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Welcome to the course on An Introduction to Information theory. I am Adrish Banerjee. 

So, in this lecture, we will continue our discussion on block to block length coding of a 

discrete memory less source. In the last lecture, we described what we mean by typical 

sequence and we showed some properties of typical sequence which are collectively 

known as asymptotic equipartition property. In this lecture, we are going to see the 

consequence of those asymptotic equipartition properties what is the consequence of 

them for block-to-block length coding. 
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So, we will first quickly refresh our asymptotic equipartition property and it is 

consequence and then we will talk about block-to-block length coding. Now, remember 

when we are talking about block-to-block length coding is a lossy compression because 

we have large blocks of data which we are mapping into small blocks of data. However, 

since given a source distribution we know not all sources are equally like to drop in some 

sources are which we showed typical sequence which are likely to come out of a 

particular source we will try to encode those sources using unique codewords. Whereas, 



 

 

the sequences which are not likely to happen, they non-typical sequence; we are not 

going to sign a unique codeword to them and hence we will get some lossy compression. 
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So, please quickly go over the three properties of asymptotic equipartition property. So, 

the third property says that number of typical asymptotic sequences given by 2 raise to 

the power L into H of U. And property 1 says that each of these typical sequences 

happens with probability 2 raise power minus L H of U. And the third property says the 

total probability of these typical sequences nearly 1, which means that if you take large n 

of L, most of time the sequences that will come out of this source are likely to be typical 

sequence. And as we said these three typical these three properties are collectively 

known as asymptotic equipartition property. 
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So, let us see now how we can use these properties to design our block-to-block length 

and codeword. So, let X 1, X 2, X n be independent identically distributed random 

variables, they got drawn according to some probability mass function p of x. Now, we 

are interested in short description of these exercises right. So, let us divide this set of 

sequences into two sequences one, which is typical sequence; and other one, which is a 

complement of the typical sequence. Now, how many typical sequences exist that is 

block length 2 raise to power block length H of U. So, to represent uniquely each of the 

sequences in the typical set, we would require n H plus epsilon plus 1 bits right, because 

we know the number of typical sequences we have block length of L it is 2 raise power L 

into H of u. 

So, to uniquely define each of these typical sequence using a codeword we would require 

these many number of bits n of (Refer Time: 04:32), the non-typical set cannot be more 

than n log cardinality of X plus 1. Now, we can prefix the typical set by 0 and non 

typical set by one. So, essentially, we are a increasing the block length by one. So, we 

are going to use n into H plus epsilon plus 2 bits to describe codewords which belong to 

typical sequences and we are going to use n log cardinality of X plus 2 bits to represent 

non sequences which are coming out of non typical set. Now, clearly this code, which I 

designed so far is one-to-one and is easily decodable. Why, because each of the typical 

sets I have a side unique codeword so far I have done this same thing for non typical set 



 

 

as well because I am using this many number of bits and as we said typical sequence 

which typically require block line into H of U number of bits to represent it. 
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So, let us compute the expected codeword length. Now, expected codeword length can 

be written as sum over all the sequences of length n probability of occurrences of those 

sequences multiplied by length of those sequences. Now, we have partitioned our set of 

sequences into two, one corresponding to typical set, another to complement of typical 

set. So, this particular term that you see here corresponds to sequences are belongs to 

typical set and this summation correspondence to sequences that belongs to non typical 

set. Now, what is the length required to describe the typical set? Now I have was using n 

times H plus epsilon plus 1 bits to represent a typical set. Remember I was prefixing it by 

a 0. So, I am totally using n into H plus epsilon plus 2 bits to describe these codewords 

correspondence to typical set. Similarly, for the non typical set, I was using n log of 

cardinality of X plus 1 and I am prefixing it by 1 to denote that it belongs to non typical 

set. So, the length of these codewords belonging to non typical sequences is given by n 

log of cardinality of X plus 2. 

Now, what is this probability, this probability is basically probability of occurrence of 

typical set and this is the probability occurrence of sequence being not a typical set. 

Now, we know from asymptotic equipartition property that this probability is very small 

some epsilon something like that and this probability is close to 1. So, I can then this 



 

 

probability then can be upper bound if I consider this to be one and I consider this 

probability to be epsilon, I can then upper bound this probability by n times H by epsilon 

plus 2. And this is epsilon times n log of cordiality of 2, this much larger than 2; so 

swiping at this way. Now, this can be written as n times H plus epsilon dash where 

epsilon dash given by this quantity this is expected codeword length if I use this scheme 

which as I just described. Now, epsilon is small, so you can see and n is large. So, this 

epsilon dash is very small, so roughly I am using close to n times entropy of this source. 
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Now, let us take the block-to-block length coding for theorem for the discrete 

memoryless source. 
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So, we are given of theory discrete memoryless source, whose output entropy is given by 

H of U; and we are given two positive number epsilon 1 and epsilon 2 they are small. 

Then for large L that exist at D-ary block length of code N for all those messages of 

block L such that N by L is less than equal to entropy of U by log D plus epsilon 1, such 

that probability that the codeword will not be uniquely decodable that probability the 

codeword will not uniquely specify the message of probability of error basically that is 

also upper bounded by epsilon 2. 

So, what are we talking about here. So, we have and input of block length L and we are 

coding it into output sequence of block N. So, clearly N is less than L, and then only we 

will get compression. Now, what should be N by L? So, this says the relation between N 

by L. If you take N by L to be less than equal to H U by log D plus small epsilon then 

probability of basically being error probability of failure is upper bounded by some 

epsilon. Now, we will show the converse also that this ratio N by L cannot be very, very 

small because if we if this ratio is very, very small then we will show this probability of 

error basically a failure that is increases that will show subsequently. So, let us show this 

result. 
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So, suppose we are assigning a unique D-ary codeword of length N to each of the M 

typical sequences, but we use only a single additional codeword to code all non-typical 

sequences. So, there are total M typical sequences we are uniquely defined in those M 

typical sequences by a codeword. However, for all non-typical sequences, we are using 

only one codeword. In other words, if we transmit a non-typical sequence then the 

receiver will not be able to make out what was the sequence received; but if we transmit 

a typical sequence, the decoder will be able to exactly find out what sequence was 

transmitted. And remember from the AEP property we know that if L is large most of the 

sequences generated by this source are going to be typical sequence. So, for typical 

sequence, we are assigning a unique codeword, whereas, for all the set of non-typical 

sequence we are just using one codeword. 
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So, then number of codewords we require is M plus 1; M for m typical sequence and 1 

for all non-typical sequence So, this smallest N that satisfy this condition because we are 

using a D-ary codeword, so smallest N that will satisfy this condition given by this. So, 

the N should be such that that as M plus 1 is greater than D raise power N minus 1 and it 

is less than equal to D raise power N. So, further, I mean simplifying it I am just writing 

M is greater than D raise power N minus 1 or D minus take a log D minus n log of D is 

less than equal to log of M. And what is M, M is upper bounded by to raise power 1 plus 

epsilon L times H of u. So, if I take log of that, I get this expression right.  

Now, simplifying further I can write this, this relationship in this particular fashion. So, 

N by L is less than equal to H U by log D plus epsilon H of U by log D plus 1 by L. 

Remember we are talking about epsilon when epsilon is very small to close to 0 we are 

talking about L which is very, very large. So, when epsilon is small this term will be 

close to 0. When L is large, this term is close to 0. So, we can write this as N by L less 

than equal to H of U log of D plus epsilon 1. And remember since most of the sequences 

are typical sequence of probability of error is going to be small is less than epsilon from 

the property two of typical sequence we know the total probability of epsilon typical 

sequences close to one so that will then prove this result. 
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That if you have a K-ary discrete memoryless source, whose output entropy is given by 

H of U then there exist a D-ary block code of length L for message sets of length L such 

that N by L is less than equal to H U by log D plus epsilon 1, and this while ensuring that 

probability of basically making a mistake is also bounded. Now, the next question to ask 

is can we make this N by L ratio very small. What is the consequence of that because this 

says N by L is less than equal to H U log D plus epsilon, can I make N by L very small. 

To answer to this, we will come in the next slide where we will show what happens. So, 

we cannot make N by L very small without increasing our probability of failure. So, we 

are going to show that next.  
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So, we are going to show for a discrete memoryless source. So, given positive number 

epsilon 1, epsilon 2, there exist a source coding scheme such that N by L is less than this 

and probability of failure basically where we do not estimate our bits source bits 

correctly is bounded by epsilon. So, this is the kind of blog diagram that we are looking 

at. We have a discrete memoryless source, which is fitting out this U i’s. Now, this U i’s 

are K-ary alphabet. So, each of this U i’s can take a different values this is been said to 

and my input log length is L. This is been said to a block source and coder which take 

this logs L bits and transforms into block of length n and these codewords are D-ary 

codewords. Now, once I have this codeword at the receiver essentially I need to 

deconstruct and get back my original sequence. So, U 1 hat U 2 hat U L hat is estimate of 

the source bits which were encoded using this block-to-block length encoder. 
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Now, as I said we cannot make this ratio N by L very small. So, we are going to now 

quantify in terms of probability of error. So, we define this average probability of error in 

this particular fashion, where probability of error at the ith bit is defined like this. So, if 

U i is not same as U i hat that is defined as probability of error at the ith bit. And if we 

take the average of error over all L bits divide by L that is going to give us our average 

probability of error. Now, this average probability of error is less than this probability of 

failure. So, probability of error is upper bounded by probability of F and this we have 

derived in the previous lecture that this depends on K, this depends on block length L, 

this depends on epsilon square, and this depends on p min probability of U. And since 

this is small average probability of error is also bounded. 
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Now as I said we are going to ask the converse. So, in other words, we are going to ask 

can we make probability of average probability error very, very small if we make this 

ratio also very small. So, the answer lies here. So, here we cannot make ratio N by L 

much, much smaller. You can see from this relation, if we make this N by L ratio smaller 

and smaller then probability of error is bounded from below by larger quantity. So, we 

cannot make this N by L ratio much, much smaller without increasing the average 

probability of error. So, we are going to prove now that the average probability of error 

is related to number of bits that we use to encode our block of data of length L. So, 

binary entropy function is using capital H notation, by binary entropy function of this 

average probability of error plus probability of error log of K minus 1 is upper bounded 

by uncertainty in U divided by log D minus N by L whole multiplied by log of D. 

Let us prove this. So, before you prove this I just want you to again go back and look at 

the block diagram - this block diagram. So, we are using U i’s to denote our output of a 

discrete memoryless source. We are using U i hat to denote the estimate of this U i’s and 

we are using X i to denote our source encoded bits. So, you can clearly say U X and U 

hat they form a Markov chain right. So, we can make use of data processing lemma. So, 

let us proceed with the proof of this. So, this result relates the average probability of 

error to number of bits used to encode in the case of block-to-block length coding. Now, 

from the definition of mutual information, you can write the mutual information between 

U 1, U 2, U n and X 1, X 2, X n as uncertainty in X 1, X 2, X n minus as uncertainty X 1, 



 

 

X 2, X n given U 1, U 2, U n. And we know for discrete kind of variables this quantity is 

greater than equal to 0. So, I can upper bound this mutual information by uncertainties in 

this X i. So, mutual information between U 1, U 2, U n and X 1, X 2, X n can be upper 

bounded by entropy of X 1, X 2, X n. 
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Next, we are going to use data processing lemma. We just said that U 1, U 2 basically U 

i’s X i’s and U i hat they form a Markov chain. So, then mutual information between U i 

and U i hat has to be less than mutual information between U is and X is this is the result 

which follows from data processing lemma. So, we can write the mutual information 

between U 1, U 2, U L and U 1 hat U 2 hat U L hat this from the data processing lemma 

follows that this is less than equal to mutual information between U 1, U 2, U n and X 1, 

X 2, X n. Now, this quantity we are shown in the previous slide that this quantity is 

upper bounded by uncertainty in X 1, X 2, X 3, X n. 
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So, we plug that in, so what we can write then is this, this is upper bounded by this 

quantity correct. And each of this exercise is D-ary random variable and this is a block of 

length N. So, they are total D raise power n possible values of X 1, X 2, X 3, X n and we 

know from the property of entropy that this is greater than equal to 0 and less than equal 

to log of number of possibilities of X. So, in this case, number of possibilities of X 1, X 

2, X n is D raise power n. So, this entropy is upper bounded by log of D raise power N 

which is nothing but N log of D. 
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So, what we have shown so far is mutual information between U 1, U 2, U L and U 1 

hat, U 2 hat, U L hat is less than equal to N log of D. Now, since we are considering a 

discrete memoryless source. So, this U i’s are identically distributed and they are 

independent. So, if they are identically distributed and independent I can write this H of 

U 1, U 2, U L as H of U 1 plus H of U 2 plus H of U L; and since U 1, U 2, U L are 

identically distributed this will be same as H of u. So, this H of U 1, U 2, U L can be 

written as H of U, U plus H of U and this repeated L times. So, then this will be L times 

H of U. 

Now, from the definition of mutual information, I can write the uncertainty in U i’s 

giving U i hat to be equal to uncertainty in U 1, U 2, U L minus mutual information 

between U 1, U 2, U L and U 1 hat, U 2 hat, U L hat. Now, this quantity we know from 

this relation that this is equal to L of H of U. So, we plug this value to here now this 

quantity we have upper bounded by N log D. So, if you are subtracting larger quantity, 

so then this would be greater than equal to L H U minus N log D. 
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Next, so using chain rule you can write this H of U 1, U 2, U 3, U L given U 1 hat, U 2 

hat, U L hat we can write them as U 1 given U 1 hat plus U 2 given U 1 U 2 hat like that 

we can write. And then we can use the property that conditioning cannot increase and 

entropy. So, this results comes from two fact first we are applying chain rule second we 

use the fact that conditioning cannot increase entropy. So, if we combine those two 



 

 

results we can write uncertainty in U 1, U 2, U L given U 1 hat, U 2 hat, U L hat this is 

upper bounded by H of U i given U i hat sum over all i’s. 

Now, from Fano’s lemma, we know the uncertainty in U i given U i hat, this is upper 

bounded by binary entropy function of probability of error log of number of possibilities 

of this random variable U and U i and that. This U is the theory random variable and we 

are we have shown this is given by log of L minus 1, where L in this case is this is a 

theory random variable. So, in this case, number of random variables. This is cardinality 

U i is k. So, from Fano’s lemma, if you recall we can write U given U hat is less than 

equal to binary entropy function of this probability of error plus probability of error log 

of L minus 1, where U and U hat are L-ary random variable. In this case, L is in this case 

L is K in our U is a K ary random variable, so that is why I am writing here this as K. 

Now, next thing what I am doing is I am summing of this over all i’s. So, I am summing 

this over all i’s. So, I am sum this, this over all i’s, I sum this right hand side over all i’s, 

if I do that I get this expression. Next, I can divide this whole thing by 1 by L. Now, if I 

divide this whole thing by 1 by L what I get here is this term is going to be 1 by L 

summation H of U I given U hat. This will become 1 by L summation binary entropy 

function of this error and this P e i log of K minus 1 this was L times we know P e i is 

given by 1 by L summation if you look at what is P i just go back to definition of P i. 
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This summation P i is L times P s, this summation P i is L times P s. So, if we plug that 

value in here what we get is so when we do summation this is L times P s log of K minus 

1 and now we are dividing by 1 by L. So, this will be 1 by L times this and this will be P 

s log of K minus 1. Now, look at this function, this is like we are calculating the expected 

value of a binary entropy function. Now, what do we know about binary entropy 

function the binary entropy function is a concave function. 
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A binary entropy function, if you recall looks like this, this will be 1 corresponding to p 

equal to 0.5 and this is 0 and 1. So, binary entropy function looks like this. So, this is the 

concave function. And from Jensen's inequality what do we know if the function is the 

concave function then expected value of the function expected value of the function is 

going to be less than function of expected value of x. So, since binary entropy function is 

the concave function of P we invoke Jensen's inequality which says expected value of the 

function is less than function evaluated as expected value. So, what is the expected value 

of the binary entropy function that is this quantity and what is the function, function is 

the binary function evaluated at expected value of S, here it was P i. So, this is the 

expected value of this P i. And what is this term from the definition of average 

probability of error this is nothing but binary entropy function of the average error.  
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So, then combining this expression, and this expression what we get is of course, this 

expression as well we combine this expressions. So, this is says uncertainty in U 1, U 2, 

U L given U hat, U 1 hat, U 2 hat is upper bounded by this and from here you get another 

upper bound. So, combine these two, we get this expression. Now, what is this term? 

This also we have proved earlier. This is given by go back and see this term is given 

lower bounded by L H of U minus N log of D. If we use this result, what we are going to 

get is an expression like this; and further simplifying, we get the desired expression that 

we wanted to prove. 

So, what we have shown here is this the binary entropy function of this average error 

plus average power log of L, this is lower bounded by H of U by log D minus N by L 

whole multiplied by log of D. So, if you try to make this much, much smaller compare to 

this, you are going to pay a penalty in terms of your probability of error average 

probability of error. If this becomes much smaller than this quantity, this lower bound is 

going to increase, so this will increase your probability of error. So, you cannot make N 

by L arbitrary small, and still achieve very low average probability of error.  

So, then to summarize, if you the case of block-to-block length coding is the case of 

lossy source compression, you take large blocks of data and we are basically coding it 

into small blocks of data. The trick is you should try to encode all these M typical 

sequence using unique codewords and assign one codeword for all non-typical 



 

 

sequences. Now, since the probability of occurrence of this typical sequence is close to 

one, then we are considering large block size, we will be able to correctly decode at the 

receiver most of the time.  

So, with this, I will conclude my discussion on block-to-block length coding. 

Thank you. 


