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Hello and welcome let us continue the discussion on optical amplifier and noises in the optical 

amplifier. Last time where we left we were actually trying to determine the auto-correlation of 

the current I(t) the photo current under the assumption that we have actually given some optical 

power to, and of course, if there is no optical power there would not be any photo current. And 

we ended up with an equation that looked like this. 

 

(Refer Slide Time: 00:36) 

 

 

 



 

We have two terms one term, you know had nk
2
 because k was equal to L and the other term 

corresponding to all the non-overlapping intervals. Now here is where we will use one of the 

Poison distribution formulas okay. The distribution is Poison and not a Gaussian distribution, 

because Poison distribution is well suited for photon counting applications and this is something 

that actually ties up to that one. 

 

The idea of a Poison distribution is that in a given time interval the probability that you actually 

receive n photons or, you know generate an electrons any n type, n such things is given by some 

e
-λ 

λ
n
/n! where λ is the average value okay. It turns out that for Poison distribution both mean as 

well as variance, both are equal to the average value λ or the value λ okay. So going back to that, 

if we consider all these n case as random variables which are Poison distributed okay. So these 

are Poison distributed random variables. 
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Then E[Nk
2
] which is the variance of this particular random variable Nk is given by λ(kΔt) okay. 

So λ evaluated at kΔt it is a non-uniform Poison distribution which means that it simply depends 



on time okay. And what about E[Nk] and Nl well these are actually the ones which are 

independent Poison random variables. Therefore, their expectation would be slightly different. 

 

So the expectation here would be that E[Nk] times E[Nl] so it would be independent variables, 

independent random variables, therefore they would be product of the individual variables so this 

is λ(kΔt) and this is λ(lΔt). So substituting these three into the equations that we have right, so 

you remember the two term equations that we have. 
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And simplifying what you get here is that E I(t1)I(t2) given the fact that you have some optical 

power is given by e
2
 integral λ(τ)h(t1- τ)h(t2- τ)d τ, where τ goes from minus infinity to plus 

infinity plus 2, because of this λ(kΔt) λ(lΔt) the result will be two integrals which when you 

integrate is going to be E I(t1) given that you have send some power, times E I(t2) given that you 

have send some power okay. 

 

Nut we already know what these are, remember these are nothing but Eλ and integral of that will, 

so there is going to be two times E of that one. So we can rewrite this second term as (eη/hμ)
2
 1 

eη/hμ coming from one expression the other eη/hμ is coming from the second one okay. And 



then you have two integrals, you have t(τ), h(t1-tou)dτ and P(τ)’, h(t2-τ)’dτ’. Now let us consider 

an ideal impulse detector. 

 

In this ideal detector scenario I have the pulse to be just an impulse function okay. So the pulse 

shape in that a current or an electron generates is given by the impulse function 𝛿(t) for which 

the integral scan now be simplified the mean value of the photo current that you are going to get 

provided that you have some optical input is given by e∫λτ h(t) – τdτ but I know that h is nothing 

δ function so δ (t) - τ as this property that it would shift the value of λτ out it would skimpily 

pick the value of λτ because that is where it will be informally that would be non zero right this 

is actually e times λ(t) that is it okay. 

 

But λ(t)  is nothing but p(η)p/hν so I can rewrite this e η/ νp(t) okay similarly if I look at the auto 

correlation it would be I(t1, t2) conditioned up on the fact that we have received some optical 

power and we can easily show that this is given by e
2 

η / hν p(t1) and a δ function that depends on 

the time difference between t1 and t2 that is δ(t- t1) + you have the second terms which is eη / hν
2
 

p(t1) p(t2) okay once you have. 
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Now we can remove the conditioning on the fact that we have received an optical power so we 

can remove this preconditioning that we have done okay and when we remove the condition you 

see the mean photo current I(t) that you obtained it is given by eη /hν
 
the mean optical power that 

you have received okay. 

 

We can rewrite as eη / h ν
 
time p bar where p bar (t ) is the mean optical power that is incident 

similarly e I (t1) I(t2) which gives you the auto correlation is given by e
2
η/hν

 
 and p bar (t) 

because the expectation goes on to that and δ(τ) where τ is defined as t2- t1 so τ is defined as t2 – 

t1 is the lag that we are considering okay + so we are considering 2 units time t1 and t2 and you 

can see that this you know is a function of the lag τ so you can write this as p
t
 which is the mean 

optical power times  δ(τ) the second term is e η /hν
 2

 p(t) and p(t+ τ) because t2 = t+ τ and there is 

an expectation sitting on to this one this exception let us call this Lp (τ) where Lp (τ) is the auto 

correlation of the optical power auto correlation of optical power over here okay. 

 

(Refer Slide Time:  07:07) 

 

 

 

Now this is mean we have auto correlation we have we can find what is called auto covariance of 

the photo current so auto covariance of the photo current I(t) is obtained by subtracting this 

equation okay which let us call this as one and subtracting two from 1 okay so if you subtracted 



2 from 1 what you get here is the auto covariance of the photo current and that turns out to be the 

auto covariance of this one turn which we can write it has LI(t, t+ τ) okay which is t1 and t2 terms 

it is e
2
 η / h ν

 
 expectation of p(t) δ(τ)+ (eη / hν

 
)
2   

 Lp(τ) okay so this of course would be the 

function which is just a function of the lag τ okay, now here is where we need to go back to what 

is the power that has been incident. 
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What power we have incident, remember the input signal power to the amplifier was S(t) which 

is given by √2P Cos 2Π(fc t +  θ ) okay where  θ was a random variable and then the power of 

course will be proportional to this, however to this output of the amplifier will have an addition 

to this one it will also have the noise component N(t) so this would actually be the total optical 

field that is coming out of the amplifier.  

 

So you will have this as the signal field and then you have the optical filed over here, so if you 

look at what is the power that is present you know like this is the one that is going into the photo 

detector correct this has been the filter so in the previous module N(t) we had written it has nF(t) 

we have simply renamed that one as N(t) because that is that filtered noise is assumed over here, 

okay. 
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The power that you are going to get here can be evaluated by looking at the magnitude square of 

this term and when you do that you see that this is a (√2P)
2 

and there is a Cos 
2 

(2Πfct + θ) so 

when you break that on into 1+Cos 2θ you are going to get a ½ that ½ factor will cancel with two 

and what you get is the power P in this term and here you get interestingly E(|N(t)|)
2 

where E is 

the expectation operator. 

 

It turns out that this is nothing but the auto correlation function of the noise process evaluated at 

a lag of 0 so this is RN(0) which would be the component or the average power that is coming 

because of the noise that is filtered noise okay, this is what you are going to get there are of 

course the other two components that is coming because of the signal noise and the noise-noise 

beating. So what would those terms be, to evaluate those terms let us look at this Lp(τ) which 

comes from taking the expectation of the power optical power that you have so P(t1)P(t2) where 

you remember that t2 – t1 = τ okay, when you write down this equation the total optical power 

that is coming in from this side will be the optical power, right. So that would be |S(t) + N(t)|
2 

where evaluated at t1. 

  



So it would be S(t) + N(t) you also have |s(t) + N(t)|
2 

evaluated at t2 so this is the optical power 

P(t1) this is the optical power P(t2). 
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When you do this product and I leave this as an exercise to you, you can it is a little bit of a 

tedious thing but I will put this as a assignment problem so you can solve for this one and see for 

yourself that this can be written as 2RN
2 

(τ) where RN(τ) is the auto correlation of the noise 

process plus you are going to get a term which is actually fluctuating at twice the frequency Fc 

okay twice the signal frequency. 

 

Plus you are going to get the beating term 4P RN(τ) Cos (2Πfct) which would be the band pass 

process sitting at Fc this is the one that is centered at Fc,  RN(τ) is the auto correlation of the noise 

process okay, substituting this LP(τ) into the equation for the auto covariance of the photo current 

you will see that this can be written as e
2 

η/ h ν [P + RN(0)] remember this was the one that 

actually came out from the short noise component. 

 

And this is P + RN(0) where is this shortness component located, this actually has a 𝛿(τ) function, 

right because it was 𝛿(t2 – t1) then the next term that you get is (eη/h ν)
2 

times Lp(τ) where we 



have looked at Lp(τ)  which have lifted as an exercise to you to show that here, okay. Because 

this term is varying a twice the frequency component 2fc so twice the signal frequency 

component this can be safely eliminated, okay. Now that we have eliminated that you can 

actually find out what would be the overall like the power spectral densities, so if you take the 

power spectral density of this process you are going to get SI(F) where F is the frequency so it 

would be e
2
η/hνP+RN(0) this term is independent of frequency. 

 

Remember, the Fourier transform is such a way that if you have δ(t) as the time domain function, 

time frequency domain or the Fourier transform is basically a constant, right so for all the 

frequencies it would be a constant. So δ(τ) Fourier transform is 1 so this is the term plus there are 

two terms one term is RN
2
(τ) and other term is the signal and noise beating, right the signal is 

Pcos2πfct the noise is RN(τ) so this fellow will be the signal noise beating or the signal 

spontaneous noise and then you have the spontaneous, spontaneous noise term that is beating, 

okay. 
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And the spontaneous, spontaneous emission noise process is given by (ηe/hν)
2 

which is coming 

from this one times 2RN
2
(τ), okay and the signal and the spontaneous emission term is given by 



(ηe/hν)
2
 and there is this 4PRN(τ) cos2πfcτ the Fourier transform of this one should be the Fourier 

transform of the noise SN(f) but that will be shifted by ± fc right, so you are going to get two 

terms one will be at fc, one will be at -fc so if you assume now the ASE noise of the optical 

amplifier has a power spectral density that is given by nsp(G-1)hν. 

 

Remember, this is for an amplifier having a gain G and a center frequency fc which is equal to ν 

having a spontaneous emission factor nsp this is the power spectral density this power spectral 

density will be two sided what we mean here is that over the bandwidth B0 which is centered at fc 

so this band width here is B0 the power spectral density here is given by nsp(G-1)hν, okay. There 

will of course be one more term at -fc so you are going to get over the same band width B this 

would still be the same value of nsp(G-1)hν. 

 

But when you shift them this is the power spectral density of the noise, but when you shift them 

to +fc and -fc, right. 
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By shift them up by those values the one that is at -fc will be shifted to the center, so if you now 

shift this one to SN(f)+fc this term will be shifted down to the base band level this term will also 



be shifted to the base band level and one term will be thrown out into 2fc and -2fc. So effectively, 

what happens is that this spectral density gets pushed into the lower frequency 0 frequency at 

which point you are going to put a electrical low pass filter having a band width Be, Be is 

considered to, I mean Be is taking to less than the optical band width B0 sorry, this band width is 

B0, right. 

 

So when you shifted down and then evaluate the total power by obtaining the area under the 

curve for this one you are going to obtain the total signal to ASE noise beating term. I am not 

going to show this one but you can again I will put this as an exercise for you, you can see that 

once you have transmitted it down then all that is required is to multiply this by a factor of 2 

times Be, okay.  

 

So when you do that the signal spontaneous variance you are going to get will be 4(ηe/hν)
2 

please remember that this is nothing but responsivity R
2
 G(G-1)Pin where Pin is the input power 

okay nsp h η times BE the optical band width will be sitting here right so this would be the optical 

band width and this area is not accounted for so this is at –B0/2 and b0/2 but is b is lower than b0 

and therefore this would be out, so this is the signal spontaneous. 
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The spontaneous noise process is actually slightly interesting and slightly more tweediest 

evaluate you see that this will have a Rn
2 

(τ), if you look at the power spectral density this turns 

out to be the convolution of sn with itself okay and you actually have rectangular shapes for the 

power spectral density when you convolve this with itself what you are going to get is a 

triangular shape okay. 

 

So you are going to get triangular shape you can do this for tour self the width gets extended 

from B0/2 to B0 to –B0 and the Amplitude here is N0
2
B0 okay and now you are looking again at 

the power that is contained within this band width within this –BE TO + be to find out this area 

under the curve you have to do some integration which I will leave as I said as an exercise to 

give you the spontaneous, spontaneous noise term which is given by 2(ηe/hn)
2 

no
2
B0 BE- BE

2
/2 

okay. 

 

Please remember that we have derive this under the condition that BE < B0 okay so for this 

condition you see that this is given by this and n0
2
 is the noise power that is actually sitting inside 

the optical short noise itself okay, so this is the way in which and n0 is basically given by nsp g-1 

x hn okay, so this is all that we wanted to talk about for this difference noise terms so it is 

important to look at what is happen to over the last two modules please remember that we have 

looked at the auto co relation or the auto co variance of the noise of the photo current. 

 

Photo current has a certain amount of noise associated with that and from there we were able to 

look at two terms one is the signal to spontaneous noise variance or you know that comes from 

this one and then you had another term that is coming from the spontaneous- spontaneous 

emission term okay, that is this fellow. 
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And finally you had a signal term okay, so signal terms was fairly simple and that came from the 

short noise component so when you actually look at what is the output of your amplifier noise 

you will see that you will have signal term you will have signal spontaneous as well as 

spontaneous noise beating okay. 

 

 

 

 

 

 

 

 

 

 

 

 

 



(Refer Slide Time: 18:49)  

 

 

 

So the total noise variants that you are going to get from this one will depend upon the short 

noise component okay the short noise component was given by Rn (0) +P okay and then you 

have the signal spontaneous term and then spontaneous – spontaneous term okay. Anything that I 

have missed over here I would again refer you back to the paper that we talked about R. Rama 

Swamy and P.A. Hamlet, so this paper in the appendix actually derives all this power spectral 

densities. 

 

Once we have this power spectral density we might be interested in finding out what is the effect 

of putting an optical amplifier on the signal noise ratio okay, to evaluate that one let us look at 

this situation okay we have some optical input to this okay and then there is an amplifier with the 

Gangy this optical input might if you give it to a photo detector will produce a certain photo 

current and therefore there will be certain signal to noise ratio here if you assume an ideal photo 

detector then the ideal photo detector will not introducing any noise but it will not introduce any 

this one but it will introduce a little bit of a noise but that noise can be characterized by looking 

at the input signal to noise ratio. 

 



If you now putting one more photo diode, okay, this photodiode would also produce a signal, 

okay.  The photo current which it is now because of the amplifier could be higher, but there will 

be a signal to noise ratio at the output. 

 

We define the noise figure, as the ratio signal to noise ratio input to the signal to the noise ratio at 

the output, let us quickly evaluate these two terms, okay. 
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If you just have a photo detector of course followed by some load resistor that you have and 

assume that the input signal is fairly large enough, so that this is short noise limited, okay. So if it 

is short noise limited, the signal power is given by R, which is the resposivity, times whatever 

the power with which you have coming with tight, so the input optical power is let say RPin , this 

is the photo current, photo current time square Rl give you the signal power, divided by noise 

spectral density or the noise power is given by 2q RPin, which is the photo current , times Be is 

the electrical band pass filter, okay. 

 

We are implicitly assuming that you have an ideal low pass filter, after the photo detector having 

the bandwidth of Be times, Rl, because this noise also gets dissipated in the load resistor itself, if 



you look at this would be the signal to noise ratio at the input which we are quantifying, clearly 

Rl will cancel with each other, and then one of the RPN cancel with one of the RPN, and then you 

get signal to noise ratio as at the input as RPin, which is the photo current divided by, 2qBe, that 

okay? 

 

R itself is given by ηq/h ν, times Pn/2qBe you can clearly see that this Q basically cancels with 

each of that, and then if you assume that this η =1, you get pn/2BE h ν, okay, so you can assume 

that this is given by 2 Be h ν, okay,  
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Now how about the signal to noise ratio at the output? Well signal to noise ratio at the output is 

given by, so at the output is given by the signal power at the output. Now the signal power as 

increased from Pin, the signal power as gone up so the optical signal that you are going to get at 

the output of the amplifier is G times Pin, G is gain of the optical amplifier, times Rl so this entire 

thing square times Rl , is the signal power at the output of the amplifier, divided by the total 

noise that is contributed by the, short noise as well as the amplifier noise. 

 



In the amplifier noise you have, signal spontaneous and spontaneous, spontaneous, if you neglect 

the spontaneous, spontaneous as being too small, then the dominant component is only the signal 

power, correct, and of course in addition to this there  would be the short noise process, with the 

short noise process, is fairly simple to see, this is given by 2q GR PIN, that is the signal power as 

increase now, BeRL is the short noise component, and signals spontaneous noise component we 

have seen is given by 4R
2
GPIN, ns P G-1 h ν, this comes from the previous one. 

 

Times Be, times RL so this is your signal spontaneous noise, term that has come in, and you can 

now cancels some of these factors and realize that this can be written as RGPIN  Rl cancels any 

way on both sides, divided by 4R, let us call this nsp G-1 h ν, as the power spectral density of the 

AC noise process, so this would be 4R ϱ ASE within a bandwidth of BE+2q BE, you can further 

simplify this equation, by looking at what is signal to noise ratio input is given by, RPin/2qBe 

okay, so you might actually rewrite this one. 

 

So Be on common both sides, you can write this a as RGPin/(2Rρase+q) Be can come out and then 

multiply and divide by q here, so if you multiply and divide by q , you are going to get RPin/q Be, 

there is a 2 factor of course, this is 2q and 4R, two factor is there, so these terms are Pin2 q Be is 

nothing but signal to noise ratio at the input. 
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So now taking the ratio of signal to noise ratio, the input to the signal noise ratio at the output, 

the noise factor or the noise figure can be simplified and written as q+2Rρase, just this term in the 

denominator divided by q times G, which can again be split into two terms into is 1+G+2R and 

Rρase can be written as G-1nsphν/qG, R can further be re written as R/q is nothing but η/hν and 

then you can consider an ideal photo detector with η=1 and the hν here cancel out with hν in this 

numerator and you get even more simplified expression of 1/G+nsp cannot be removed (G-1)/G. 
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If you assume G to be much larger than 1, which is what happens in practice, first term can be 

neglected and in this term you have G-1 which can approximately written as G and then you 

have a G in the denominator, there is an 2 in the numerator, o this will be again be equal to 1, 

then what you get is 2 nsp, so this noise factor  turns out to be two times nsp, nsp is the filling factor 

which is defined in the previous factor, given by N2/N2-N1 okay. In an ideal scenario N1=0, so 

that nsp=1, okay. 

 

And what you see here in the noise figure is that, this would be then equal to 2 times right, nsp=1, 

so 2*1 =2, so the signal to noise ratio at the output of an optical amplifier followed by a photo 

detector I actually only half the times of signal to noise ratio at the input. O you can see here that 

just because, we are putting an amplifier, it does not mean that only signal is getting amplified, it 

actually has an effect of having both signal as well as noise which worsens the signal to noise 

ratio. 
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And this worsening I by a factor of half in the best possible scenarios and half if you take the Db 

scale which turns out to be 3d, so even in a ideal kind of situation, your noise figure is still wore 

by a factor of 3Db. In practice you get a noise figure anywhere from 5 to 6 DB okay, and this 

complete are discussion of noise figure of the amplifier, In the next module we will putting up all 

the terms that we have look at, all the components that we have looked at and analyze what 

happens to the receiver side okay. 

 

We analyze the performance of the systems with or without amplifier, what could be the 

limitations of putting many, many amplifiers in the link, how should they be placed and then we 

will look at the statistics of the receiver signal. Thank you very much. 
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