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Welcome to the course on An Introduction to Information Theory. I am Adrish Banerjee. 

So far we have studied block to variable length coding and variable to block length 

coding. Today let us try to solve some problems in source compression. 

(Refer Slide Time: 00:32) 

 

So, first problem relates to Huffman coding. So, there exist several fundamentally 

different optimal prefix free codes. Now we know Huffman coding is the optimal prefix 

free code. So, there exist several fundamental different Huffman code and what do I 

mean by fundamentally different - if I write down the ordered list of codeword length 

that is different. So, when I say fundamentally different optimal prefix free code I mean 

these are Huffman codes and if I arrange the Huffman code by the length of the 

codeword's there ordered list of codeword length is different, if they are fundamentally 

different optimal prefix free code. 



The question is how many fundamentally different optimal binary prefix free code exist 

for a random variable which has following symbol probabilities given by 0.3 0.2 0.2 0.1 

0.1 0.05 and 0.05. So, this random variable takes seven different values and these are the 

probabilities associated with it. The question is we have to construct optimal binary 

prefix free code and you have to tell how many fundamentally different optimal prefix 

free codes exist. 

(Refer Slide Time: 02:11) 

 

So, we know how to construct optimal prefix free code we know the properties of 

Huffman code, recall that if it is a binary optimal prefix free code the 2 least likely 

codeword's they differ in only one bit location and there is no leaf which is unused. And 

if you recall the way we proceed is we start with 2 symbols which have the least 

probability, we join them create a new node deactivate old nodes and this new node is 

now it has probability equal to some other probabilities of this old nodes. 

So, this way we at each step we combine the 2 least likely nodes until we are left with 

only one node which is a roof node. So, we will do that and we will see how we can get 

fundamentally different optimal prefix free code. So, in this example these are the 

probabilities of u's i's 0.05 0.05 0.1 0.1 0.2 0.2 and 0.3. So, first we are going to combine 

these 2. So, if we combine these 2 we create a new node which has probability of 0.1 and 



we deactivate these 2 nodes at this point we have now (Refer Time: 03:50) the active 

nodes this one, this one, this one, this one, this one and this one. 

Now, note we have 3 nodes and if which have probability 0.1, this one, this one and this 

one. So, we could either combine these 2, we could combine these 2 or we could 

combined these 2. So, in this case I am just combining these 2 if I do that I create a new 

node which is probability given by 0.2 and I deactivate these 2 nodes. So, at this point 

my active nodes are this one, this one, this one, this one and this one. Now I have this as 

probability 0.1 this is 0.2 and this is 0.2 and this is 0.2. So, I could combine this with this 

I could combine I could combine this 0.1 with this 0.2 or I can combine this 0.1 with this 

0.2 or I can combine this 0.1 with this 0.2. 

So, there are 3 point 2s this one, this one and this one, I could combine this node which 

has probability 0.1 with any of these 3 nodes. So, in this example I am just combining 

with this one. So, I get a new node whose probability is given by 0.3 and I deactivate this 

node I deactivate this node. So, at this point my active nodes are this one, this one, this 

one and this one, and what are the probabilities I have I have 0.3 here, 0.2 here, 0.2 here, 

0.2 here and 0.3 here. So, again note that I have 3 nodes which have probability 0.2 - this 

one, this one and this one. So, I can combine any 2 of them right. So, in this case I am 

combining this you have this. So, then I create a new node which has probability 0.4 and 

I deactivate this node and I deactivate this node. 

Now, at this point my active nodes are this one, this one and this one. So, these 3 are my 

active node. So, now, I have this node probability 0.3, this node probability 0.3, and this 

node probability 0.4. So, I am going to combine these 2 nodes and this has my 

probability 0.6 and finally, I deactivate these 2 nodes I am left with on the 2 active nodes 

one is this one and other is this one. So, combine both of them and the final step is I 

assign 0s and 1s to these one set. So, if I do that what I come out with is the codeword 

for this particular symbol is 10 this you can see 10 codeword for this comes out to be 00 

you can see 0 0 and similarly you can find out codeword's (Refer Time: 07:58) this is 110 

110 011 1110 and 1111. 



So, this is codeword length 2 2 3 3 3 4 4. So, if I write the ordered list of codeword's I 

have 2 of them with length 2 3 of them having length 3 and 2 of them having length 4. 

Now let us look at another way in which we can construct this optimal binary prefix free 

code. 
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So, same example, the 2 smallest probabilities are 0.05 and 0.05. So, we can combine 

these 2 and create a new node, which is probability given by 0.05 plus 0.05 that is 0.1 we 

deactivate these node and activate this new node. So, now we have this node which is 

probability 0.1, this node probability 0.1, this node probability 0.1, so we can combine 

any 2 of them. So, let us combine these 2. 

If you combine these 2 we get a new node with probability 0.2 we deactivate this node 

we deactivate this node. So, now the active nodes are this one, this one, this one, this one 

and this one. Now we have one node with probability point which is this one and there 

are 3 nodes with probability 0.2 this one, this one and this one. So, we have to combine 

this leaf which has probability 0.1 with any of these leaves or nodes which has 

probability 0.2. So, let us say we combine these 2 we get a new node which is probability 

0.3 we deactivate this p node in these. So, then what are the activate nodes at this point 



this one, probability 0.3 - this one probability 0.2, this one probability 0.3 and this 

probability 0.2. 

So, we combine these 2 nodes which have probability 0.2 get a new node with 

probability 0.4 and we deactivate these 2 nodes. So, now, we have this active node with 

probability 0.4 this active node with probability 0.3 and this activate node with 

probability 0.3. So, we combine these 2 nodes create a new node with probability 0.6 and 

deactivate these 2 nodes. So, now, we have 2 nodes left one this one with probability 0.6 

and this one with probability 0.4, you combine them we make this as a root node with 

probability 1 and finally, we assigned 0s and ones to these branches right assign 0s and 

ones to these branches. So, if you do that we get the codeword's of this particular symbol 

as 00, of this one 10, this 1010 and then you can check for example, let us go (Refer 

Time: 11:56) this is 0 and this is 1 and this is 0. So, it will be 010. Codeword for this is 

similarly 011, this 1110, this is 1110 and this is 1111. 

So, we have this codeword of length 2 then 2 3 3 3 4 4. So, the ordered list of code which 

we have 2 codeword's of length 2, 3 codeword's of length 3, and 4 at 2 codeword's of 

length 4. Now if you compare with previous Huffman code is also had p codeword's of 

length 2, 3 codeword's of length 3 and 2 codeword's of length 4. So, it is not 

fundamentally, for the code 3 2 is not fundamentally different from code one because if I 

write down the ordered list of a codeword's though this nothing is different, but it is not 

fundamentally they are the same of set of ordered codeword. 
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Now, let us look at another way of combining these nodes. So, and then you start up with 

these 2 nodes which have the least probability. So, we combine them create a new node 

which is probability of 0.1 we deactivate these 2 nodes. Next we have this node with 

probability 0.1, this particular leave it probability 0.1 and this node it probability 0.1. So, 

you can combine any two of them if you combine these 2 get a new node which has 

probability 0.2 we deactivate these nodes. So, at this point active nodes at this one with 

probability 0.1, this one with probability 0.2, this one with probability 0.2, this one with 

probability 0.2 and this one with probability 0.3. So, if we combine them 0.1 with any of 

these are nodes which have probability 0.2 in this case I am going to this one. So, what I 

get is a new node with probability 0.3 and I deactivate these nodes. So, at this point my 

activate node is this one with probability 0.3, this one with probability 0.2, this one with 

probability 0.2 and this one with probability 0.3 

So, if we combine these 2 which has the least probability 0.2 0.2 and get a new node 

which is probability 0.4 I deactivate these nodes. So, my activate nodes here is this one 

with probability 0.3, this one with probability 0.4 and this one with probability 0.3. So, 

they will combine these 2 nodes, we will get a new node with probability 0.6 and I have 

another node with probability 0.4 I join them and create my root node which has 

probability one. Now if is look at the codeword's here again we labeled each of these 



branches by 0 and 1 - 0 1 0 1 0 1 0 1 0 1. So, you can see codeword corresponding to this 

is 1 0, codeword corresponding to this is 0 0, this one codeword is 0 1. So, similarly you 

can find out this one has code word 1100 1101 1110 and 1111. So, you can see I have 3 

codeword's of length 2 and I have 4 codeword's of length 4. 

So, if I write the ordered list of codeword's in length of the codeword you can see that 

this particular optimal Huffman code is ordered list is different from what we got in the 

earlier two cases. So, this prefix free code optimal prefix free code is fundamentally 

different from what we have got in the previous examples. Another way in which I can 

combine these somewhere with this probability and look at this, again start up with the in 

these probable these. 

(Refer Slide Time: 17:00) 

 

See this has probability 0.5, this has probability 0.5, I combine them get new node with 

probability 0.1 I deactivate these 2 nodes. So, this one, this one and this one, do you have 

probability 0.1 I can combine any 2 of them let us say combine these 2. 

So, I deactivate these 2 nodes and create a new node with probability 0.2. So, what are 

my active nodes at this point? I have this one with probability 0.2, this one with 

probability 0.1, and this one with probability 0.2, this one probability 0.2, and this one 



with probability 0.3. So, I need to combine this particular node with any node which has 

probability, any node on this which has probability point 2. So, I combine if we combine 

this with these I create a new node with probability 0.3 I deactivate these 2 nodes. So, at 

this point then my active nodes is this one with probability 0.3, this lead with probability 

0.2 this one with probability 0.2 and this one with probability 0.3. So, I combine these 2 

together because these are the 2 least likely active nodes and create a new node which 

has probability 0.4 I deactivate these 2 nodes. So, now, I have in active leaf with 

probability 0.3 and activate node with probability 0.4 and activate node with probability 

0.3. 

So, I will combine these 2 which of probability 0.3, create a new node which is 

probability 0.6 and finally, a combine my activate nodes. So, I deactivate this and this. 

Finally, my active nodes are this one and this one. So, I combine these 2 and what I get is 

a route node with probability one. And finally, as I said I am going to assign 0s and 1s to 

these branches 0 1 0 1 0 1, I can see now codeword's for this is 10, codeword's for this 

particular symbol is 00, codeword for this is 01, codeword for this is 110 codeword for 

this is 1110, codeword for this is 11110 and finally, this one is 11111. 

So, now I have 3 codeword's of length 2 a one codeword of length 3 I have one 

codeword of length 4 and I have 2 codeword's of length 5. So, this is also fundamentally 

different optimal prefix free code. Please note these all the different ways in which we 

have combining these nodes we are essentially following the rules of how to create this 

optimal binary prefix free code. So, you can see from this example - there a 

fundamentally 3 different ways in which you can have the ordered list of codeword's 

then 3 for code 3, 1 and 2 we have this. This particular ordered list for code 3 3 we had 

this and for the code 3 4 we had this one. So, you can see for a source which emits this 

(Refer Time: 21:38) random variable with these probabilities there are fundamentally 3 

different ways in which we could create or you can construct optimal binary prefix free 

code. 
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Now, let us move to a next example. So, these are also problem related to Huffman 

coding. So, you have Y16 batch which is going to represent IIT, Kanpur in Inter-IIT 

chess meet and for the captain Vipul found out that these other best student in terms of 

representing the IIT team. He organizes the chess competition where they played against 

each other and he found out that these are the corresponding probabilities of their 

winning against to each there. So, around one-third of his match Arjun won, one-third of 

his match Amritha won, one-ninth of our matches. So, these are the probabilities of they 

are winning the match when they played against each other. 

Now, Vipul wants to convey this information to his coach Adrish who is vacationing in 

Kollur. So, he has to transmit this information to his coach. So, he has to communicate 

essentially that these are the probabilities of winning of each of these team members, he 

wants to convey these probabilities. So, essentially we have a random variable which has 

7 possible values. So, I mean it 2 or them can take or. So, he wants to communicate. So, 

u 1 happens with probability 1 by 3, u 2 have with probability 1 by 3, u 3 u 4 happens 

with probability 1 by 9 and u 5, u 6, u 7, happens with probability 1 by 27. Now he wants 

to encode this information within and optimal block to variable length coding. Now there 

are 2 telegraph services in the campus one is known as Ajit Speedy Post and other is 

Ketan Super Services. 



Now, Ajit speedy post this is transmit's binary bits and it charges 40 rupees for binary bit 

whereas Ketan super services charges 65 rupees per digit. Now what Vipul has to do is 

he has to select one of these telegraph services, he has to either select Ajit's speedy post 

which you this it is sends binary bits and charges 40 bits, 40 rupees per bit or he has to 

choose Ketan super services which transmit's ternary bits and charges 65 rupees per 

ternary bit. So, what service should Vipul use to communicate this information to it is 

coach Adrish and what is the expected course. So, that is the first question and second 

question is if Ketan super services decide to increase his charges at what new rate people 

will change his mind. 

So, this is the problem occurs. So, clearly one service uses binary bits other uses ternary 

bits. So, Vipul first has to create a Huffman because he is using block to length variable 

coding to encode these probabilities. So, in first case he has to construct a binary 

Huffman code and the second case he needs to construct a ternary Huffman code, and 

then he needs to find out what is the expected codeword length in these 2 cases and he 

has to multiply them by their average cost. So, that would give him the total expected 

cost. 

(Refer Slide Time: 26:02) 

 



So, let us look at first binary Huffman tree. So, we have nodes which have probability 1 

by 3, 1 by 3, 1 by 9, 1 by 9, 1 by 27, 1 by 27 and 1 by 27. 

So, first we are going to combine these 2 nodes right and get probability 2 by 27, then 

next we need to combine these 2 nodes we will get 1 by 9, you can combine let us say 

these 2 nodes it should be 2 by 9 right and we can combine these 2 nodes which will be 

(Refer Time: 26:27) 1 by 3 and we can combine these 2 nodes it should be 2 by 3 and 

finally, we can get this. So, if probability now and if you assign 0s and 1 say 01, if 0 1 0 

1 0 1 0 1. So, this codeword corresponding to this will be 00, this will be 0 1, this will be 

100, 101, this will be 110, this will be 1110 and this will be 1111. Now we can do the 

same thing in another way. So, both will essentially get the same expected value let us 

try doing the same thing in another way. So, let us say we have this 1 3 code at 

probability one-third, you know these with probability 1 by 9 and then we have 3 more 

with probability 1 by 27. 

So, I start off with these 2 nodes related new node which is probability 2 by 27, when I 

combine these 2 I get a new node which is probability 1 by 9 you can combine these 2 

nodes, but new node if probability 2 by 9 and then you can combine these 2 I get a new 

node which is probability 1 by 3. You can combine these 2 nodes, but new nodes with 

probability 2 by 3 and then I can combine these 2 get node root node with probability 1. 

Now if I assign bits 0s and 1s 0 1 0 1 0 1 0 1 0 1. So, this will have code word 00, this 

will have 01, this will have 10, this will have 110, this will have 1110, this will be 11110 

and this will be 11111. 

So, there are multiple ways in which I can create this Huffman free each one of them will 

get the same expected value you can verify that, what I have written here is actually this 

one. Now you can find out what the expected codeword length is from path length 

lemma in the expected codeword length is nothing, but it is the sum of probabilities of all 

the nodes including the node, using 1 plus 1 by 3 plus 2 by 9 plus 1 by 9 plus 2 by 27 

plus 2 by 3 which comes out to be 2.4. We can calculate the same thing from here you 

will get the same answer you can verify 1 plus 1 by 3 plus 1 by 9 plus 2 by 27 plus 2 by 

9 plus 2 by 3 you get the same. 



So, the expected codeword length if he use a binary Huffman code it is going to be 2 0.4 

bits. Now what was the cost for Ajiths speedy post it was 40 rupees for binary bit. So, if 

we multiply by 40 you are going to go the expected cost if we use Ajiths speedy post. So, 

the cost involved if Vipul uses Ajith speedy post is 96.3 rupees. 
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Now, let us look at Ketan super services. Now Ketan super services uses ternary bits 

right and we have (Refer Time: 31:28) which takes value 1 by 3, 1 by 9 and 1 by 27. 

Now for k in this case is 7, what is d? It is a ternary course, so d is 3. So, first thing we 

need to find out at the initial stage how many unused (Refer Time: 31:55) are there and 

how do we find out that out k minus d into d minus 2, if we divide this by d minus 1 

whatever remained that is remaining. So, k minus d in this case is 4 and d minus 2 is 1. 

So, 4 divided by 2 - remainder is 0.  

So, there are low unused leaves if we use this particular source and encoded within 

ternary Huffman code. So, then in the initial stage we are going to combine 3 of these 

leaves. So, these are the 3 leaf likely node leaves. So, we combine them and this will 

have probability equal to 1 by 27 plus 1 by 27 plus 1 by 27. So, this is probability is 1 by 

9. Next we combine this node, this node and this node and their probability 1 by 9, 1 by 

9 plus 1 by 9 that is 1 by 3 and finally, we combine these 3 nodes this is this is root this is 



probability one and if you assign 0 1 2 to these branches, I get the code corresponding to 

this is 0, code corresponding to this is 1, code corresponding to this is 20, code 

corresponding to this is 20, code corresponding to this 220, 221 and 222. 

So, again I can find out the expected code where length using path length lemma. So, this 

is sum of their probabilities of all the nodes including the root node - this will be 1 plus 1 

by 3 plus 1 by 9 and that comes out to be 1.44 bits. Now, Ketan super services charges 65 

rupees per ternary bit. So, if I multiply 65 into this expected code was length, the cost 

that comes out is 93.88, and what was the cost for Ajith speedy post? It was 96, so that is 

more. So, Ketan super services is Vipul super services is cheaper. So, Vipul is going to 

use Ketan super services. And next part of the question was by what price if he increases 

Ketan his charges at what point Vipul will change his decision. 

So, that we can calculate, we know the expected codeword length for ternary which is 

1.4444 into cost let us say cost is rupees x that and the cost of binary transmission is 40 

and number of bits where 2.4. So, if you from here you can find out what is the break 

even cost if Ketan increases the cost beyond this point then (Refer Time: 35:28) is going 

to change a decision and that price comes out to be 66.67. So, if Ketan increases cost of 

his ternary transmission of ternary bits more than 66.67 per ternary bit then Vipul is 

going to change his decision and will go for Ajith's speed speedy post. Now, next we are 

going to prove some result of a binary Huffman code. 
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So, prove that if you have a binary Huffman code and it is most probable symbol has 

probability which is given by less than 1 by 3 then this symbol must be sign a codeword 

length of at least 2. See if the most likely symbol has probability less than 1 by 3 then 

you must assign if this most probable symbol at least a codeword of length 2. Now how 

do we prove this result? So we will use the method of contradiction. So, let us say that 

we are assigning this most probable symbol which has probability less than one-third, we 

will assume let us say we are assigning it a codeword of length 1 and then we will show 

that this is not possible. This particular message symbol which has probability most of 

the symbol which has probability less than 1 by 3, we will show that it is not possible for 

it to be assign a codeword length of one. 

Hence, we will prove that it requires at least a codeword of length 2. So, we start up 

with. So, let us assume that c 1 is this message symbol which has probability given by p 

1 which is less than one-third and without loss of generality we are assuming. So, we 

assuming that that this has a codeword of length 1 and without loss of generality we are 

assuming that codeword is 0. So, what we have seen is a situation like this. So, we have a 

binary tree and this message symbol is assigned a codeword c which is basically 0 that is 

what we are saying and this has probability p 1 which is less than 1 by 3. Now if this is 



so, then let us draw this tree again. So, this is corresponding to 0 which is c 1, which is 

probability p 1 which is less than 1 by 3. 

So, then if you look at what is a probability of this node, if this has probability less than 

one-third then this particular node has probability greater than 2 by 3 and how was this 

node formed, this node must have been formed using some other they are combining 

some other nodes. So, if this has probability greater than 2 by 3 and there are 2 nodes or 

least which are merging here. So, at least one of them then must have probability greater 

than 1 by 3, if this particular node has probability greater than 2 by 3 then at least I am 

calling this has c 10, I am calling it c 11. So, at least one of them either c 10 or c 11 has 

probability greater than one-third, correct. Now if that is true then we can obtain a better 

code by interchanging the subtree of the decoding tree beginning with 0 with the subtree 

beginning with 10 and what are we seeing, we have a situation like this we are saying it 

is the most likely symbol which is been assigned a codeword of length one and this has 

probability p 1 less than 1 by 3. But we just now found out if this thing has to hold this 

particular node should have probability greater than 2 by 3. 

In other words this particular code c 10 or c 11 either of them should have probability 

greater than 1 by 3. If that is a situation when we can reduce prospected codeword length 

by replacing by inter changing c 1 with c 10 or c 11 whichever has probability greater 

than 1 by 3. So, so that is what I am saying that we can obtain a better code by 

interchanging the subtree beginning with 0 with the subtree beginning with 10 why 

because, one of these nodes have probability which is greater than one third, whereas this 

one has probability less than one third 

So, if you do this interchanging we are reducing the expected codeword length, because 

either this or this has probability 1 by 3 if you assign them codeword length of 1 instead 

of 2 and we assign this codeword length of 2 instead of 1 then expected codeword length 

is going to decrease, because this c 1 has less probability than one of these. So, what we 

have shown then is this assumption that this message symbol which is the most 

problematic message symbol is it has probability greater than one third, then we cannot 

assign it codeword of length one. Because we just now saw that if that is a situation we 

can actually get a better code by interchanging c 1 with either c 10 or c 11. Hence, we 



have proved that this symbol which is most probable symbol which has probability less 

than one third must be assigned a codeword length of at least 2 for a binary Huffman 

code. 

So, as I said this improvement contradicts the assumption that the most probable 

message symbol should have probability should have codeword length to one. And hence 

we have shown that this most probable message symbol which has probability less than 1 

by 3 must have a codeword of length at least 2, it cannot have codeword length of 1. 
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Now next example is on variable to block length coding. Now there is a variable to block 

length coding called Run-length coding. Now what does run-length coding does? So, let 

0 raise power n 1 denotes a sequence of n zero followed by a single one. So, this is a run 

of a 0s of length n followed by 1 that is it is sequence and that is how we encode, so this 

run-length coding works has follows. So, for run-length coding of a block length of n the 

message which is a run of n zeros is encoded into a codeword of length n and which is 

essentially of binary representation of the integer n for when n lies between 0 2 to raise 

power n minus 1, and all 0 sequence encoded has all ones. 



So, that is how a run-length coding works. So, any sequence of the form this is encoded 

into a sequence of length n which is basically binary representation where n lies between 

this and if you have a run of all 0s this is encoded as sequence of 1 of length n. Let us 

consider we have a source which emits 0s with probability 0.9, and which emit 1 with 

probability 1. So, we are considering a discrete memoryless source on a binary source. 

So, it is emits 0s and ones my question is as follows. Find the smallest n such that run-

length coding scheme is not a Tunstall message set. We need find the smallest n such that 

this run-length coding which we described here is not a Tunstall message set. 

The next question is at the function of this n find this ratio of output codeword length 

which is n divided by input expected code word length of input with expected value of y. 

Find out this ratio at the function of n and the third part is find out the value of n which 

will maximize this efficiency. In other words find out the value of n which will minimize 

this. So, the first part is found out the smallest n such that the run-length coding scheme 

is not a Tunstall message set. 
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In a Tunstall message set what do we do? We do q extensions of the extended root and 

each time we extend the most lightly leaf that is your Tunstall message set. And how 

many set extensions do we do? If you recall the number of extensions that we do is given 



by this expression. So, (Refer Time: 47:22) of d raise power n minus k divided by k 

minus 1, because when we are extending a leaf we are creating from the extended root 

we are creating k new leaves but one leaf becomes a node now, so at each time we are 

actually adding k minus 1 new leaves. 

So, number of extensions that we would require to create a Tunstall message set is q 

which is given by this expression. Now in this example we are considering binary codes, 

so k is 2 and d is 2 and our input x 0s and ones, so k is also 2. In this case the number of 

extensions comes out to be 2 raise power n minus 2. So, in run-length coding what we 

are doing, we are doing basically 10 runs of 0 followed by 1. So, in the run-length coding 

the least probable intermediate note will have probability p dash given by probability of 

0 raise power q, because in a run-length coding we are having n n runs of 0s. 

So, if we want to find out whether this run-length coding belongs to a Tunstall message 

set then every time we are having a run of 0 that particular node should be the most 

lightly leaf. So, if we are doing q extensions the intermediate node of probability p dash 

which is given by this probability and probability of 0 is given by 0.9 q we just 

calculated is given by this expression, so this probability is given by this. Now for it to 

be a run-length coding every time basically we are extending run-length coding every 

time we are having runs of n zeros. So, this probability p dash if this probability is 

smaller than p u then according to Tunstall lemma we should have extended p of u I u 1, 

if this intermediate probability p dash becomes less than probability of u B 1 then 

according to Tunstall message set construction we should have extended p of u 1. But 

then that would have been against the rules of run-length coding, because in run-length 

coding we extend 0s we have runs of 0s and n runs of 0s. 
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So, then run-length message set is no longer going to get Tunstall message set if this 

intermediate probability becomes less than probability of u equal to 1, because if this 

intermediate probability becomes less than probability of u equal to 1 then according to 

Tunstall lemma we should have extended the node or leaf corresponding to u equal to 1. 

So, if the intermediate probability becomes less than probability of u equal to 1 in that 

case our run-length message set is no longer going to be a Tunstall message set. And 

what is this intermediate probability, that intermediate probability is given by this we 

have just calculated and probability of 1 is given by this. 

So, after simplification what we get is n should be greater than this. That means, if n is 

greater than 5 then run-length coding is no longer going to be a Tunstall message set. So, 

for n less than 5 n less than n 4 3 2 those for those values of n run-length coding for this 

particular source is going to be Tunstall message set, but for n greater than equal to 5 this 

for this particular source the run-length message set is not going to be a Tunstall message 

set. 
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Now the next part of the question was to calculate the ratio of the output codeword 

length to the input expected codeword length. Now how do we find out the input 

expected codeword length, we can invoke the path length lemma to find out the expected 

value of y; we know that this is nothing but some of probability of all nodes including 

the root node. So, root node has probability. This now next node because you are in run-

length coding you are extending the node corresponding to branch corresponding to u 

equal to 0. If I draw the run-length coding it would be like this. 

So, initially you have this is 0 and 1 this is probability 1 this is probability 0.9 this is 

probability 0.1. Then again you are extending this, so this is probability 0.9 into 0.9 

square, then again you extend this will be 0.9 cubes. This you will do until the q 

extensions of this leaf containing the 0. So, the expected codeword length in case of this 

run-length coding can be written like this and this is equal to this. Now the expected this 

ratio of n divided by expected of value y comes out to be this. 

And the third part of the question says what is the value of n for which we get maximum 

efficiency, and of course you will get maximum efficiency when this this ratio smaller 

because you want to compress large block of data into, remember we are doing variable 



to block length coding so the output block length is fixed. So, we will get more 

compression if we are able to combine larger blocks of data into this block of length n. 

So, we evaluate this ratio for various values of n I have written it here for n equal to 1, 

this is one for n equal to 2 this comes out to be this. So, you can see this where ratio is 

smallest for this quantity. In other words we can say that for n equal to 4 this expected 

ratio is of n divide by expected value y is minimized. In other words efficiency is 

maximum for n equal to 4. 
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So, let us look at the next problem. We have a discrete memory less source that emits 

statistically independent binary bits with probability of 1 given by 0.005 and probability 

of 0 given by 0.995, so most of the time it is submitting 0s. The digits are taken 100 at a 

time and a binary codeword is provided for every sequence of 100 bits. We have a binary 

discrete memory less source which is emitting 0s and ones; 0s would this probability and 

1 with this probability. We are taking 100 bits at a time and we are assigning a codeword. 

Now, assuming all codeword's are of same length find the minimum length required to 

provide codeword's for all sequences containing 3 or fewer ones. So, clearly you can see 

that most of the most typical sequences which come out of this source are going to be the 



ones which contains all 0 sequences. So, we are providing codeword's to all sequences 

which have length number of ones 3 or less. So, the question asked what is the minimum 

length required to provide codeword's to all sequences which has 3 or less 1. We are 

assuming that all codeword's are of same length. So, that is a first part of question. 

The second says calculate the probability of observing a source sequence for which no 

codeword has been assigned. Now, when will no codeword be assigned? When we get 

among these 100 bits number of one's which is 4 or more, in that case we are not 

assigning any codeword's. So, the second part of the question asks us to calculate this 

probability. And the third of the questions is use Chebyshev’s inequality to bound the 

probability of observing a source sequence for which no codeword has been assigned. 

So, in part B we are going to compute that exact probability, in part 3 we are going to use 

Chebyshev’s inequality to get and upper bound and that probability and we will compare 

that probability with the actual probability that you will computed in part 2. 
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So, remember we are considering these binary sequence 100 bits at a time. So, what is 

the number such sequences which has 3 or fewer ones. This is number of sequences 

which have all 0s, this number of sequences which have 1 1 this is number of sequences 



of length 100 which has 2 ones. These are number of sequence of length 100 which has 3 

ones, so this total comes out to be this. Then the required codeword length and this case 

are going to be 18 log 2 base to of number of such codeword's. We can represent all 

sequences of length 100 which is coming out of these this discrete memoryless source 

using a codeword of length 18, assuming we are assigning codeword's to all such 

sequences which has 3 or less ones and all codeword's are of same length. 

Now, when are we going to assign a codeword to a sequence of 100 bits? Whenever we 

get a sequence which has either 0 ones or 1 1, 2 1 or 3 1, so let us compute the 

probability that the 100 bits sequence has 3 or fewer ones. This is a probability of 

occurrence of 1 this is the probability of occurrence of 0. So, this will give us to a 

probability that I errors have or like if this is a probability that I number of ones are there 

in the sequence of 100 bits. So, this will give us the probability that there are I ones in 

the sequence of 100 bits. Since, we are interested in finding the probability that there are 

3 or fewer ones we sum it over all is going from 0 to 3 and this probability comes out be 

0.99833. 

In other words probability that we were not going to assign any codeword to a sequence 

of these 100 bits is given by 1 minus this and this probability comes out to be 0.00167. 

So, this is roughly has a order of 10 to minus 3. That is a probability that we are not 

going to assign a codeword to a 100 bits sequence, we call that we are assigning 

codeword to all 100 bits sequence which has all 0s or at least 1 1, 2 1 or 3 ones. 
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Next we are going to use Chebyshev’s inequality which basically says that. If S N is the 

sum of n i i d random variables in probability that we have 2 difference between sum and 

n times mu if greater than equal to epsilon is given by n times sigma square by epsilon 

square 2 n mu is the mean of x I and sigma square is the variance of x i. 

So, in this problem our n is 100 mu is 0.005 and sigma square is 0.005 into 0.995. We are 

interested in knowing that this sum is basic sum of ones is basically a greater than equal 

to 4, so we choose our epsilon in such a way such that our sum of these 100 bits comes 

out to be greater than equal to 4. So, for the given value of n and mu our epsilon should 

be chosen as 3.5 then only we will get this conditioned has sum of this 100 bits is has 

more than 3 ones. 

So, in this particular case or epsilon should be chosen as 3.5, for the given n which is this 

and number of mean of this 0 is basically is 0.00, this mu is this is mean of this number 

of 1s is 0.005. So, epsilon if we choose with 3.5 we get a condition that sum of these 100 

bits has more than 3 ones. So, if we plug in the value of n sigma square and epsilon 

which is 3.5 in here we get the condition that some contains 4 or more ones that 

probability comes out to be upper bounded by point 0.04061. Please note that this is 

actually quite a loose bound because exact probability comes out to be 1.67 10 to minus 



3. Whereas, upper bound is 4 into 10 to power minus 2. So, this upper bound is quite 

loose. 
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Finally, we are going to show you that a typical set is essentially the smallest among all 

the sets that have non-negligible probability. So, let us consider a memory less source u 

which is uniting is random variable u is and these are i i d distributed. Let U n denotes an 

n tuple; u 1, u 2, u 3, U n that is an n tuple that is denoted by U n and it is probability is 

given by p of u n. 

And since it is a discrete memory less source you can write this probability of U n as 

probability of u i and product of over i going from 1 to n. Now let delta B greater than 0 

and B is subset of this U n where this sequence satisfy this condition that a cardinality of 

B n is less than equal to 2 raise power n into h of u minus delta. Then we one to show 

that as n tends to infinity probability that U n is an B n is basically goes to 0, which 

essentially will show that typical set is essentially the smallest set which will have non-

negligible probability of occurrence when n asymptotically when n goes to infinity. 



(Refer Slide Time: 66:03) 

 

So, let us prove this. We consider a typical set with epsilon we choose as delta by 2.Now 

let us take let us say you of 2 sets A and B; so 2 sets A and B. Now if I ask you to write B 

you can write B as; what is B? B is just this set. Now what is B? B is this portions this 

portion plus this portion. 

So, I can write B as B intersection A union B minus this set A, so that is what I am 

writing here. I am writing this B n as B n intersection this typical set union B minus this 

typical set. So, probability that U n belongs to B n can be then written as probability that 

U n belongs to intersection of B n and it is typical set and probability that U n belongs to 

B n minus this typical set. So, this is nothing but compliment of typical set. 
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Now we know that sum the property of asymptotic equipartition property we know that 

as n goes to infinity this probability is negligible. This was very very small some epsilon 

it is goes to 0. As n goes to infinity this probability basically will go to 0, as n goes to 

infinity. So, limit when n goes to infinity would be then upper bounded by limit when n 

goes to infinity this probability. 
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Now what is this probability? This probability can be upper bounded by summation of 

this p of U n where U n is n intersection of B n and this typical set. Now, this can be 

written as now cardinality of B n is just a second, so this one if you go back this p n is is 

less than 2 raise power n h of u minus delta. So, the probability can be basically upper 

bounded by 2 raise power minus n h of u minus epsilon and summing over this particular 

set, now when I summing over this particular set I can write this as more than equal to 

cardinality of this set multiplied by this probability. 

Now this probability if you recall this from the properties of typical sequences we have 

we know what is the probability of a typical sequence that is upper bounded by this 

quantity that is what from here to here you get this relation from the property of typical 

sequence that probability of U n when u basically belongs to a typical sequence is upper 

bounded by 2 raise power minus n h of u minus epsilon. And this we are summing over 

this particular and this particular set, so this would be cardinality of B n multiplied by 

this. 

And what is B n? B n we just now saw it is given by 2 raise power n h of u minus delta. 

So, if I plug in this value of B n which is 2 raise power n h of u minus delta and plug in 

the value of delta which we chose has delta we chose has 2 times epsilon, so epsilon we 

chose has delta by 2. So, if I do that then what I get here is 2 raise power minus n into 

delta by 2. Now if I take limit now n goes to infinity this term will essentially go to 0, so 

which essentially proves that typical set is the smallest set which will have a non-zero 

probability. 

With this we will conclude this lecture. 

Thank you. 


