this 

expression. 
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Now, once we receive yn at the receiver we are going to do, what we call jointly typical 

decoding. So, we are going to do a typical set decoding now this is a suboptimal 

decoding technique, but asymptotically this is basically optimal. So, how does a typical 

set decoding works it works as follows. So, the receiver declares that an index w tilde 

was sent if the following conditions are met and what are those following conditions if x 

n w tilde and yn which is a received sequence. If this is jointly typical and there is no 

other index k such that x n k and receives sequence y of n are jointly typical. So, we you 

say that we successfully decode and index if x n w and that index and y of n they are 

jointly to become and there is no other index for which x n k and yn are jointly typical 

and that is basically your typical set decoding. 

So, when will an error happen an error will happen when, you send w index and you 

decide in favor of some other index which is not w. So, an error can happen in a typical 

set decoding if there is no w tilde; that means, there does not exist any index for which 

this pair of that x n w tilde y it is jointly typical that is 1 condition or the second 

condition under which an error can happen is as follows. If there is more than what 1 

such index for which x n k and yn is jointly typical, so, there are 2 possible cases of error 

1 if there does not exist any index w tilde such that x n w tilde and yn are jointly typical 

that is 1 condition second condition is there exist more than 1 index for which x n k and 



y of n are jointly typical then also you will make an error decoding error. 

So, let us try to calculate what is the average probability of error and we are doing 

calculating this average probability of error average over all possible code words and 

averaged over all possible code books. So, this a probability of error for particular code 

book and is a probability of this codeword C we average it over all possible code books. 
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So, this probability of error from definition this is given by this as you recall 1 byn 

summation w 1 to n lambda w C right. So, this can be written like this now please note 

that this term does not depend on index w why, because there we are constructing our 

code due to symmetry of the code construction the average probability of error average 

over all possible codes is not a function of a particular index. Now what is that mean it 

means that then, we can calculate our probability of error given a particular index has 

been send since it does not depend on what index probability of error does not depend on 

what index have been sent. 

So, we can calculate a probability of error assuming a particular index i was sent and 

therefore, we are going to do. 
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So, without loss of generality we will assume that, let us say the first index was sent and 

we are going to calculate probability of error given the first index was sent. So, the 

probability of error can be given by probability of error given the first index was sent and 

that is probability of error given index1 was sent. So, let us compute this probability now 

let us denote e i to be the event that ith codeword and received sequence y of n are jointly 

typical. So, e i is the event that x n i and yn belongs to jointly typical set now as I said 

probability of error does not depend on what index has been transmitted. So, we do 

analysis assuming; let us say index1 was sent. So, what is the probability of error, when 

index 1 was sent? 
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So, this is given by. So, as I said this is given by probability that what is E1c? E1c 

corresponds now if index 1 was sent the decoder will not make an error if xn1 and y of n 

are jointly to become and that corresponds to event e one. So, if e 1 compliment happens 

then that is an error because if index1 has been sent the decoder will not make a mistake 

if event e 1 occurs. So, an error will happen if the complement of the e 1 e event even 

has happened or error can happen if any of the other index, which was not sent is jointly 

typical with the received sequence y of n. So, for example, if yn is with xn2 or xn3 then 

there is an error because index1 was sent. So, you will. So, I can write upper bound 

probability by i can write it as probability of e 1 complement union of e 2 event union of 

e 3 event union of up to e of 2nr given, that first index was sent and usually union bound. 

I can upper bound it then as probability of e 1 C complement given index1 was 

transmitted plus probability of e i given w index1 was transmitted and i go from 2 to 2 n 

r. 

So, this corresponds to the event that yn is not jointly typical with it. If you go back and 

see this corresponds to event e 1 corresponds to the e event that x and 1 and yn are 

jointly typical. So, this corresponds should even event that xn1 and yn are not jointly 

typical and this corresponds to the event that any other index. Let us say xn2 xn3 x n 4 

they are jointly typical with y of n now. So, then the error probability is upper bounded 



by this probability and this probability, now from the property of joint a e p we know that 

if n is very large then x of n 1 and y of n are likely to be jointly typical. We have shown 

property of jointly typical sequence that probability that x of n 1 and y of n belongs to a 

typical jointly typical set that probability goes to 1 as n goes to infinity. So, then this 

probability that event e 1 complement happens given that w is 1 this probability is going 

to be very, very small less than epsilon. 

Now, let us look at this now we have also shown that if, now if xn1 and x n i where i is 

different from 1 they are independent. So, yn and x n i are also independent with 

probability that yn and x n i are jointly typical this probability is upper bounded by2 raise 

to power minus n times mutual information minus 3 epsilon this also follows from the 

property of joint typical sequence this we have proved in the previous lecture. So, when 

x n i n and y of n are independent probability that they are jointly typical this upper 

bounded by this. 
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So, then we can compute the probability of error as we said it is independent of what 

index we have sent that is because the symmetry of code construction this is upper 

bounded we have shown by probability of the complement of event e 1 happening, given 

index 1 was sent plus this probability now this from the property of joint 80 is a very 



small quantity you will calling it epsilon this we know is upper bounded by this 

probability. 

So, when we sum it above from i equal to 2, 2 raise power n R what we get is is equal to 

epsilon plus 2 raise to power n R minus 1 times this quantity now we just collect terms. 

We collect terms containing epsilon. So, this will become epsilon plus 2 raise to power 3 

n epsilon times 2 raise to power minus n mutual information minus r. Now as real as our 

transmission rate are is less than this quantity mutual information this particular term is 

going to be greater than 0 and for large n. So, this is this is this term is greater than equal 

to 0 if a large n 2 raise to power minus n this term will go towards 0.  

So, if n is sufficiently large and our weight is less than see this we can combine as 2 raise 

to power minus n minus 3 epsilon minus R this is what you will get. So, as long as R is 

less than this quantity epsilon is very small this term will be positive for large n this 

whole term will go towards 0. So, some epsilon we calling it, so this will be less than 

some small quantity epsilon. So, what we have shown here is probability of error that is 

probability of decoding making a decoding error is less than 2 times epsilon provided our 

transmission rate is below this mutual information in x and y minus 3 epsilon and 

provided this length n is very large if n goes to infinity. 
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Now, we can tighten this a bit. So, if you take are to be less equal to mutual information 

and we can choose our epsilon and n such that probability of error is less than 2 times 

epsilon. Now we can now choose our p of x remember we are generating our code words 

using this distribution p of x, now we can choose our p of x such that we choose our 

distribution that we maximize mutual information. So, we can choose a distribution i am 

calling it p star x that will achieve it is capacity then this condition R is less than mutual 

information can be replaced by the condition that R is less than capacity. So, what i have 

shown you. So, far is average probability of error over all possible code words is very 

small it is basically less than equal to 2 times epsilon now, if the average error 

probability is small; that means, there exist at least 1 codeword whose probability of 

error maybe less than the average probability of error right and remember in the 

beginning we said that if average probability of error goes to 0 we can also show that 

maximal error probability will also go to 0. 

So, that is what we are going to show now or what we have shown. So, far is the average 

probability of error provided the transmission rate R is less than capacity is less than 

equal to 2 times epsilon, now what we do next is as follows we throw away half of the 

code words and what are these half of the code words we threw away worst half code 

words. So, we throw the code words which causes larger error. So, we throw half of them 

now we are left with other half which consists of good code words and the good i mean 

the once which will cause less probability of error now it can be shown that for these half 

code words the maximal error probability is less than 4 epsilon. So, for these best half 

code words the maximal error probability is less than 4 epsilon the reason being if it is 

more than 4 epsilon then, the average probability of error overall bad and good code 

words cannot be less than 2 times epsilon. 

So, by throwing away half of the worst code words we have shown with the half the 

number of code words left we have shown that the maximal probability of error is now 

bounded by 4 times epsilon now since we have thrown away half of the code words. So, 

we can reindex these code words and now we have 2 raise to power n R divided by2 that 

is 2 raise to power n R minus 1 code words; so now, we have constructed a code with 

rate i am calling the rate R dash which is R minus 1 by n whose maximal probability of 

error is less than 4 times epsilon. So, if n is very large. So, this hardly any rate loss and 



you can see the maximal probability of error goes to 0 as that side is large because 

maximal error probability is bounded by upper bounded by 4 times epsilon. 

So, this proves that when our rate R is less than capacity then, we can reliably 

communicate because we have shown that the maximal probability of error is bounded 

by 4 epsilon next we are going to show the converse of this theorem now what is the 

converse of this theorem. So, we are going to show that if our transmission rate is above 

channel capacity; that means our R is greater than C then probability of error is bounded 

away from 0 so. 
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So, we will show that if transmission rate R is more than channel capacity then, 

probability of error is non 0. So, if information bit's. So, we consider a binary symmetric 

source if information bit's from binary symmetric source are sent at a rate R via discrete 

memory less channel whose capacity is C then probability of error is never bounded by h 

inverse 1 minus C by R where the transmission rate is our capacity. 

So, if the transmission rate is above channel capacity then probability of error is lower 

bounded by quantity which is non0 and this h of p is nothing but our binary entropy 

function if you recall binary entropy function looks like this. So, here 2 1 at 0.5 this is 



one. So, to proof this result let us look at the block diagram. So, we have a binary 

symmetric source output of that are u is u1, u2, u3, uuk and these bit's are sent to a 

channel encoder that generates these code words x1, x2, x 3, xn. So, the rate of the code 

is k byn and these code words are sent over a discrete memory less channel what we 

receives is y i. So, you see y1, y2, y3, yn. Now these are sent to a channel decoder which 

will try to estimate what were the information bit's that we have sent. So, the channel 

decoder will try to estimate u1, u2, u3. So, these estimates I am denoting by u1 hat u2 hat 

uk hat and this is my. So, let us now show that if the transmission rate is above channel 

capacity then the probability of error is lower bounded by a non 0 quantity. 
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So, since we are considering a binary symmetric source. So, probability of 0 and 

probability of 1 is half it is a symmetric source and it is a binary source. So, it is sum is 

0s and ones if probability has. So, we can write uncertainty u as 1 bit. Now for a discrete 

memory less channel without feedback probability of y1, y2, y3, yn given x1, x2, x3, xn 

can be given by probability of y i given x i and product taken from i go from 1 to n. So, 

we can write the uncertainty in y1, y2, y3, yn given x1, x2, x3, xn by summation of 

uncertainty of y i given x i and remember our transmission rate is k by n bit's per use.  

So, we are going to first apply data processing lemma, what does data processing lemma 



says that further processing of data does not increase information. So, what you had was 

we had u x y and u hat follow mark of chain. So, mutual information between u is and u 

hat is this is going to be less than mutual information between x is and u i hats. So, that is 

what i am writing here next again we will apply data processing lemma. Let we write 

down the mark of chain. So, u x y and u hat follows a mark of chain. 
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So, we have shown the mutual information between u is and u i hat is less than mutual 

information between x i and u i hat. Now we can say that mutual information between x i 

and u i hat is less than mutual information between x i and y i again that follows from 

data processing lemma. So, if we combine these 2 result let us call it a and call it b if i 

combine a and b what i get is this condition that mutual information between u1 u2 uk 

and u1 hat, u2 hat u k hat this is less than mutual information between x1, x2, x n and y1 

y2, yn next. 

Let us try to simplify this term mutual information between x1, x2, x3, xn and y1, y2, y3, 

yn now from the definition of mutual information i can write this as joint entropy of y1 

y2 y3 yn minus conditional entropy of y1, y2, yn given x1, x2, x 3, x of n now since this 

is a discrete memory less channel without feedback. This term can be written as 

summation of uncertainty in y i given x i. So, i can write this term as joint entropy minus 



the summation from i goes from 1 to n h of y i given x i. Now this joint entropy can be 

written using symbol as h of y1 plus h of y2 given y1 plus h of y3 given y1 y2 plus h of 

yn given y1 y2 yn minus 1. Now this can be further written as this is upper bounded by h 

of y1 plus h of y2 plus h of y3 plus h of yn. 

Now, here I used the fact that conditioning cannot increase entropy. So, if I do that then I 

can write that this joint entropy is upper bounded by summation of entropy of h y, i 

where i goes from 1 to n. So, then from here I can write this expression as summation i 

goes from 1 to n h of y i minus h of y i given x of i and what is this term this term is 

mutual information between x i and y i. So, then I can write this as mutual information 

between x i and y i and mutual information between x1, y1, x2, y2 that is less than 

channel capacity. 
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So, I can write then mutual information between x1, x2, x3, xn and y1, y2, y3, yn this is 

less than equal to n times C next. Now we know that from data processing lemma we 

know that this quantity is less than this quantity and this is less than n times c. So, mutual 

information between u1, u2, uk and u1 hat, u2 hat, uk hat this will be less than equal to n 

times c. So, combining these results we get this next. 



That is defining probability of bit error. So, basically it is this is some all errors divided 

by the block size that we give me probability of bit error and probability of error when 

does an error happen when, my transmitted date is not same as the decoded date. Now let 

us try to write uncertainty in u1, u2, u3, uk given u1 hat, u2 hat, uk hat and these from 

the definition of mutual information can be written in this particular form what is this 

quantity the u is are the output of a binary symmetric source and this is independently 

identically distributed. So, u h of u1, u2, u3, uk is a h of u1 plus h of u2 plus h of u k and 

h of ui was 1 bit because is a binary symmetric source. So, this particular term will be 

equal to k k minus this now we have proofed earlier that this mutual information is less 

than equal to n time’s c. So, if we subtract the larger quantity this will become greater 

than equal to. 

So, then this is greater than equal to k minus n times C and what is k by n is r. So, k is n 

times r. So, when we write k is n time R and we take n out what we get is uncertainty in 

u1, u2, uk given u1 hat, u2 hat, uk hat is greater than equal to n times R minus c. 
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Now, let us further simplify this channel. So, using chain rule i can write this conditional 

entropy in this particular fashion and as we know, conditioning cannot increase entropy. 

So, this particular term can be upper bounded by uncertainty in u i given u i hat. So, we 



have shown that this particular term is greater than equal to n C and earlier and we are 

showing that this particular term is greater than this now combining these 2 results we 

get that h of u i given u i hat sum over all is from 1 to k this is greater than equal to n 

times R minus c. Now what do we know from Fanos lemma from Fanos Lemma, we 

know that uncertainty in u i given u hat is less than equal to p e log of l minus 1 where 

this angular being u i can take l possible values plus h of p e i. 

So, this is in this case l is 2 because of binary random variable. So, Fanos Lemma for this 

will be h of u i given u i hat is less than equal to h of p e i because, the other term p e i 

log of l minus 1 term that is 0. So, and if you take summation over all i from 1 to k both 

sides we get this. So, that is what i am saying using Fanos Lemma we get this relation 

right and. So, on what we proved earlier we showed that this term can is greater than 

equal to n time’s R minus c. So, in other words this particular term is lower bounded by n 

time’s R minus c. 
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So, we can write summation of h p e i is lower bounded by n times R minus c, and if you 

divide both sides by 1 by k. So, divide both side by1 by k what you get is on the right 

hand side n by k times R minus C which is nothing, but 1 minus capacity divide by the 

rate next. 



This binary entropy function is a concave function and from Jensen’s inequality, what do 

we know about the concave function? So, Jensen’s inequality says if the function f of x is 

concave then expected value of the function is less than equal to function evaluated at 

expected value. If f of x is concave, so since this binary entropy function is concave 

expected value of the function here is a binary entropy function should be less than equal 

to function evaluated at expected value, and what is this term this term is nothing, but 

average bit error probability.  

So, by combining this result, with this result we have shown that binary entropy function 

of this probability of error is lower bounded by1 by 1 minus C by r, and remember R is 

greater than C here. So, when R is greater than C this is a non 0 quantity. So, probability 

of error cannot be 0. So, if we try to transmit at rate adverb capacity our probability of 

error will be non 0. So, this proofs the converse of the noisy channel coding theorem. So, 

with this we will conclude our discussion on noisy channel coding theorem. 

Thank you. 


