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Hello welcome to another module in this massive open online course on Bayesian 

MMSE estimation for wireless communications. So, far, we have looked at how to 

compute the MMSE or the minimum mean squared error estimate with the parameter and 

the observation are jointly Gaussian. So, now, let us look at the application of that 

principle in the context of a wireless sensor network. So, what we want to do today is we 

want to look at an application of the MMSE estimation. So, the application we want to 

look at an application of the MMSE estimation principle in the context of a, in the 

context of a wireless sensor network. 
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So, we want to look at an example of MMSE in the context of a wireless sensor network 

or WSN. 

Now, what we have in a wireless sensor network, we have already seen a model for this. 

What we have is we have several sensor nodes which are communicating with the fusion 

sensor. So, we have a several sensor nodes for instance this is a sensor node, but 



typically we do not have a single (Refer Time: 1.51) sensor node, but rather we have 

several sensor nodes which are communicating or sending their. So, all these are small 

circles are the sensor nodes which are sensing their sending their measurements to a 

fusion center or what is known as in a wireless center wireless sensor network this also 

known as a cluster head, which is basically cluster head means it is the head node of this 

cluster of sensor nodes. Fusion center means it is basically the center which fuses the 

measurements from the different sensor nodes all right, this is also known as fusion 

center in the signal processing context in a networking context it is also known as a 

cluster head of the wireless sensor network. 

So, now what is the idea this is the schematic diagram. So, what does this, this is the 

schematic diagram of a wireless sensor network, wireless sensor network which we are 

abbreviating by WSN remember whenever OK, this is the abbreviation WSN for a 

Wireless Sensor Network. We have a schematic diagram of the wireless sensor network, 

what these different sensor nodes are doing are these are basically trying to measure a 

parameter h. So, consider the measurement of parameter, this parameter we are going to 

denote by h. 

(Refer Slide Time: 03:18) 

 

So, that is our parameter and this parameter can be anything for instance in a wireless 

sensor network typically you measure parameter such as the temperature or the pressure, 

can be anything, pressure or for instant for that matter the humidity; the wireless sensor 



networks have several applications all right. So, the moisture content of the soil and so 

on. So, there are several applications where wireless sensor network can be used such as 

(Refer Time: 4.09) agriculture weather monitoring etcetera. So, there are different 

parameters one can measure the temperature pressure etcetera. So, h denotes the 

parameter. So, we are denoting by h the parameter that is been measured. 

Now, each sensor makes a measurement; obviously, that measurement is going to be 

noisy all right, that is the point of the estimation because you have noisy measurements 

or noisy observations all right. So, we have the observation let say at kth sensor, we have 

y k equals the parameter h plus v k. So, we have the parameter, we have your parameter 

and then you also have v k which is your noise which is, which you are going to assume 

as Gaussian with means 0 variance equals sigma square which means basically expected 

mean 0 means basically your expected value of v k equals 0 variance equals sigma 

square means basically expected value of v square k since we considering the real 

parameters the real noise. 
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If its complex then we have to write expected value of magnitude v square, sorry that is 

not 0, that is basically your sigma square. Now h is the parameter, now in this context we 

are going to assume h is a Bayesian parameter that is a random parameter; remember 

there are 2 different settings this is the Bayesian MMSE setting therefore the parameter h 

is random in natures more specifically in this context since we are considering a 



Gaussian estimation scenario we can consider the parameter h to be Gaussian with a 

certain mean and a certain variance which I am going to shortly write down. 

So, h is a Gaussian parameter, very simple this is a Gaussian parameter, everything is a 

Gaussian. So, this is a Gaussian parameter with expected value of h equals mu h, 

expected value of h minus mu h square equals sigma h square. So, mu h what is this? 

This is basically the mean of the parameter and what is this? This is the variance of mean 

of the parameter and this is the variance of the parameter. So, now, what we have done, 

we have modelled a single measurement this y k you have not written this down this y k, 

this is your measurement. Now what we have is we have measurement y k equals the h 

the parameter plus noise v k, but of course, we will not have a single measurement rather 

will have a group of n measurements that is y from because we have the n sensors. Let us 

say correct in the sensor network we have many sensors, let say we have n sensor 

therefore; naturally we will have n measurements. 
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So, we consider a WSN with capital N sensors which imply that there are n 

measurements. So, the n measurement can be denoted as y 1 equals h plus v 1, y 2 equals 

h plus v 2, so on y n equals h plus v n. So, these are your n measurements. So, these are 

the, these are your n measurements and measurements of the same parameter mind you 

that is important to keep in mind is n measurements of the same parameter.  

So, your multiple measurements of the same parameter from which you are trying to 



estimate this parameter h; obviously, as the (Refer Time: 8.48) number of measurements 

increases we expect the estimate of the parameter to improve correct if you take more 

and more measurement all right; that means, we expect by using this more by using this 

larger number measurements we expect to improve the estimate accuracy. Naturally that 

is the point behind taking more measurements or that is the point. In fact, behind having 

a large number of sensors in the wireless sensor network, so one has to keep that in mind. 
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So, now we have, I can write this in the form of a vector, your observation vector y 1 y 2 

so on up to y n. This is your observation vector, this is equal to the vector of all once, this 

is equal to the vector of all once times h plus the noise vector, v 1 the vectors are n 

dimensional naturally because you have n sensors and n measurement. So, this is now 

your observation vector. This is your vector of all once which you are going to denote by 

1 bar, this is the vector of all, this is the vector of all once and this is your, this is 

basically your noise vector. This is v bar which is your, this is v bar which is your noise 

vector. This is the noise vector that is fine. Now let us look at this now v bar is Gaussian 

because the noise samples are Gaussian. So, v bar let us denote this by this is let say v 

bar. 
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So, if we can write this model, we can write this now naturally this is your observation 

vector that is y bar. So, I can write y bar equals 1 bar times h plus v bar. Now look at this 

this is a Gaussian vector, this is a Gaussian parameter all right, that is what you have 

assumed and therefore now if you look at this this is for parameter h is Gaussian, vector 

v bar is Gaussian, you are adding two Gaussian quantities therefore, the output y bar that 

is also Gaussian all right. Because of the property of the Gaussian random variable when 

you add two Gaussian random variables you get another Gaussian random variable. So, 

the output observation vector y bar that is also a Gaussian vector.  

So, this is a Gaussian vector. So, now, we have a scenario in which the observation is 

Gaussian that is y bar the observation vector is Gaussian the parameter h is also Gaussian 

therefore, now I can use the MMSE theory develop so far of estimating Gaussian 

parameter h from the Gaussian observation vector y bar. So, that is what I am going to 

do. Before that we are going to characterize the noise and this is important. I am going to 

assume the noise is basically, we already said the noise is 0 mean. We are going to 

assume the noise samples v 1 v 2 v n and this is going to be an assumption. We are going 

to often use v 1 v 2 v n. We are going to assume that these are IID Gaussian, where IID 

stands for Independent Identically Distributed. This is independent identically distributed 

Gaussian, what do we mean by that we mean that each v 1 v 2 v n are Gaussian, is 

Gaussian. 
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Now, also they are identical which means the expected value of each v l or v k is 0, 

expected value of v k square is sigma square that is what we already seen. And further 

this different v s are independent which means expected value that is if I look at expected 

value of v k into v l since they are independent, this will be equal to expected value of v 

k times expected value of v l. So, this is 0 this is 0, therefore, this is equal to 0, but mind 

you if k is not equal to l. So, expected value of v k in into v l is 0 if k is not equal to l of 

course, if k is equal to l this become the expected value of v k square which is sigma 

square that we already know, that is expected value of each v k the mean is 0 and the 

expected value of v square k equals sigma square. 
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Therefore, if we look at the covariance matrix of this noise, now, what we want to look 

at is the noise, what we want to look at is the noise covariance matrix and what is this? 

This is simply expected value of v bar v bar transpose which is equal to your expected 

value of. Now I am going to write v bar, v bar is your vector v 1 v 2 v n times the vector 

v transpose which is column vector transpose is row vector, v n.  

Now I can simplify this if, you can see if you now multiply this column vector by row 

vector what you will get is you will get expected value of v square 1. On the diagonal, 

you will get all the square elements v square 1 v square 2 and so on up to v square. On 

the off diagonal, you have v 1, you have v 1 v 2, and you have v 2 v 1. Now you can see 

if I take the expectation operator inside all, these elements are the diagonal elements 

expected value of v square 1 v square 2 so on. These are sigma square, all the off 

diagonal v 1 v 2 these are 0 all right if you take the expected addition operator inside. 
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And therefore, what I have is the covariance matrix, if I look at this that is sigma square, 

sigma square sigma square and the off diagonal elements are 0. So, basically this 

becomes sigma square times the identity and most specifically times the n cross n 

identity matrix. This is what is this, this is the covariance matrix of the noise vector v 

bar, that is expected value of v b v bar transpose this is equal to sigma square times 

identity this we already said is the covariance matrix, this is the covariance matrix of the 

noise vector. 

Now, further we are going to make another interesting and important observation which 

is also very natural and logical that is we are going to assume that the noise vector v bar 

and the parameter are independent or basically uncorrelated. Now of course, since they 

are both Gaussian uncorrelated also implies independent, one implies the other that is the 

un correlated implies independence and independence implies uncorrelated because it is 

Gaussian. So, at this also logical because the parameter comes from the environment all 

right this is based on for instance if you are trying to sense the pressure or temperature or 

so on and the noise all right, the noise is basically the noise the measurement noise which 

arise arises because of the, the thermal noise in the sensor equipment, the sensor nodes 

and so on. 
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So, it is logical to assume that these two quantities are noise. The noise and the, the 

parameter that will make sense are independent, because these arises from totally 

different effects one can say, so the parameter h. So, we have the parameter h. So, we 

have expected remember h minus mu h times v bar transpose this is the parameter minus 

of course, you are subtracting the mean, this is your noise vector. So, the parameter and 

noise vector are uncorrelated that is the important assumption that we are making this is 

also as we said logical parameter. 

And noise vector are actually they are independent, but here uncorrelated (Refer Time: 

19.24) because they both Gaussian. So, naturally if they are uncorrelated if follows that 

they are independent, they are one and the same. So, for that we are just going to say that 

they are uncorrelated which means the expected value that, that is the covariance 

expected value of h minus mu h times v bar transpose that is equal to 0. So, this is 

basically the frame work of estimation parameter estimation in wireless sensor network 

all right. So, now, let us proceed towards estimation of the parameter h from the 

observation y 1 y 2 up to y n that is our ultimate aim. So, now, what we have let us first 

compute we have y bar (Refer Time: 20:00) equals 1 bar h plus v bar. 
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So, let us now proceed towards estimation. So, I can calculate the expected value of y bar 

as the expected value of 1 bar h, sorry not h bar, 1 bar h plus v bar which is equals to of 

course 1 bar is a constant, 1 bar times expected value of the parameter h plus expected 

value of v bar. Now this we know expected value of h is mu h now this we know is 0 

expected value of. So, we have expected value of y bar is expected value of 1 bar h plus 

v bar which is equal to 1 bar into expected value of h that is mu h plus expected value v 

bar which is 0, because each expected value of the mean of each noise element is 0. So, it 

follows that the expected value of y bar equals 1 bar times mu of h, the mean of the 

observation vector equals 1 bar times mu of h. 
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Now, we want to find RYY, remember because that is the another quantity we need in 

the MMSE estimation that is expected value of y bar minus mu y bar times expected 

value of y bar minus mu y bar transpose that is r y, that is the covariance matrix of the 

vector y bar. So, we need expected value of y bar minus mu bar y, this is you can say as 

the mean of y bar times, y bar minus mu bar y transpose. What is this? this is the 

covariance, this is let me right it properly this is the covariance matrix of the observation 

vector y bar this is also denoted by if you remember our notation also denoted by capital 

RYY which is equal to now let us substitute this. 
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First let us look at this quantity y bar minus mu bar y that is equal to y bar is 1 bar h plus 

v bar minus mu bar y, the mean of vector which is 1 bar mu of h correct that what we 

have derived, mu bar y is 1 bar mu of h. So, I have 1 bar in to h minus mu of h plus v 

bar. So, this is your quantity y bar minus mu bar y. 
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Now, therefore, expected value of y bar minus mu bar y into y bar it is slightly messy, 

but it is fairly easy actually to derive this thing, that is equal to I just have to substitute 

this terms expected value of y bar minus mu bar y is 1 bar h minus mu of h plus v bar 

into the product 1 bar h minus mu h plus v bar transpose. Now this is going to be equal 

to, this is equal to what we have over here this is now if I explain this let me write one 

more step 1 bar into h minus mu of h plus v bar times transpose is h minus, of course this 

is a scalar quantities. So, it does not matter h minus mu of h into 1 bar transpose plus v 

bar transpose. 
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Now, if you multiply it term by term what you are going to get is expected value of; let 

us look at the first term h minus mu h square, h minus mu h square times 1 bar 1 bar 

transpose of course we know this is sigma h square plus if you take the last two terms 

then you have expected value of v bar v bar transpose. This we know is sigma square 

identity now it remains to look at the cross terms that is the terms in the middle that is 

plus expected value of what we have h minus mu h into v bar into or we have 1 bar into h 

minus mu h into v bar transpose.  

Of course, we know that the noise and the parameter are uncorrelated that is equal to 0 

plus expected value of v bar into h minus mu h in to 1 bar transpose. Of course, we know 

that the noise and the parameter are uncorrelated. So, this is again the expectation is 

again 0. So, what we are left with is basically finally, we are left with only the first two 

terms that is the sigma h square times, sorry 1 bar into 1 bar transpose plus sigma square 

identity where sigma square is a noise variance, sigma square remember is the variance 

of each noise sample this is the noise variance.  



(Refer Slide Time: 26:07) 

 

This is the parameter, parameter prior variance, variance of the Gaussian parameter 

sigma h square. So, this is what this is my RYY which is observation covariance. In fact, 

it is a covariance matrix of the observation vector RY by which is expected value of y 

bar minus mu bar y into y bar minus mu bar y transpose which is equal to sigma x square 

times 1 bar 1 bar transpose plus sigma square times the identity matrix. 
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Now, we want to derive the next quantity that we need is the cross covariance that is 

expected value of h minus mu h times right y bar minus mu bar y transpose. This is equal 



to r h, y this is the cross covariance between the parameter and the observation. Now 

what we can do here is we have h minus mu h that we have anyway y bar minus mu y 

bar this is 1 bar into h minus mu h, remember y bar minus mu y bar is 1 bar into h minus 

mu h plus v bar transpose of this quantity that is equal to expected value of h minus mu h 

times of course.  

Now I have to take the transpose of this quantity 1 bar transpose into h minus mu h plus 

v bar transpose h minus mu h is scalar, that is why I have not I can just let it remain 

where it is equal to expected value of now split it into the components expected value of 

h minus mu h square into 1 bar transpose plus expected value of h minus mu h into v bar 

transpose. We know this is equal to 0 because the noise and the parameter are 

uncorrelated, while this we know not this were this quantity expected value of h minus 

mu h square this is sigma h square. So, therefore, this net quantity if you can now look at 

this which is also, very simple again nothing very complicated this is sigma h square into 

1 bar transpose which is RHY. 

(Refer Slide Time: 29:09) 

 

And therefore, now the MMSE estimate, remember MMSE estimate, now we have RHY 

we have RHA RYY. The MMSE estimate is given as recall that the MMSE estimate 

equals RHY cross covariance times RYY inverse times y bar minus mu bar y plus mu h 

and we know each of these quantities RHY. 
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We have calculated is one bar transpose time sigma h square. RYY is basically we have 

calculated that as sigma h square into 1 bar 1 bar transpose plus sigma square identity 

inverse into y bar minus mu y bar is 1 bar into mu h plus mu h. Let me just write it a 

little bit more clearly, this is equal to 1 bar transpose sigma h square sigma h square 1 bar 

1 bar transpose plus sigma square identity inverse into y bar minus 1 bar into mu h plus 

mu of h and what is this? This is therefore the MMSE now what we have is we have a 

neat expression for the MMSE estimate of we have an expression for the minimum mean 

squared error estimate of the parameter h. 

So, what we have done in this module is in something interesting. We have looked at 

how to use this principle of MMSE estimation in the context of wireless sensor network. 

We have considered a wireless sensor network with n sensors making n measurements y 

1 y 2 up to y n, the parameter h which is let us say any parameter that is either the 

temperature of pressure so on is assumed to be Gaussian in nature in the presence of 

Gaussian noise therefore, the observations are also Gaussian.  

Now from this Gaussian vector, we estimate this Gaussian with Gaussian parameter h we 

calculated the covariance matrix of the observation vector, we have calculated the cross 

covariance between the observation and the parameter and now we have developed the 

MMSE that is the minimum means squared error estimate of this Gaussian parameter h 

in the wireless sensor network. Now, if you notice this expression is slightly unwieldly 



all right, it slightly messy it is a long expression what we are going to do in the next 

module is to develop a more is to simplify this further and development nice in intuitive 

a nice more simplistic expression and also which conveys more meaning also which 

yields a lot of intuition. 

Thank you, thanks very much. 


