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Hello and welcome in this module we will first review some concepts from signals and 

representation of digital signals or rather signals as vectors and we will talk about concepts such 

as signal space this is important because we are going to study digital communications and 

digital communications would involve us to learn about constellations and this constitutions are 

coming from these signals as signals as being though of us vectors. 

 

This what is sometimes called as the geometric approached signals understanding signals and 

that is very valuable and widely used in analysis of digital communication systems and that is 

important for us in the optical communication systems because much of optical communication 

today in fact 99% of the optical communications today happens in the digital communication 

format in the sense that we only almost have digital optical communication systems. 

 

So to understand those concepts we will have to review some fundamentals let us began by very 

briefly recalling what a signal is and then talking about it is Fourier transform okay so a signal 

we have been talking about time varying wave forms and a signal is essentially a time varying 

wave from okay suppose S is a. 
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Mapping that I take so you know I have a variable called time so at each time I might have some 

amplitude or I might have some value it could be power as well so all this values can be captured 

by writing thus as s(t) so s(t) would represent two notations one it would give the value of this 

particular function which would be defined by s(t) at the time t it would also give me how the 

function itself is changing so it is kind of slightly two related notations which we are 

compressing by saying that s(t) is a signal. 

 

This signal is continuous signal because time t can vary continues signal because time t can vary 

continuously there is a different signal called as a discrete time signal in which case time can 

take on only certain samples okay this is coming from the time domain but in fact you can also 

have discrete signals in a various other context for example you know you are playing cricket the 

number of the numbers that you score against each ball right would be a example of a discrete 

time signal. 

 

Right so you can have discrete time signals coming not only as a time dependent thing a discrete 

signal coming not only on terms of the time but it can also be a function of anything else for 

example you take a picture that would correspond to a 2 dimensional discrete signal with each 



variable being the pixel point and the corresponding intensity of the picture would be the discrete 

signal there it would be a 2D signal. 

 

We will motley will be dealing with only 1 dimensional signal in the sense that we will have 

only one independent variable and the corresponding output we denote a continuous time signal 

by s(t) writing and assuming that t is a continuous time quantity or t is a continuous quantity a 

discrete time signal is denoted by writing it has s(n) where this s(n) stands for the sample at time 

n as well as the sequence of such samples. 

 

Okay so this is a continuous signal this is a discrete signal we will assume that this n is actually 

coming from time now there is a relationship between these two signals in the sense that if s(t) 

satisfies certain conditions then it is possible for us to represent this s(t) not by measuring the 

value of s at all points t but measuring the value of s at a certain time instant okay in other words 

I can go from the s(t) representation to it is discrete time version by a process known as sampling 

okay . 

 

I can go from s(t) to s(n) provided that s(t) satisfies certain conditions namely that it is bandwidth 

is limited to a certain range of frequencies then it is possible for me to sample fast enough so that 

s(n) would be a accurate representation of s(t) I can go from s(n) to s(t) so this was the sampling 

process I can go from s(n) to s(t) in you know what is called as the reconstruction of the signal 

okay. 

 

So this relationship between sampling rate and the bandwidth if s(t) band limited to B Hz then I 

need to sample this one by at least twice the rate of B is called as sampling theorem so sampling 

theorem tell us how to go from continuous domain to discrete domain although in this case we 

are dealing with only time signals as I said it is possible that the variable could be any other 

continuous quantity and the corresponding quantity will be discredited okay. 

 

So you can go from continuous to discrete signals now these representations of s(t) or s(n) or 

what is called as a time domain representations assuming that t and n represent the time then 

these are called as the time domain representation there is in fact a equivalent and much more 



widely used representation called as frequency domain representation okay this is very useful 

because s(t) understanding s(t) in time domain gives you one kind of a picture but many 

engineers would prefer to understand these signals s(t) and s(n) by going into the frequency 

domain. 

 

Where they can also think of translation in frequency they can think of filtering a certain band all 

these operations require us to visualize or to understand what happens to the signals in the 

frequency domain their representation of s(t) in it is frequency domain the representation of s(t) 

in it is frequency domain can be optioned by carrying out what is called Fourier transform okay 

is s(t) is real valued signal that is at every point t corresponding s(t) is real then we call this s 

(t) as a real valued signal. 

 

If such a real valued signal for such a real valued signal we define the Fourier transform and we 

denote the Fourier transform by s(f) this s is capital this is s is small  sometimes we will denote 

this by writing this as Š(f) in this case I am just going to use S(F0 itself. So this is s is a small 

case letter capital S stands for the Fourier transform so for such a real valued signal of course 

Fourier transform can also be defined for complex valued signals but we will not be interested in 

the complex valued signals at least for some time. 

 

So s(t) for a real valued signal will be s(f) = ∫ -∞
+∞ 

 this is the integration over time by multiplying 

this s(t) by a factor which is s(t) e
-j2π ft 

okay this is your Fourier transform representation when 

s(t) is real the Fourier transform terms have to conjugate symmetric that is if s(t) is real then 

Fourier transform is conjugate symmetric okay what do we mean by conjugate symmetric or 

what do we mean conjugate symmetry it simply means that the magnitude of s(f) is an even 

function and the phase of s(f) remember s(f) is a complex number right. 

 

So for every frequency f you are going to get a complex number which is s(f) because you have a 

complex signal e
-j2π ft 

getting multiplied to s(t) right so this phase of s(f) is odd symmetric okay 

so this the meaning of conjugate symmetric. 
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And this is how you can obtain the frequency domain representation of a signal okay as an 

example consider s(t) to be an expositional function say e
-at

u(t)
 
e

-at  
is a expositional function if 

you have simply plot that function what you would see is that at t = 0 this would be 1 and then it 

would be decaying like this okay however t can also go negative because we did not save 

anything about t being positive or negative so what it means is that a t= -∞ this fellow would be 

at ∞. 

 

Right so this how e
-at  

is and it turns out that such a signal cannot really have a Fourier transform 

okay because the integral will not converge okay in an ordinary sense so what we do is what are 

we are mostly interested is we want to know what is a Fourier transform of 1 side of the signal 

right to obtain that one side we introduce this function called as the step function this step 

function is defined by having it is value = 0 for t less than 0 and it will be equal to1 for t greater 

than 1. 

 

And at the middle that is a t equal to 0 sometimes this is defined as having a value of ½ which 

would be the average value to the left and average value to the right okay so this is your u(t) we 

will when you look at this way you will actually see that because the signal u(t) is 0 for t less 



than 0 whatever may be the vitiations of e
-at   

B that just
 
gets vanished over this does not come at 

the output and whatever variations after that would be multiplied by 1 therefore you have a 

exponential signal that is going like this right. 

 

(Refer Slide Time:  09:53) 

 

 

 

So what you have done essentially is to remove all the values of e
-at  

function so if this 1 function 

so this function values has been removed when you multiply this one by u(t), okay. What could 

be the Fourier transform of this? Well to obtain the Fourier transform let us go to the expression 

s(f) is given by e-
at 

now the integration can go only from 0 to ∞, right because - ∞ to 0 the value 

of the function is 0. 

 

So there is nothing to integrate so go from 0 to ∞ multiply this one by e
-j2Πft 

because that is a 

definition then you combine this exponential say no powers right, I mean the argument of the 

exponential function, okay. Why can I do that because I know that exponential of θ1 and 

exponential of θ2 is actually exponential of θ1 + θ2, right? So this is the power law of the 

exponential functions. 

 



I can do that and modify the integrant as e
-a + j2Πf

 t is a common variable write this as dt. Carry 

out the integration I know the integration of 0 to ∞ e
-a+j2 Πf(t) 

dt is nothing but 1/a+j2Πf right e
-a+j2 

Πf (t) 
within 0 to ∞, there is a small correction of course here there has to be a minus sign because 

integral of e
ax 

will have 1/ a and in this case a is negative you know or maybe you should have 

used the different one so e
ex 

will have 1/b times e
bx 

here we simply identify that b is negative 

because you have e
- 
some quantity times t, okay. 

 

Because of this we have a minus sign here and if you now look at what happens to this quantity 

inside you will see very interesting thing so I have -1+j2Πf and then I have e
-a+j2Πf 

times infinity 

minus e
-a+j2Πf 

x 0 this part should not represent as with any difficulty because a x o will be 0, j2Πf 

x 0 will be 0 so exponential to the power 0 is equal to 1, what about this quantity? Here I have e
-

a∞
 which would be e

-∞
 itself. 

 

Because a being a positive quantity I was assumed here I am not told you specifically but a must 

be a positive quantity, so this e 
-a∞

 could be positive, right. Then I also have e
j2Πf

 x ∞ right or a –

j2Πf x ∞ right this fellow will again became ∞, right. For f positive if you be a positive ∞ for f 

negative this would be approaching negative ∞ that is when f goes to infinite then this ∞ in the 

positive sense then this would be e
-
 
∞
, right. 

 

That is getting multiplied by e
-∞

 this is a real signal this is a complex signal because there is a j 

sitting there, however the product of this one will be equal to 0 as f goes towards ∞ right positive 

∞ what happens as f goes towards negative ∞? This quantity if actually not growing but this is 

actually a oscillating signal, okay. However this oscillating signal is getting multiplied by e
-a∞ 

this could not change. 

 

Whether F goes to negative ∞ or positive ∞ this e
-∞

 will always towards 0, however if this have 

behaved in very erratic way then we would have had the problem in evaluating this expression 

luckily e 
-2ΠF 

∞ will always have its maximum value to be equal to 1, okay. Because of that even 

as f goes towards ∞ this does not really matter to us because this magnitude will always be equal 

to 1 and then that is getting multiplied by a 0. 

 



So this quantity is actually equal to 0, so regardless of whether f is approaching + ∞ or f is 

approaching - ∞ this fellow is equal to 0 this id equal to 1, a minus sign here and a minus sign 

will cancel with each other and you end up having the Fourier transform as 1/a+j2Πf as we 

expect s(f) is complex right. So the Fourier transform is complex but now if you look at the 

magnitude of s(f) we will see that the magnitude is given by √ (1+a
2 
2Πf)

2 
correct? 

 

So this is the magnitude mean write down correctly and what you see whether f is negative or f is 

positive this s(f) would always be equal to a positive quantity, in fact if you where to graph this 

magnitude of f(s) as a function of f  at f =0 you have a value of 1/a because a
2 

and the square root 

will cancel so you have a value of 1/a and when f is going positive and when f is very large when 

this quantity 2Πf
2 

will become very large compared to a
2
. 

 

And the square will cancel and then this could essentially go down to 0, similarly when f is going 

large in the negative value region that is when f is going towards - ∞ this fellow this (2Πf)
2 

will 

be much larger compare to a
2 

and then  you can remove that neglect this a
2 

quantity and then the 

square will go away but because f is getting squared even as f goes negative this fellow will 

always go towards this would be positive and would be going towards 0. 

 

So you can connect these two and this would essentially be the way in which s(f) would behave 

such a description or rather when you square s(f) right, so when you square this one then the 

square root will go away this base or this function is widely used in lasers you know to represent 

and you can actually show the lasers will have such a characteristic if called as a Lorentzian, 

okay. So this function is called as a Lorentzian. We will see this Lorentzian when we discuss the 

line width of a laser later, okay. 
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Now what you have to get from this equation is that magnitude of s(f) is an even function as you 

can very clearly see it is a even function of F but if you want to calculate the angle of s(f) you 

would be seeing that this would be negative I mean this would be odd symmetric y because I can 

represent this a+j2Πf in terms of its magnitude and if phase which I can write this has e
jθ 
where θ 

= tan
 – 
(2Πf/a) and because this 1/e

jθ
 is there this will go up and become e

-jθ
. 

 

So the angle will be tan
 – 

(2Πf/a) so this fellow will be e
-– (2Πf/a)

 when you look at this function 

right and if you start looking at the values of f this would be negative did I get it alright, so I 

hope that this would be okay, so just you can put a small thing and find out this has an exercise 

what you should be able to show is that this could be a odd function, so for S(F) positive it would 

be going in this way. 

 

So for negative F it would be going this way or may be in this particular way I am really not 

really concerned about which way it goes but essentially to show that this has to be a odd faction 

of F, okay. 

 

 



(Refer Slide Time: 18:07) 

 

 

 

So what I was trying to tell you is that s(f) for a real valued s(t) and certainly this e
-at(t)

 is a real 

valued signal for this real valued signal s(f) turns out be a complex or you know it turns out to be 

a conjugate symmetric function because conjugate symmetric implies that s(f) magnitude is even 

symmetric and s(f) is odd symmetric, okay. So this is what the Fourier transform representation 

for the signal s(t). Now why is this important for us, well let us look at one example here. 
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Or let us look at one system here where I start with what is called as a pass band signal, what is 

pass band signal? Well if you go back to this Fourier transform where is the average frequency 

of this Fourier transform or where is the Fourier transform centered at, it is centered at o hertz, 

correct? So such signals are called as baseband signals, so this e
-at u(t)

 whose Fourier transform is 

centered at f = 0 right. 

 

This is the Fourier rid mine so the Fourier transform is centered at 0 is called as a baseband 

signal because much of its frequency content is located at f= 0 or the DC signals, however there 

are situations when you consider signals whose fixed centre frequency is located at not 0 

frequency but at some very high frequency that is greater than 0, how can I obtain or where do I 

find such signals well? 

 

Whenever you modulate a signal we have seen that after modulation the spectrum would 

essentially move towards the higher frequency, consider for example. 
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Your double side band suppressed carrier modulation s(t) is given by m(t) x c(t) we know that 

c(t) is cause 2Лfct  and m(t) is whatever the massage signal m(t) that you are sending let us 

assume that the signal m(t) is base band indicating that m(f) would be centered at 0 frequency 

okay so /9t) is a base band signal what would be the Fourier representation of cause 2Лfct well 

we will not going to the details of the Fourier transform there are some issues here but the 

Fourier transform of this one is given by half 𝛿f – fc + 1/2 𝛿f + fc okay this 𝛿f  is a function 

which is called as the impulse function which is defined. 

 

In a way which says that if 𝛿(t) is a impulse function then 𝛿(t) = 0 for t not equal to 0 and the 

area of 𝛿 of t will be equal to one we normally consider them to be a normalize to one so what 

we are saying is that it will be 0 for t0 = 0 and if you integrate this one this would be equal to one 

and example of an impulse function would be a triangular function okay of I know width t and an 

amplitude of 1/t but as you start decreasing t you know as you consider sequence of such 

functions where t goes of to 0 1/t goes no grows and grows and it would essentially start to look 

more and more like a. 

 



And it would like this eventually it would start to look like a impulse function okay so this an 

example of an impulse function except that in this case impulse function happens to be in the 

frequency domain right now when you find out what is the Fourier transform of s(t) you will see 

that this would s(f) and it is given by m(f) right convolved with ½ 𝛿f – fc + ½ 𝛿f+ fc you might 

be wondering what this convolution is convolution operation is defined for you know in this 

manner so if I have two signals s1(t) and s2(t) the convolution of s1 and s2 of t is denoted by this 

star and written as or evaluated as s1of tow s2(t )– tow and integrate over this variable t tow is a 

dummy variable. 

 

All you are doing is take the signal s1 of t and then take the signal s2(t) invert it and then keep 

delaying it okay so if s1(t) is this write so if this is your s1(t) and this is yours2(t) okay all you 

are saying is that if you were to invert this s2(t) okay in order to so if you flip this around you 

will get this signal and you need to delay it okay so you are essentially going to get this signal 

this needs to be multiplied point twice to this s1(t) so you multiply these two signals and 

integrate you keep doing this for every value of time shift t and then you will essentially obtain 

the result of this integration. 

 

Okay more details are of course available for you in the signals courses please referred to that if 

you are forgotten you can go back and read some signal and system text book you will be able to 

understand what convolution is or will be able to recall what convolution is okay with that in 

mind convolution operation can be performed in time domain it can be performed in frequency 

domain it turns out that this impulse functions have a very special property that if I convolve any 

signal which is not an impulse. 

 

Write m(s) convolved with 𝛿 f- fc right what I get is that it will be m(9f – fc) okay so when I 

convolve them I will get f of m f- fc ands why this is convolution in the frequency domain is 

because there is a Fourier transform theorem which tells us that multiplication in time domain is 

convolution in frequency domain okay so because of that your double side band suppressed 

carrier signal which is m(t) x c(t) can the Fourier transform of that can be thought of at the 

convolution of m of the Fourier transform of m of t which is m of f and the Fourier c(t) which is 

this 𝛿  function right. 



 

So if you now look at this convolution I am not proving any of this so if you look at this 

relationship and then applied to this equation which we will call as one then I can find the 

Fourier transform s(s) as m(f – fc) there is a half here + ½ m(f + fc) what is this m of f – fc and m 

of f + fc this is now. 
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If you start with m of f right so let say this is my m of f I am just plotting this one if you start 

with this which is center at 0 as it should for a base band signal m of f- fc would correspond to a 

signal which have been shifted to the right okay so it has been shifted so let say the value here is 

one so this is one and it is say this value has, has a value of b and this is – b so therefore this 

becomes fc + b this is fc – b okay similarly so this is m of f – fc okay n and m of f + fc would be 

a function which would be shifted to the left which will now a centered at – fc and will be at – fc 

+ b. 

 

–fc - b okay when you combine these two what you get is this s(f) when you also change the 

amplitude from 1 to ½ so you get one at located at fc the other spectral ½ is located at – fc this 

has a value ½ this has value ½ this is your signal s of f okay now such a signal which is centered 



not at 0 frequency but centered at a different frequency fc, fc must be much larger than 0 here so 

are the DC signal is called a pass band signal pass band signals are encounter whenever you 

modulate your time domain based band signal so when you look at the corresponding frequency 

domain. 

 

You will see that they are now centered at value fc okay now for one of things that has now 

happened is if you have taken s of t has an original valued signal as we should obtained when 

you have when you connect physical modulator the signal that you are obtaining will be a real 

signal a s of t for such a signal s of t the Fourier transform will show that it has components both 

in the positive frequency domain as well as in the negative frequency range right. 

 

So you have negative frequency domain so here is all the frequencies are positive here all the 

frequencies are negative so the corresponding s of f has values non zero values in both but you 

can already see that this both copies are essentially identical because the magnitudes spectrum of 

these two are the same and when you look at the phase spectrum you will see that these two were 

also the identical okay they would also be odd functions so the point here is that it that of seems 

redundant to you have two copies okay in fact when you take a modulator in the electrical 

domain what you will find is that if you start with the real valued signal s of t which is a pass 

band signal. 

 

Okay the first operation that you will do is what is called as the down conversion operation the 

result of a down conversion operation is a signal that is now centered at 0 frequency we 

somehow have to make this signal which is centered at non zero frequencies to be centered at the 

frequency f okay this process of going from bass band to baseband is called as down conversion, 

now there is a very important fact about down conversion that we have understand the way in 

which this down conversion we are going to do will result in not as real valued signal. 

 

But in a complex base band signal okay it will result in a complex base band signal or sometimes 

called as complex low pass signal okay complex low pass equivalent signal these concepts are 

not only important in communication they are also important in laser theory so if you spend 

some time understanding this you will be able to understand and appreciate the topics in laser 



theory also very well so this is called as low pass equivalent signal or co complex low point 

equivalent representation which will be obtained by down converting from pass band to base 

band signals. 

 

Now how do we do this down conversion all I can think of is a very simple way I already know 

one function which takes away all the negative variable values right so if you recall this e- at 

signal here. 
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We multiplied this e- at with this function u(t) u(t) what it did it removed all components of e – 

at which when t was less than 0 now if I can do a unit step function in time I can as well do a unit 

step function in frequency right so what I have to do in order to eliminate all these components 

would be to multiply this one by a unit step function okay by a unit function whose value will be 

equal to 0ne for f greater than 0 and it would be equal to 0 for f less than 0 right at f = 0 

sometimes we can have this value are equal to ½ so when you do this all this negative frequency 

components would vanish after I multiply S(f)/U(f) all this components are gone.  

 



What would be the corresponding spectrum, the spectrum is now having only components in the 

non zero, I mean in the only in the positive frequency domain, right. Now if you look at that 

spectrum that would be centered at fc, now I have to bring this fc down to 0 what should I do, I 

have to translate this back in frequency, right. 

 

Here is where your couple of the Fourier transform properties would help, if you take s(t) which 

have the Fourier transform S(f) and when you shift this one by a factor t0 to the right or to the left 

depending on whether t0 is positive or negative this would be equivalent of multiplying this 

Fourier transform by this phase factor e
-j2πft0 .

S(f). Similarly if I start with s(t) which are the 

Fourier transform of S(f) and then if I consider S(f)-fc then this would be equivalent of 

multiplying this by e
-j2πfc .

s(t). 

 

So multiplication of s(t)/ e
-j2πfct  

is equivalent of shifting the spectrum to the right, but I do not 

want to shift the spectrum to the right, I want to shift the spectrum to the left, so to do that I 

simply consider fc to be negative, right so if I consider fc to be negative then I get s(f+fc) and this 

will be a minus signal here.  
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So I have identified two operations that I need to do, start with the real value s(t) which you 

would anywhere receive to obtain the complex low pass equivalent signal or the complex base 

band signal from this you multiply the Fourier transform of s(t) which is S(f) by the function 

U(f), right and then in time domain you also multiply this one, so this is let us call this as let me 

just rewrite it in the block diagram way, so that we can understand. 
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So S(t) is coming in this way that goes into filter who is transfer function ϕ(f)=U(f) and the 

output of this filter will be multiplied by e
-j2πfct

, okay what comes out will be the complex base 

band or the complex low pass signal. In fact there is a name to this particular output, okay name 

to this output it is called as analytic signal, analytic signal will have its Fourier transform only in 

the positive frequency range, okay. So you have S(f) here, right and this after multiplying by 

U(f) you will have an analytic signal which will have components only at the positive frequency 

region and once you multiply this one by e
-j2πfct

 what you get is a complex low pass signal, okay.  

 

Why should I get a complex low pass signal, well this signal by it is or this spectrum by itself 

will result in a complex valued signal, because the Fourier transform is now not symmetric. If the 

Fourier transform is not symmetric it is not congruent symmetric then the corresponding time 



domain signal will be a complex signal, so the analytic signal is necessarily a complex signal, 

this complex signal is now being multiplied by one more complex signal it turns out that the 

overall signal that you are going get will be a complex low pass signal, okay. 
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So I hope this is understood once you have understood this low pass signal then we can also 

understand you know in the time domain expression, if we do not want to always think of the 

frequency domain in this case, it is necessary to also look at the time domain representations of 

this signals to do that one let us split this ϕ(f) which was the filter here, which was used for down 

conversion process or rather this entire block is for down conversion process, okay so this entire 

block is for down conversion process this filter was removing all the negative frequency 

components, right this was the U(f) I can split this signal U(f) into two parts, I can write this as 

1/2+j/2H(f), okay because I want to discuss the filter properties of this position. 

 

So if I say H(f)=-j signum function of f, okay. What is this signum or the sign function, the sign 

function basically is positive when f is positive its argument is positive, it would be negative 

when it is argument is negative, so if you plot H(f) itself you will see that H(f) will be equal to –j 

when f is greater than 0, it would be equal to +j when f is less than 0, right. So this U(f) when f is 



greater than 0 will have 1/2+j/2.-j but I know that –j and +j is 1, so I get is this one equal to 1 

when f is greater than 0.    
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Now when f is negative for f negative this would be 1/2 +j/2 but this would also be equal to +j 

here, so this would be j and j is -1 so one 1/2- 1/2 will be equal to 0, so I am alright so I can write 

U(f) as 1/2+j/2.H(f) so that when f is greater than 0 I get 1, when is f is less than 0 I get 0, and if 

you define further that signum function must be equal to 0 at f=0 that would be the average of 

these two values then U(f) will be equal to 1/2 at f=0 and we recover everything about U(f) 

correctly. So I want to write down j(f) this would be –j and this would be +j as a function of f, 

okay.  
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Incidentally if I take any signal and then pass it you know through this H(f) so if I have now a 

filter with simply realizes this H(f) and then pass this signal S(f) through this H(f) output of this 

one will be –j sgn(f).S(f), okay this particular signal this particular filter which produces this 

spectrum is called as a Hilbert Transform, okay. What is the significant of this Hilbert transform 

you see here that if I want to take the magnitude of this, so let us call this output as S0(f) of this 

particular filter, so if you look at the magnitude of S0(f) I will see that the magnitude should be 

equal to magnitude of S(f) itself. 

 

Because there is nothing changing the magnitude of –j will be equal to 1 and sign will anyway be 

a not magnitude will always be equal to 1, so the magnitude if we put of this filter magnitude is 

equal to the magnitude of the input.   
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But look at what happens to the phase of S0(f), the phase will be changed because you have a –j 

here –j is equivalent of e
-jπ/2

, right and sgn function will be positive when S(f) is positive and 

when it would be negative when S(f) is negative, this would be added to the phase of S(f), okay. 

So the total phase will actually be phase of S(f)-π/2, okay when f is positive you will have to 

subtract –π/2 and when f is negative again you will have to subtract this –π/2, right. So all the 

frequency components of S(f) the phase of those frequency components are getting delayed by 

π/2, okay this is the action of Hilbert transformer sometimes that is why this I called as a phase 

shifter as well, okay. because its shifts all the frequency component phases by a value of π/2.   
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Now what is the significant of that well if you denote the output in the time domain, the output of 

the filter in the time domain you will see that would be a complex signal which can be written as 

Ŝ(t) that is if I take this –signum function of f into S(f) that would correspondingly give me a 

complex number, so I get S(f) multiplied by U(f) but I know that U(f) is nothing but 

1/2+j/2.H(f), okay. So if I expand here I get 1/2S(f)+j/2S(f)H(f) and H(f) itself is given by sign 

function into f, right. 
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If I now go to the time domain representation this by taking the inverse Fourier transform what I 

get here is1/2.S(f) which would be S(t) and this flew will be a complex signal, right this will be a 

complex signal which we will write by writing a cap over S, okay this is called as the Hilbert 

transform of the signal S(t), okay. This would be the Hilbert transform of the signal S(t) and 

therefore, the signal that I am obtaining right after this analytic or this is you know after the 

multiplication by U(f) is called as. 
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If it is the complex signal this is called as the analytic signal, okay this analytic signal will have 

its Fourier components only in the positive frequency range, okay. So this is your signal 

1/2S(t)+j/2 Ŝ(t) this we will denote by writing at S+(t), okay this is not the completion to this 

S+(t) if I multiply by e
-j2πfct

. 
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Remember this is the second operation that I am suppose to do to covert the base band signal to a 

complex low pass equivalent signal, if I multiply this one then what I get is the analectic signal 

s(t) okay this is given by and if you know recall what s+(t) is   s(t)+ j  (t) right and then you 

have it the - 2π fct sometimes you know you do not multiplied by e/-j2π the other multiply by a 

√2 x e
-j
2π fct this is done. 

 

So I have scale up I am not done that one here but in some text some literature you will find in 

that the multiplication portion will have a √2 in the prefacer of e
-j
2π fct just so that the energies of 

the complex envelop signal will be equal to the energy of the original pass band signal I have not 

done that one okay now this is you  (t) called as the complex base band signal or sometimes 

called as the complex envelop okay. 

 

What is the significance of this complex envelop well the significance of complex envelop is that 

you have s(t) so let us write it down here itself what would be the mathematical way of obtaining 

s(t) how do I obtain mathematically what would be s(t)in how to obtain that one I need to simply 

remove this e
-j
2π fct so to remove that one I should be multiplying this s(t) by e

+j2π
 fct so when I 

multiply her this e
-j
2π fct and e

+j2π
 fct will cancel so that is gone. 



 

And I still have this part to recover this part can be recover by writing this as the real part of it so 

if I take the real part of it I simply obtain s(t) of course I what I obtain is ½ s(t) so therefore I 

need to multiply this one by a factor of 2 so I can go from this would be equal to s(t) so I can go 

from s(t) itself , you know I can go from s(t) itself which is a real valued signal so this follow is a 

real valued pass band signal. 

 

From this real valued pass band signal I can go to the complex envelop okay and then I can 

recover real pass band signal from the complex envelop band visor versa. 
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In practice or in you know in vides produce you do not normally write down s (t) as s (t) + j (t) 

rather than that you write down this  sδ (t) which is complex envelop as si(t) + sq(t) and call this 

si(t) as in face component and sq(t) as the quadrature component, whereas I mean what is that 

si(t)is actually the real part of sδ (t) and sq(t) is the imaginary part of sδ(t) to obtain this substitute 

what is  sδ(t) the complex envelop the complex envelop is there is   factor s (t) + j (t) time c-

j2πfct
. 

 



I am looking for the real part of this which means that I have to expand this c-
j2πfct 

and make this 

as cos2πfct-jsin2δfct multiplying s(t) + j (t).  et us forget about this   factor for now when I look 

for the real part of this I see that this would be s(t) cos2πfct that is because s(t) and cos2πfct 

would be the real number s(t) and -jsin2πfct would be complex of the f  they will be not be 

coming in with me  (t) j (t) cos2πfct will also imaginary therefore that will also go away this real 

operation +j and –j will be +1. 

 

So I get + (t)sin 2πfct so there is a ½ here this is equal to si(t) this is the in phase component what 

would be the imaginary component I do not have to do many more her I have already obtain the 

expansion here I just how to pick the imaginary component the imaginary components will be ½ 

 (t) cos2πfct and then there is a –js(t) sin 2πfct okay so this is your in phase component this is the 

quadrature component you can very well show that if I take fi (t) + jsq(t). 

 

I should be able to obtain this  (t) because that would implied multiplying this sq(t) /j here and 

that j will be there but jx-j will be + and then if you add them up clearly you would see that this 

would be equal to   of sδ(t) which is the complex representation. Well this is sδ(t)but what about 

s(t) this is the complex envelop but what about my real valued signal of s9t) can I recover it from 

this si + jsq (t) well I can because s(t) is given by two times real part of the complex envelop 

being multiplied by e
-j2πfct 

. 
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So if I work to just substitute for this s of s for s complex envelop here and write is as si(t) +jsq(t) 

and then write down this e
-j2πfct 

 I will be able to obtain what is s(t). so this would be si(t) 

cos2πfct and then jsq(T) cos2πfct
 
will go away but what the  real other part that you are going to 

get is jsq(T) x –j sin 2πfct –sq(t) this is the factor for 2 sitting here times sin2πfct okay the reason 

why I should get a – I mean –sin here because this is actually + right I forgot to put a + here cos 

sδ(t) here the complex envelop will have ae-j2πfct to overcome that one you will have e
+j2πfct

. 

 

So therefore this would be + so this would come out and what you get is s(t)now what is the 

significance of this all thing that we have discussed well you remember this iq modulator that we 

discussed in the laser module you found that you know you can write down the output has from 

cos πui (t/2bπ) x cos 2πfct or cos Ω st + cos π uq(t/2bπ) x sin Ω s(t)  right so those cos of πui(t/2) 

and cos of πuq (t/2bπ) or the in phase and quadrature components okay of the iq modulator these 

are the in phase and quadrature components. 

 

You might question that they do not look exactly like si(t) and sq(t) because there sis cosign 

function there but remember these are the outputs of the max ender modulator so you need to 

operate them or bias them at the minimum transmission points and assume that uy (T) is a small 



number. So you can have this you know you can remove all this cosign and then all this π/2bπ 

can be observe in to our constant to obtain Uy (t). 

 

Similarly you have to bias fitting such a way that you get a – sin here that can also be done by 

going to the other operating point and then remove this cos remove this  π/2b π this are the 

constant and you get a –uq(t). 
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The output of the iq modulator was ui(t) you know approximately +j uq(t) this was multiplied by 

e
j
 Ω st so it is possible to go from this you know it is actually what we have seen is that this iq 

modulator is actually implementing the iq representation of the signal s9t0 so by changing the in 

phase or the quadrature component or by modulating the in phase and the quadrature component 

it is possible for us to perform the iq modulation okay. 

 

So this is the significance of complex envelop we will meeting complex envelop we will meeting 

analectic signal when we discuss lasers and some of the properties of the lasers, so we will close 

this module write with understanding of complex envelop in the next module we will take up 



some concepts from signals which is required in order to understand digital communication 

fundamentals. Thank you.  
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