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Hello and welcome to the course and optical communications in this module we will continue 

the discuss of the previous module we will apply the steps that we are outlined in the previous 

module to discuss and derive the optical modes inside an optical fiber okay we have spelled. 
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Out all the assumptions in the previous module so please go back and refer to those assumptions 

so the objective in the previous module at the end of the previous module was that we where 



about calculate the electric field and magnetic field pattern and we would be starting with step 

one which corresponds to having starting and noting done the Maxwell’s equations in the 

appropriate coordinate system because this is like an optical fiber which is cylindrical in nature it 

is easy for me to talk about the are easy for me to consider the cylindrical coordinates system 

cylindrical coordinate system is characterized by rØ and z coordinates. 

 

And the unit vectors along rØ and z in terms of those the curl equation is given by this particular 

expression so you have to you do not have to remember this you can look at it from any text 

book are any hand book of mathematics the curl of H I have used H in this example but you can 

you know that E also needs a curl equation so in that case substitute H with E okay so curl of H 

as three components rØ and z components and for your bad luck none of these HZ HØ HR   

components are 0. 

 

So every exits so welcome to complications simple way of remembering this if you where to 

Keene if you are Keene on remembering this is to think of this as the determinant which is given 

by r^ / r Ø^ and z^ where r^ is the unit vector along the radial direction Ø^ is the unit vector 

along the Azimuthal direction and z is the radial z^ is a unit vector along the z axis that is axis of 

the cylinder so you have those r^ Ø^ and z^ and this the expression γ/ γr stands for the partial 

derivative of with respect to r γ/ γØ is the partial derivative with respect to Ø and γ/ γz is the 

partial derivative with respect to z. 

 

So this is the curl of H step 1 right down Maxwell’s equations so I have written down curl of H 

having all these components but I know that curl of H on the right hand side is given J+ 𝛿D/ 𝛿t or 

because time derivative have been through out by converting into the phase form 𝛿/ 𝛿t becomes 

JωxD luckily for us J will be equal to 0 because there is no current inside an optical fiber because 

optical fiber is made out of dielectric region so the dielectric we are assuming it to be perfect 

dielectric no losses in the dielectric therefore this term will be equal to 0. 

 

So lucky for us J is not there but you still have JωD there is one further simplification that you 

can make with this equation you can say that this is JωεE and the value of ε will be different for 

the core and it would be different for the clad so this is for the core and this is for the clad where 



ε1 and ε2 are the relative permittivity’s but I also know that relative permittivity is nothing but 

refractive index square so I can write down this ε as ε0 n
2
 will substitute n = n1 for the core 

region n = n2 for the cladding region, okay.  

 

So anyway we will not make this substitution at this point but I just said that you can do this one 

slightly later we will do that one slightly later so I have on the left hand side of this expression 

given this complicated looking expression but the right hand side is jωεE but if we have to you 

know expand this E itself E will be r Er + Ø EØ + z Ez So you will actually have Er component EØ 

component and Ez component, right. 

 

Then you can equate the r component on the left hand side which is this expression to the r 

component on the right hand which is jω so if you multiply this whole thing by jω, jωε then jωε 

Er must be equal to this expression, okay. The one that I am showing here so this expression, 

similarly there will be a Ø expression or you know the component for the Ø that should be equal 

to jωε this should be equal to jωεE Ø, Ø^ of course, right. Because is the vector equivalence and 

this last one should be equal to jωεEz okay again ε should be different for coherent cladding that 

you have to keep in mind, okay. 
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So we have written down ∇ x H equal to this equation this is called as ampere Maxwell law then 

you also behave Faradays Law which is ∇ x E  = -  jωμH I leave this as an exercise to show, 

okay. So ∇ x E  again will have this same you know three variables in place of H you can simply 

replace E and you will have to equate this one to the right hand side in the right hand side you 

will have – jωμH, okay. So let me just write down it will take some time but I would like to just 

write down this one. So that you see all the equations at one side, okay.  
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So let me just write down this equations, so equating the r components I get 1/r ∂Ez /∂ Ø - ∂E Ø / 

∂z this should be equal to –jjωμHr now we introduce one more assumption, we will assume that 

no matter what the electric field or the magnetic field components are as a function of z they are 

given by e
-jβz 

they are characterized by a certain propagation constant e
-jβz 

therefore when you 

take ∂/∂z here right. 

 

On the z dependence what you are doing is you are simply pulling out this –jβ just as for the 

phase e
-jωt 

you look deal by ∂t and pulled out jω here you are pulling out –jβ so in that in the 

place of this -∂E Ø/∂z I can write – jβ times E Ø so this part can be re-written so I can re-write this 



equation I will write down here in the glue may be just to show the difference you get ∂Ez /∂ Ø + 

jβ E Ø this whole this is equal to –jωμHr. 

 

We do this simplification in other places as well, so the next equation that I get will be the Ø 

term which is jβEr + ∂Ez/∂r should be equal to jωμHØ okay and then you have the third equation 

which is the z component you get 1/r ∂/∂r r E Ø - ∂Er / ∂ Ø  this should be equal to – jωμHz you are 

not lucky enough to replace ∂Ez/∂r or ∂Ez/∂ Ø. 

                          

This should be equal to – jωμ Hz you are not lucky in off to replace 𝛿z/ 𝛿r or 𝛿ez/ 𝛿 Ø well that is 

the life you do not get everything that you want so these are the curl equation for the electric 

field or the faradize law there must be equivalent or there must be analogs equations for 𝛿 cross 

H as well which are any obtained from the top one right so what I will do is I will also leave this 

as an exercise to write down the corresponding terms to the H 𝛿 cross H = j 𝛿d/ 𝛿t I will start off 

with one expression you can fill in the remaining two so you will have 1/r 𝛿Hz/ 𝛿 Ø + jβH5 right 

so replacing e/H this should be equal to jω epsilon Er. 

 

So you can fill in these two what you do in the next step is that you need to express Er, EØ Hr H 

Ø in terms of Ez and Hz how do I do that well I have to try and you know equate couple of this 

equations right for example if I look at this one I know that Er is given here so if I look at this 

equation to the left hand side I have jβ Er there is 𝛿Ez/𝛿r right and then jωμH5 there is also one 

more equation here which is jω epsilon Er equation which involves at j5 term here and a Hz term 

here so if I can combine these two equations and substitute one in place of the other and simplify 

them then maybe I will be able to obtained a relationship for Er. 

 

Okay so I mean I can try doing this you can eliminate one with respect to the other so if I will 

just try it out now to see whether I can still do this analysis otherwise as usual I will leave this as 

an exercise to you it is not complicated you just have to look at one equation substitute for the 

other okay so let us, let us substitute for H Ø from this equation right, so from this equation let us 

substitute for H Ø let me re write that equations so I get jβH Ø is = jω epsilon r Er - 𝛿Hz/ 𝛿Ø so I 

can substitute for H Ø in this expression right so in this expression I can substitute so I get jβ Er +  

𝛿Ez/𝛿r =  jωμ for H Ø I can substitute jω epsilon r Er - 𝛿Hz/ 𝛿 Ø okay. 



 

So if you expand this out you get – ω
2
μ epsilon there is r Er right and then you have – jωμ 𝛿Hz/ 

𝛿5. 
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 I can pull this Er on to the left hand side so I get jβ + ω
2
μ epsilon okay there is an r Er here I 

hope that I have got the r Er components correctly so I do get r this whole thing times Er must be 

equal to – jωμ 𝛿Hz/ 𝛿 Ø there is also - 𝛿Ez/ 𝛿r okay so you get - 𝛿Ez/ 𝛿r if I take –j as a common 

factor or no maybe I do not want to take them as a common factor at this point, but I can write 

down this Er as –jωμδHz/δϕ-δEz/δr this whole thing so minus I can take out as a common factor 

so this becomes plus inside the brackets, so there is a –sign sitting out divided by jβ+ω
2
μεr, they 

are seem to be a small problem here because I am not expecting this r here, so I was not really 

expecting this one in that case maybe where I have made a mistake is to write down the 

simplification somewhere. 
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So you can actually go back to this equation there was jωε times Er here, and there was a 1/r 

term sitting there and this was δHz/δϕ+jβδHϕ, so maybe when we substituted this equation we 

gor jβHϕ=jωεrEr-δHz/δϕ. 
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So we can look at that equation and then maybe you know you will forgive me for this one. What 

I would like to give you is the final expression so and I would like to give this an exercise to you, 

the result for Er in terms of Ez and Hz is that you get –j/q
2
 there is βδEz/δr+ωμ/r δHz/δϕ where 

q
2
 is nothing but or q

2
 is given by ω

2
 με-β

2
, okay and we know that ω

2
ε defines the propagation 

constant k
2
 so this can be written as k

2
-β

2 
obviously in the core region k=k1 because this is 

nothing but the free space wavelength k0 times n1, right whereas in the clad region k=k2 which is 

k0 times n2 and clearly k1 is larger than k2 because n2 is smaller than n1, okay. 
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So these are some results that you will know and if you look at the way q should behave q would 

actually be positive in the core region and q
2
 would be negative in the clad region, because of 

this there will be an oscillatory solution here and because of this nature there would be an 

exponentially decaying solution as we will see later, okay. So this is just for Er where again I 

think I have made a mistake in multiplying the terms somewhere.       

. 
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You can just figure it out where I have made a mistake that might be a very good exercise for 

you, so leave this as an exercise to show that Er is given by this.  
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Similarly, you can look up the text book and find out expressions for Eϕ in terms of these 

components so I will give you the answer you can sit and verify this, okay so this would be 

β/rδEz/δϕ-ωμδHz/δr) similarly there will be Hr and Hϕ I am not going to write them you can 

look at the text book write which is the text book that we are following for the course, and this is 

page number 53 of the fifth edition. So all these formulas are taken from there, so you can look 

at the text book when you have some time, okay this completes our step 2. 

 

But what about step 3, well I need to know what is, the step 3 step 3 comes from solving hellhole 

equation that is. 
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(∇2
+k

2
)Ez or Hz=0, except that you now need to write down this ∇2

 in the cylindrical coordinate 

system, okay which again is a little bit of a problem  so you will have to get to the expressions 

for the cylindrical coordinate system I will just give the solution here, okay. Since we are 

applying ∇2
 to Ez and in this particular case it is not k

2
 which is, which needs to be evaluated I 

mean included but rather q
2
 because that would correspond to ω

2
με-β

2
, okay so because of that 

this would be q
2
, okay.  

 

In the case when you are assuming that Ez goes as e
-jβz

 okay, so alright let me just prove this one 

if you are little bit confused I can prove this one so let me write down what is ∇2 
applied to Ez in 

the cylindrical coordinate system so ∇2 
apply to Ez in the cylindrical coordinate system is another 

complicated expression bu this is 1/r ∇/∇r Ez so this is actually r Ez /∇
 
r so this is the r expression 

+ 1/r
2 ∇2 

Ez/∇
2 

+ ∇2  
Ez/∇z

2.
 

 

So this is the expression for ∇2 now
 to this if you add K

2
Ez I can add k

2
Ez and I know that ∇2/∇z2 

is 

nothing but –jβ
2
 because ∇/∇z pulls out –jβ again you pull out –jβ – and – is + so jx j is – so this 

is actually –β
2
right so to this if you add k

2
 Ez what you get is when you group the terms for Kz 



you are going to get k
2
-β

2
 x Ez that dependents on r and five still remains the same so this plus 

this equation and this is the reason why I said k
2
-β

2
. 

 

Because that is defend as Q
2 

I can replace this in to this expression okay so if I do this and then 

write down what is the resulting expression also after taking this double differential thing you 

know after differentiating this one partially with respect to r twice and you know simplifying this 

equation you get ∇ Ez / ∇r
2 

+1/ r∇Ez /∇ r + 1/ r
2 ∇2 

Ez /∇ φ
 2 

+Q
2 

Ez = 0 and we will get a similar 

expression for Hz as well so similar for Hz component. 

 

So this is the complicate equation that you are about to solve however the solution can be written 

in the form of well known functions if I recognize that φ is actually a periodic function right my 

solution is should periodic in five because if I change the azimuthally angle from say some value 

φ0 to φ0 + 2n π where n is an integer I should basically get back to the same point right it is like 

going around the circle and I am back on to the same point when I change this an indolent by 

change the angle by 2πradium thing. 

 

So I am so my solution so also should be periodic they have to reflect this periodicity around the 

cylinder when you go in the azimuthally direction so that kind of a constrained allows us to 

choose the solutions as some e
j
 so let me chose this one as some μφ okay where μ is an integer 

okay μ is an integer so my solutions is in terms of φ will be along e
j  

μφ okay, my solution in 

terms of z I know they are of the form e
-j β z 

the only thing which I do not know is what is the 

solution along r. 

 

Substitute this kind of a solution in to this expression so when you take ∇2 
/ ∇ φ

2 
this e

j  
μφ will 

pull out j
 
φ

2
 right which is nothing but –μ

2 
so I can go back and rewrite the expression or the 

wave equations here I can say ∇2 
Ez / ∇r

2 
+ 1/r ∇ 

Ez/ ∇r-μ
2 

/r
2 

+ q
2 

times Ez = 0 so this is all Ez so this 

is + so you get a slightly simplified equation okay. 

 

 

 

 



(Refer Slide Time: 21:11)  

 

 

 

And since this is only r function of r because for new constant value of new this entire term q
2 

– 

μ
2
 /r

2 
is just a function of r so I can remove this ∇2 

/∇ 
kind of a thing and go to total divert so I get 

d
2
 Ez / dr

2
 + 1/rdEz /Dr + q

2
 – μ

2
/r

2
 x Ez = 0 it turns out that the solution of this equation this 

equation is known as Bessel equation Bessel differential equation the solutions of this r of two 

kinds this is the first kind and there are two types of first kind solutions which are given as j and 

let us say some this one that one you need so this μ is the integer here j ν of some argument. 

 

So if I call these argument as u
2
 inside the core and w

2
 in the cladding, so u

2
 is the core and w

2
 in 

the cladding the solution will be of the form j ν (ur) and then there will be one more solution 

which is Nν (ur), okay, for the core solutions. And because in the cladding region this is defend 

as, rather I should define as the -w
2
. Because I would like to define i am anticipating the result 

that the solutions have to decay, for the solutions to decay out inside the cladding this argument 

q
2
-ν

2
/r

2 
 should be negative, okay, so that is given by negative w

2
 , okay, so because of that i get 

the solutions of the second kind. The second kind solutions are y ν (wr), and let say k ν (wr), 

okay. And if you look at how these equations behave, you will see that. 

 

 



(Refer Slide Time: 23:11) 

 

    

 

 If you sketch them as a function of the radial distance, this is how the solutions could behave. 

This is your J0 some arc, this is your J1 then you have J2, okay these are like damped sinusoidal 

excitations, and then if you look at “n” that is the cell function of the first kind but with “n” you 

will see that these are all going towards infinity or rather minus infinity at R=0, then the other 

solutions, namely Y and K the solutions for Y will go as exponentially decaying solutions. 

 

So these are the solutions and then for K you have exponentially increasing solution, okay, based 

on this nature it’s obvious, that if I want some guiding inside I have to choose these as the core 

notes, and I have to choose these as the clad modes and reject these because at R=0, I don’t want 

my field quantity to go to infinity, similarly my field quantity inside outside the cladding are not 

going to increase exponentially rather they would actually decay exponentially. 

 

So because of that reason we will choose in the core region oscillator solutions, in the clad region 

exponentially decaying solutions, okay,  
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So my expression for Ez=( r>a) that is to say, in the core will be given by some constant A 

similarly Hz(R>a) that is inside the core region, so this entire thing corresponds to core region 

will be another constant B in terms of their behavior inside the core there have to be special 

function of order ν ,first kind vessel functions ,order ν and the argument for that inside will be ν r 

and there will be e
j 
ν  ν is the integer e

-jβz
 ,okay. 

 

For the clad mode solutions the solutions must be Ez (r>a) and Hz (, r>a) ant this have to be some 

constants C and D, the constant C goes for Ez constant D goes for Hz, the argument here will be 

the same, it would be Yν (wr) because these are the one which have to be decaying, e
j ν 

 e
-jβz

 so 

okay, so these are the constants AB and CD which you need to determine. 

 

One very important thing before we entering this module is that the value of “u” which is, you 

know?  K1
2
-β

2
 that is given by k0

2-n1
2-β

2
 has to be positive, which means that k0n1>β, 

W
2
=β

2
-k2

2 
or β

2
-k0

2
n2

2
 has to be positive or rather the k2

2
 β

2
 has to be negative or w

2
 has to be 

positive, that is the solution. So for this reason be k0n2 should be less than β, so you will see that 

actually end up with the range of β, on the lower side you have k0n2 on the upper side you have 

k0n1 and the value of β will be any discrete fellow that would be lying between k0n2 and k0n1.
 



You can actually substitute apply boundary condition, I will not talk about the boundary 

condition here, the boundary conditions are for the tangential components at the boundary 

interface r=a that is Ez and Eϕ, please remember Er is not the tangential component at r=a, 

similarly you Have the tangential component Hz and Hϕ for the magnetic fields and all your 

saying is that these values in the core must be equal to these value, that is to say, the values Ez in 

the core and Eϕ in the core must be equal to Ez and Eϕ in the clad. I already have Ez, but then it 

is your job to find out Eϕ. 
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What is Eϕ find out that, similarly there will be equivalent results for Hz and Hϕ as well, the core 

Hz and Hϕ must be equal to clad Hz and Hϕ at the boundary. So you can apply the boundary 

conditions and to end up with the complicated equation for finding β, that equation is called as 

the characteristic equation which gives you the roots of β or also if you solve the characteristic 

equation, you are going to find the values of β. In the next module we will take up more 

properties. Thank you very much. 
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