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Hello. Welcome to another module, in this massive open online course on MMSE 

or Bayesian, MMSE estimation for wireless communication. So, we are looking at 

the MMSE estimate, of the wireless channel coefficient, of the fading channel 

coefficient h, based on transmission N pilots symbols. 
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If you denote the pilot by x bar, we have derived the expression, for the fading 

channel coefficient. And in the previous module, we have shown that, the estimate 

of the fading channel coefficient is h hat, equals, this is given as well, sigma h 

square, sigma h square, times, x bar transpose, into, sigma h square x bar, x bar 

transpose plus, sigma square identity, times, we have y bar, minus x bar h, plus x 

bar mu h, x bar times mu h, plus mu h. This is the MMSE estimate of the channel 

coefficient h, correct? This is the MMSE estimate, of the channel coefficient, 

MMSE estimate of your channel coefficient h. 



Now, what we going to do, is we are going to simplify this expression, to 

obtainable expression, which is much more simpler to analyze and basically, to 

derive insights from. So, we are going to simplify this expression. Now realize, 

similar to the wireless sensor networks in scenario, we can part with sigma h 

square, x bar, transpose, x bar, x bar transpose, plus sigma square, x bar transpose. 

Now I can expand this quantity. 
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Now this quantity, observe that this quality, I can expand it in 2 ways. I can either 

take x bar transpose common on the left, or I can take x bar transpose common on 

the right. So, if I take, if I extract x bar transpose on the left, what I am going to 

have, is this is x transpose, into sigma h square, x bar, x bar transpose, plus sigma 

square times identity, and this is, if I take x bar transpose common on the right, 

then what I going to have is, a basically I am going to have sigma h square, x bar 

transpose, x bar, plus, sigma square, times, x bar transpose.  

And naturally both this quantities are equal, because basically they are 

simplification of 1 and same thing. In 1 we are taking as x bar transpose, x bar 

transpose common on the left, in the other, we are taking x bar transpose common 

in the right. So, these are simplification of the same expression, therefore, these are 



equal. So, we also write this, mention this, clearly over here. Taking x bar 

transpose, common on left hand side, taking x bar transpose common, on the right, 

and these 2 quantities are therefore, equal. 

And therefore, what does this implies, this basically implies, now, what I am going 

to do, multiply both sides by sigma h square, first, multiply lhs and RHS by sigma 

h square. If you multiply LHS and RHS by sigma h square, we have sigma h 

square, into x bar transpose, x bar transpose, sigma h square, x bar, x bar transpose, 

plus sigma square identity, this is equal to, then sigma h square is a scalar, so it can 

anywhere. Sigma h square, x bar transpose, x bar, plus sigma square, times, x bar 

transpose. Now what I going to do, is I am going to take the inverse of this 

quantity, bring this quantity on to the right, I am going to take the inverse to this 

quantity, sigma h square x transposes x bar, bring this quantity on to the left, over, 

bring this quantity on to the left, over here. 
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So, now this basically, we can write, this implies, sigma h square, x bar transpose, 

sigma h square, x bar transpose, x bar, plus sigma h square, inverse times, sigma h 

square, x bar transpose, x bar transpose. This is equal to, take this inverse on the 

right, I have, well of course, I have to multiply by sigma h square, by. So, this has 



to be sigma h square. This should be equal to, sigma h square, x bar transpose 

times, sigma h square, x bar, x bar transpose, plus sigma square, times, identity 

inverse. And now what we see is this quantity. If look at this quantity, if you look at 

this quantity over here, this quantity, and if you call this quantity, as basically, let 

us say, this quantity you call it as star, and now you can see, this quantity here, is 

basically the same as star. That is sigma h square, x bar transpose.  

Sigma h square, x bar transpose, into sigma h square, x bar, x bar transpose (Refer 

Time: 07:05) the square identity inverse. Both these quantities are the same. 

Therefore, we can write, the MMSE estimate h hat can be equivalently written as, 

h hat. Now before we write the MMSE estimate, now, we will do 1 more 

simplification. Notice that, this quantity sigma h square x bar transpose x bar plus 

sigma square, this is the scalar quantity, notice that this is the scalar, correct? In 

fact, x bar transpose x bar, look at this, this is sigma h square, x bar transpose x bar, 

plus sigma square, that is equal to, sigma h square, the row vector x1, x2, so on up 

to xn, times a column vector x1 x2, so on up to xn plus, sigma square. 
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And now if you look at this, this is basically equal to, your sigma h square, times, x 

square 1, plus x square 2, plus so on up to x square n, plus sigma square, plus 



sigma square, and if you look at this, this is nothing, but summation x square, x 

square 1, plus x square 2, plus x square n. This is norm x bar square, correct? This 

is norm x bar square. So, this quantity is basically your, what is have shown is 

sigma h square, norm x bar square, plus sigma square. This is the scalar quantity. 

And there for now, if you take a look at this quantity here, I can write this as, 

therefore sigma h square, x bar transpose, x bar, plus sigma square, inverse, sigma 

h square, x bar transpose, equals, now this quantity is a scalar.  

So, the inverse is simply going to be reciprocal. So, this quantity is sigma h square, 

x bar transpose, divided by, sigma x square, norm x bar square, plus sigma square. 

And therefore, what we are saying is, this quantity is equal to your, sigma h square, 

x bar, x bar transpose, plus sigma square identity inverse, into sigma h square, into 

x bar transpose. 
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And therefore, the MMSE estimate implies your MMSE estimate therefore, the 

MMSE estimate we have is, h hat equals, sigma h square x transpose, divided by 

sigma h square, norm x bar square, plus, sigma square, times, y bar, minus x bar, 

mu of h plus mu of h. Therefore, the MMSE estimate is, h hat equal sigma h 

square, x bar transpose, divided by sigma x square, into norm x bar square, plus 



sigma square, times, y bar, minus x bar, into mu h, plus mu h. This is the 

simplified. 

Now, we are going to simplified further, now we going to simplified further. Now 

you look at this, I can write this in a form of sigma. I expand this, y bar minus x 

bar mu h, multiplying by the terms I can write this as a sigma h square, x bar 

transpose y bar, divided by, sigma h square, norm x bar square, plus, sigma square, 

minus sigma h square, look at this, x bar transpose, x bar, that is basically your, 

norm x bar square, divided by sigma h square, norm x bar square, plus sigma 

square, plus mu h. 
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Now, look at this. We have, minus sigma h square, norm x bar square, divided by 

sigma h square, norm x bar, plus, square plus mu h. Now I can write this as 

simplified this as, sigma h square, x bar transpose y bar, divided by sigma h square, 

norm x bar square, plus, sigma square, minus, look at this, sigma h square norm x 

bar square, norm x bar square, minus, mu h, minus, you will have, well what do 

you have? You have, sigma h square, of course, there is also norm x bar square, 

into a mu h over here. So, sigma h square, minus sigma h square, norm x bar 



square mu h, into mu h, and when you take this mu h, that will give you minus, 

sigma h square. Let me just write this as a separate term.  

So, let me just write this as, let me just simplify this as, plus, mu h, let me just 

write to explicitly, mu h minus, sigma h square, norm x bar square, plus sigma 

square, numerator you have sigma h square, norm x bar square into mu h. And now 

you can see what happens when we simplify, this when we simplify this, what we 

have is basically, we have sigma h square, x bar transpose, y bar divided by sigma 

h square, norm x bar square, plus, sigma square, plus, divided by, sigma h square, 

norm x bar square, plus sigma square, mu h into sigma h square, norm x bar 

square, plus mu h into sigma square, minus mu h into, sigma h square, norm x bar 

square of course, these two terms will cancel. And what you have, here is basically 

net, now once you simplify, bring them in to a common denominator, what you 

will have is sigma h square, into norm x bar square, plus sigma square, into sigma 

h square, into x bar transpose, y bar, plus mu h, into sigma square. 
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So, this is the simplified expression that you have, sigma h square, x bar transpose, 

y bar, plus mu h, into sigma square, divided by sigma h square, into norm x bar 

square, plus, sigma square. 



Remember sigma h square is the prior variance of the parameter h. Sigma square is 

the prior variance of the noise the zero mean (Refer Time: 16:04) noise v. Now 

what we are going to do is divide numerator and denominator by sigma h square, 

sigma, sigma square. So, what we are going to do, divide, divide both numerator 

and denominator. Divide denominator and numerator by sigma square, by the 

product sigma square, sigma h square, and therefore, what we will have is, h hat, 

that is the MMSE estimate h hat, this is equal to, you will get what you will get is 

basically, x bar transpose, y bar, divided by sigma, sigma square plus, mu h divided 

by sigma h square, divided by 1, divided by sigma h square. 
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So, basically you will get, 1 divided by, norm x bar divided by sigma square, that is 

the first term. Norm x bar square, divided by, plus 1, divided by sigma h square, 

and I can simplify this further, just by the last step I can write this as, your h hat 

equals, x bar transpose, y bar, divided by norm x bar square, divided by sigma 

square, by norm x bar square, plus, mu h by sigma h square, divided by 1, by sigma 

square, by norm x bar square, plus 1 divided by sigma h square. 

What we are saying is this is the final expression, simplified expression. And I am 

going to explain, what is the intuitive meaning behind this. Similar to what we 



have to seen in the case of the, wireless sensor network. What we have is a very 

beautiful interpretation for this expression. Now if look at this, the various 

quantities, so let us look at this is. What is this is? The simplified expression for the 

MMSE estimate of the channel coefficient h, this is the simplified expression, for 

MMSE estimate of the channel coefficient h. Simplified expression for the MMSE 

estimate of the channel coefficient h. 
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And now if you look at this look, at the all the quantity that have involved, we have 

x bar transpose, y bar, divided by norm x bar square, which is basically the same as 

x bar transpose, y bar, divided by x bar transpose, x bar, and you can see that this is 

the Maximum Likelihood estimate of the channel coefficient h. Some of you might 

not be familiar with this concept of Maximum Likelihood estimation, if you have 

not done the previous course, but anyway, does not matter. This is the same 

estimate, that is derived from the, based on the principle of Maximum Likelihood 

estimation of the channel coefficient h. So, this is the ml, or Maximum Likelihood, 

or ml estimate Maximum Likelihood or ml estimate of the channel coefficient h. 

And what is this other quantity? Remember there is other quantity, sigma square, 

divided by norm x bar square. So, this quantity, we are saying, the ml estimate, this 



is the MLE, not this quantity, this quantity is the MLE, Maximum Likelihood 

Estimate. This quantify sigma square, divided by norm x bar square, this is the 

variance of the MLE. This quantity is the, this quantity equals, variance of 

Maximum Likelihood. This quantity is a variance of the Maximum Likelihood 

Estimate. And now, what is mu h? mu h is prior mean, and sigma h square is, prior 

variance, and this is also what know, this is the mean, remember we said h, the 

parameter, unknown parameter h, is random Gaussian in natures, its random in 

nature, it is distribute as, it has a Gaussian distribution prior Gaussian, prior density 

is Gaussian, it has mean mu h, and variance sigma h square, so mu h, equal to the 

prior mean, and sigma h square, equal, equal to the prior variance. 
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Therefore, we also have a another beautiful interpretation of the maximum law of 

the MMSE estimate, that is the ML Estimate, Maximum Likelihood estimate, by 

the variance of the Maximum Likelihood estimate, plus prior mean, divided by 

prior variance, divided by 1 by variance MLE, plus 1 by prior variance. So, what is 

this? This is that the mse estimate, this is the. So, what does this say, the MMSE 

estimate, is basically a linear combination of the Maximum Likelihood estimate, 

and the prior mean, that is mu h, in the inverse ratio of their variance. So, this is the 

beautiful interpretation. 



And you can see there is several interesting implication of this. For instance, let us 

say, the variance of the MLE, variance of Maximum Likelihood estimate, is very 

small, it means it tends 0, implies, you can look at this, the variance of MLE is 

very small, then 1 by variance of MLE, 1 by variance of MLE, this quantity tends 

to infinity, therefore, you can see, this MLE by variance of MLE, this, this is the 

dominant quantity in the numerator, and 1 by variance MLE, is the dominant 

quantity in the denominator. 
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So, therefore, h hat tends to this quantity, MLE divided by variance of MLE, 

divided by 1 by variance of MLE. So, in fact, h hat tends to, in this scenario, h hat 

tends to simply the MLE, divided by the variance of MLE, divided by 1 by 

variance of the ML Estimate which is equal to the ML Estimate. And that is the 

very beautiful interpretation what we have, is when the variance of the Maximum 

Likelihood is estimate is very small, that is tending to 0, or in other words, it is 

very small in comparison to the variance of the prior, that is basically what we are 

saying, is sigma square, divided by norm x bar square, is very small in comparison 

to sigma square. This is the condition. Variance of MLE tends to 0, implies 

basically your sigma h sigma square, divided by norm x by square, is much smaller 

than the variance of the prior. 



On the other hand, if on the other hand, you can see, if sigma h square, the variance 

of the prior, is much smaller than the variance sigma square, divided by norm x bar 

square, then what happens? In this case, sigma square divided by norm x bar 

square, is the variance of the Maximum Likelihood Estimate. Now in this case, you 

can see something equally interesting, in this case the opposite happens, in this 

case, 1 over prior mean, over prior variance for 1 over prior variance is very small. 

So, prior mean, over prior variance is very large, in comparison to MLE, divided 

by the variance of MLE. So, this quantity became dominant, in the denominator 1 

over the prior variance, became dominant.  

So, therefore, what we have, this implies, h hat tends to. In fact, prior mean divided 

by, prior variance, divided by 1 over, equals prior. In fact, it tends to prior variance, 

if sigma x square, if this quantity basically, tends to 0. Or the prior variance is very 

small. So, we have two interesting scenario. What means, what, what we have is, 

the prior variance is very small, if prior variance is very small, then sigma h square 

is very small, which means that prior mean, which means that the parameter h has 

the very small variance, around the prior mean, that is mu h. So, to high degree of 

accuracy, the prior, the parameter h, is very close to the prior mean mu h. That is 

what sigma x square close means therefore; the optimal MMSE estimate is in fact, 

the prior mean itself. 

On the other hand, when you have sigma h square, or, or when you have sigma 

square dived by norm x bar square, is very close to 0, that is the variance of the 

Maximum Likelihood Estimate is very small, that mean, that basically, with the 

very high the degree of probability, or with the very high degree of accuracy, the 

parameter h, lies very close to its ML Estimate, that is x bar transpose, y bar, 

divided by norm x bar square. So, in this case, it converges to the Maximum 

Likelihood Estimate, x bar transpose, y bar divided by norm x bar square. So, that 

is the implication that is the practical implication and the inside, the meaningful 

inside that you obtain from this. 
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So, what you have is basically MMSE, is the weighted linear combination, of the 

ML Estimate, and the prior mean, and the weights are basically inverse, the 

weights are given by the inverse of the variance, which means the variance is large, 

the weight is small. So, naturally that is very intuitive, because if the variance is 

large, that means, there is a lot of inaccuracy, hence the corresponding weight has 

to be very small. And that is the real reason behind combining these two, in the 

inverse ratio, of their variances alright. So, that is the important thing.  

And now, another small point, what do we do, when the quantity x bar, y bar, and h 

are complex quantities? When x bar comma y bar are complex, what do we do n 

this scenario, then the MMSE estimate, h hat is also going to be complex, h hat is 

going to be, all we have to do is replace by the transpose by the Hermitian. So, we 

going to have the MMSE estimate, is x bar Hermitian, y bar, divided by norm x bar 

square. So, nothing changes, except the transpose is replaced by the Hermitian, 

plus mu h divided by sigma h square, and of course, the denominator remains the 

same. 1 by sigma square, divided by norm x bar square, 1 by sigma h square. So, 

that is the expression for the MMSE, at this estimate is going to be complex. This 

estimate is going to be, this estimate is going to be a complex quantity, h hat going 

to be a complex quantity. 



So, that is what happens, when the, for the MMSE. There is a leaner weighted 

combination of MML, ml and MMSE estimate, in the inverse ratio of variance. So, 

let me also write that down. Linear combination of, so this is the linear 

combination of ML, and MMSE, combination of MLE, comma prior mean, in 

inverse ratio, of in inverse ratio of, of their variances. So, this is an important 

principle to keep in mind.  

So, linear combination of the ML Estimate Maximum Likelihood Estimate and the 

prior mean in the inverse ratio, of their variances. So, that is the important part, 

alright? Let us do a brief examples, let us do a small example, to understand this 

better. Let just do a small example. So, let me do a small example, for this, channel 

estimation, considering complex symbols. Consider x bar, pilot vector, equals, 1 

plus j, 1 minus j, 2 minus j, 1 plus 2 j, y bar, equals, what is a our y bar? y bar is 

equal to, y bar is equal to, 3 plus 5 j, three plus 5 j, minus 5 minus 3 j, 2 plus 3 j, 

minus 3 minus 2 j, what is x bar? x bar is your pilot vector. 
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And you can clearly see, there are, pilot vector is four cross 1, implies there are N 

is equal to 4 pilot symbols, there are N is equal to 4 pilot symbols. Now y bar, this 



corresponds to the received symbols. This is vector of received symbols. This 

corresponds to the vector of received symbols. 

Therefore, we have, the channel coefficient h, is proportional to the complex 

normal, let say channel coefficient h is distributed as is the prior density, is 

complex normal which mean, at 1 plus j, variance 1. So, what we have is this is 1 

plus j, this is mu h, sigma h square, equals, 1, mu h equals, 1 plus j. This is the, 

what is this? This is the prior distribution. Since we are considering the complex 

scenario, the channel coefficient x is complex, it prior mean is complex, that is 1 

plus j, and the variance sigma h square, is equal to 1. We are considering a complex 

channel coefficient estimation scenario. 
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And we have already seen what is expression, the expression is so let the noise 

power, we need some other parameter. Let the noise power, sigma square be equal 

to, 3db, that implies, 10 log 10 sigma square, equals, 3 implies sigma square, equal 

to this, implies sigma square, equal to 10 power point 3, approximately equal to 2, 

The noise power sigma square, approximately equal to 2. 



Next we want to find, what is this quantity x bar, Hermitian y bar, x bar Hermitian 

y bar. Remember for Hermitian of a matrix, you have taken the transpose of a 

matrix, and the complex conjugate of every element. So, column vector x bar 

becomes row vector, and you take the complex conjugate of every element. So, that 

becomes, 1 minus j, 1 plus j, 2 plus j, 1 minus 2j, into 3 plus 5j, minus 5, minus 3 j, 

2 plus 3j, minus 3 minus, minus 3 minus 2j, and what is this going to be? This is 

going to be, you can calculate this, and this is going to be 6j. 
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And the other quantity vd is norm x bar, square norm x bar square equals, 

magnitude 1 plus j square, this is magnitude 1 plus j square, plus magnitude 1 

minus j square, plus magnitude 2 minus j whole square, plus magnitude 1 plus 2j 

whole square, which is equal to 2 plus, 2 plus, 5 plus, 5 plus, which is equal to 14. 
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And therefore, our ML, or MMSE estimate, h hat, equals, lets write this expression 

again, once, x bar Hermitian, y bar, divided by norm x bar square, divided by 

sigma square, by norm x bar square, plus the prior mean, mu h, divided by sigma 

square, divided by 1 by, sigma square, divided by norm x bar square, plus 1 

divided by sigma h square, which is equal to, now substitute the varies quantity 

that we have calculated above. 
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This is equal to 6j divided by 14, divided by well, 2 divided by 14, sigma square is 

2. Norm x bar square is 14, plus mu h, is remember 1 plus j, divided by sigma h 

square, which is 1. 1 by, sigma square divided by norm x bar square that is 14, plus 

1 divided by 1, that is sigma h square, and this is equal to, 3j plus 1, plus j, divided 

by 8, equals 1 plus 4 j, divided by 8. 

What is this? This is the MMSE estimate of the channel coefficient h. This is the 

MMSE estimate of the channel coefficient h. So, you have considered a simple 

example, and derive the MMSE estimates, the channel coefficient h. So, we have 

done and just to summarize, in this module, what you have done is, we have 

simplified the expression of the MMSE estimate of the channel coefficient h, for a 

wireless communication scenario, derived previously. We have given an in intuitive 

interpretation, a nice intuitive interpretation, for this expression of the MMSE 

estimate of the channel coefficient h, and finally, we have demonstrated how to 

compute this MMSE estimate, using through a simple example.  

So, we will close this module here, and we look at other aspect in subsequent 

modules. 



Thank you very much. 


