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Lecture - 04 

Derivation of Minimum Mean Squared Error (MMSE) Estimate for Gaussian 

Parameter – part II 

 

Hello welcome to another module in this massive open online course of Bayesian MMSE 

estimation for wireless communication. So, currently we are looking at the m MSE 

estimate of the parameter h and, from an observation y when the parameter h and 

observation are jointly Gaussian, and towards this end we have derived the joint density 

of this h parameter h and the observation y, and that is given by this quantity.  
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Given by this quantity that is shown here, that is done by previous module that is the 

joint probability density - The joint probability density function of the parameter y of the 

parameter h, and the observation y in the parameter h, and the observation y are the 

jointly Gaussian. 
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So, now as said before we need the conditional probability density function. I mean the 

conditional probability density function of in the parameter h, given the observation y, 

which is basically, as we have already said this is the joint probability density function of 

the parameter h observation y divided by the marginal probability density function of the 

observation y. And this now I am going to simplify by writing the exact expression for 

each. 
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So, first is the joint probability density function that we have already derived the 

expressions. so that is square root of 2 pi whole square 1 minus rho square, that is your 

determinant r, which is sigma h square sigma y square e to the power of minus half 1 

minus rho square sigma h square sigma y square h square sigma y square plus y square 

sigma h square minus 2 rho sigma h sigma y into h y divided by the marginal probability 

density function of y the observation y.  

We said the marginal probability density function of the observation y, y is Gaussian 

land of variable with means 0 variable sigma h square; therefore, this we all ready derive 

this marginal probability density function of the observation y, this is given as 2 pi sigma 

y square e to the power of minus half y square divided by sigma y square. And therefore, 

now I can simplify this first letter, simplify this quantity that is the multiply factor, this is 

under root 2 pi 1 minus whole square sigma h square and sigma y square divided by 

sigma h square. 
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So, this gives 1 minus simply 1 minus rho square times, it is gives 1 minus rho square 

times sigma, 1 minus rho square times sigma h square into multiplied by. This is a large 

term minus half of first, which is basically your 1 minus rho square sigma h square sigma 

y square h square sigma y square plus y square sigma h square minus 2 rho sigma h 

sigma y h y minus this quantity, minus y square divided by sigma y square all right. So, 

this is the quantity in the exponent. So, this is multiplied by this is the multiplication 



symbol, and this is the quantity in the exponent. So, this is the quantity in the exponent; e 

to the power of minus half times this quantity. 
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Now, let us simplify this quantity in the exponents. So, I want to first start by simplifying 

this quantity in the exponent, and then we can simplify the rest of the expression later. 

And this quantity in the exponent that can be simplified as follows. Let me just write it 

down, it is a bit cumbersome, but this is fundamentally important in MMSE Estimation. 

So, it is worth going through this derivation, at least once; that is h square sigma y square 

plus y square sigma h square minus 2 rho sigma h sigma y h y divided by 1 minus rho 

square sigma h square sigma y square minus y square divided by sigma y square.  

And this is then I can combine these two 1 minus rho square sigma h square sigma y 

square h square sigma y square plus y square sigma h square minus 2 rho sigma h sigma 

y minus y square into 1 minus rho square sigma h square; that is the term I will get over 

here. Now observe this quantity I have y square sigma h square, and if I expand this I 

will have a minus y square sigma h square. I will have a minus y square sigma h square 

coming from these two. So, that those two terms. So, this term will cancel with this part, 

and what I am going to be left with interestingly if you observe this is h square sigma y 

square. Something very simple this y square sigma h square cancels, what I am left with 

is y square rho square sigma h square. So, I left with y square rho square sigma h square 

minus 2 rho sigma h sigma y h y 1 minus rho square sigma h square sigma y square. 
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. 

And now if you look at this quantity in the numerator that is nothing, but, observe that 

this quantity is nothing, but h sigma y minus rho sigma h y whole square, because look at 

this is h square sigma y square plus rho square sigma h square y square minus 2 rho 

sigma h sigma y h into y. So, this is nothing, but h sigma y minus rho sigma h y whole 

square.  

And once we have that the rest is very simple, this is 1 minus rho square sigma h square 

sigma y square. and now take sigma y out common from the denominator and numerator 

that is sigma y square common from the numerator and denominator, what I am going to 

have is h minus rho sigma h by sigma y into y whole square divided by 1 minus rho 

square, because sigma h square cancels from the numerator and denominator, 1 minus 

rho square sigma h square. This is basically your quantity in the exponent. Quantity in 

the exponent will be e to the power of minus half times this. This is your quantity the 

exponent, therefore, now the conditional, putting all together. Remember we set out to 

derive the conditional probability density function of parameter h giving the observation 

y. 
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Therefore now the conditional probability density function of the parameter h given the 

observation y, conditional probability of density function this will be given has follows. 

This will be given as, this is the multiplying factor is 1 over square root 2 pi 1 minus rho 

square time sigma h square e to the power of minus half. Now you can look at this e to 

the power of minus half h e to the power minus half h minus rho sigma h by sigma y y 

whole square divided by 1 minus rho square sigma h square. So, this is the joint 

probability density function. Now, what I am going to do is, basically I am going to set 

this quantity as sigma tilde; that is I am going to define two new quantity sigma tilde 

equal or sigma tilde square equals 1 minus rho square sigma h square and mu tilde equals 

this quantity over here. I am going to set mu tilde, mu tilde equals rho sigma h by sigma 

y sigma y times y. 
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And now you can see something very interesting. now if I write this joint, if I write this 

conditional probability density function what I am going to observe is that; f of h given y 

of h given y equals 1 over 1 over, what you are going to observe is something very 

simple, 1 over square root 2 pi sigma tilde square e raise to minus half e raise to e is 

nothing, but expand, e raise to minus half h minus mu tilde whole square minus mu tilde 

whole square. And look at this, this is again your sigma tilde square divided by sigma 

tilde square. And now if you look at this, you will realize that this is a Gaussian 

distribution with mean mu tilde and variance sigma tilde square, and that is the 

interesting aspect of this. 

So, this is basically, again now when you see this, that this is you can see that this is 

basically a Gaussian distribution with mean equals mu tilde variance equals sigma tilde. 

Therefore, what you can say is that the posterior. remember this also known as the 

posterior, the conditional probability density function of the parameter h given the 

observation y this is also the a posterior probability density function. This is Gaussian, so 

h given y h given y is basically Gaussian distributed with mean mu tilde variance sigma 

tilde square. 
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And therefore, now you can clearly see expected value of h y, and this is very straight 

forward, now you can see the expected value of h given y equals mu tilde which is 

nothing, but now you can see what is mu tilde. mu tilde is basically this quantity over 

here; that is your rho sigma h by sigma y times y, so this is your rho sigma h over sigma 

y times y. And indeed now we are found the MMSE estimate, because what is the 

MMSE estimate. MMSE estimate is the minimum mean squared error estimate, 

remember the optimal minimum mean squared error estimate; that is the estimate which 

minimizes the mean squared error, is nothing, but the expected value of the parameter h 

given the observation y. Therefore, this quantity mu tilde is nothing, but the MMSE 

estimate of h given y for that scenario when h and y are jointly Gaussian; that is 

something in mind. 

So, this is basically your MMSE estimate. So, let us also write that down clearly. It 

requires some manipulation, but the end result is very simple and clear. So, this says that 

the MMSE estimate h hat equals expected value of h given y equals rho sigma h divided 

by sigma y times y, this is the MMSE estimate of. So, this is the MMSE estimate h given 

y for h comma y; that is the parameter and the observation, when the parameter and 

observation are basically jointly Gaussian random variation all right. And now what is 

this point is sigma tilde square, this quantity, this is your mean squared error; this is the 

mean squared error. 
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So, this is the mean squared error, what is this. This is the expected value of the 

parameter h minus h hat whole square given of course, the observation y. And what is 

this quantity. This quantity you can see 1 minus rho square times sigma h square. So, this 

is the mean squared error. And something very interesting can be observed from this 

mean squared error. What is the interest thing that we can observe from this mean 

squared error? Consider two particular cases, if. So, let us write this as interesting 

observation. Consider the simple case, if rho equals 1. Remember the correlation 

coefficient rho we said can lie between minus 1 or 1. Now correlation coefficient of 1 

basically means y and h; that is the observation y and the parameter h are statistically 

identical, because the correlation is perfect; that is a correlation is the maximum value of 

one.  

On the other hand if rho is minus 1 there also statistically identical in different way; that 

is h is basically minus y and y is minus h. So, basically in both these cases we see; that is 

correlation coefficient rho is equal to 1, or the correlation coefficient rho is minus 1 rho 

square is equal to 1. Therefore, 1 minus rho square is 0 which means MSE is 0, and that 

is naturally true because if the correlation coefficient is 1, on observing y you know that 

h is identically equal to y. And when correlation coefficient is minus 1 on observing y 

you know that h is equal to minus y, so there is no error, in that sense the mean squared 

error is 0. When there is perfect correlation between the observation y and the parameter 

h, the mean squared error is 0, and that is the interesting implication from this derivation. 



So, rho is equal to 1 or for that matter minus 1, we have this implies 1 minus rho square 

equal to 0. So, this case, what we can see is in this case h is basically equal to y or h is 

basically equal to minus y, h can be perfectly estimated. 
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So, look we are saying is h can be, h can be perfectly estimated on y, since the 

correlation is minus 1 or 1. The correlation is 1 h is equal to y, if the correlation is minus 

1 h is equal to y h is equal to minus 1. Now consider the other scenario, if rho is equal to 

zero; that is implies the correlation between h and y is 0 implies 1 minus rho square 

equals 1 implies MMSE equals what is the MSE, you can see 1 minus rho square is equal 

to 1 MSE rho is equal zero, MSE simply sigma h square the mean squared error simply 

sigma; that is initial variance which is equal to, which is equal to initial variance of the 

parameter h. it means having the, because the correlation between the observation y and 

h is zero, the observation y does not convey any information about a. 

So, observation y cannot be used in any meaningful sense, to get an estimate on the 

unknown parameter h. Therefore, the variance of h; that is the there is the parameter h is 

sigma h square to begin with, even after making the observation y the variance of h 

means that sigma h square. Therefore, having observed y does not make any impact, or 

does not convey any information about the unknown parameter h. These are two extreme 

cases which interesting insights into the behavior of this MSE estimate. And now we can 

see for different values of rho between 0 and 1, and the variance 0 can go all the way 



from sigma h square; that is when rho is equal to 0 the variance is sigma h square. When 

rho is equal to 1 the variance is zero, and between when rho increases, as rho increases 

from 0 to 1 the variance decreases, or the MSE decreases from sigma h square to zero. 

So, that is the interesting observation that one can make from the MSE; the mean 

squared error per say, of this MMSE estimate that we derived from the jointly Gaussian 

scenario. 

So, now let us also simplify this MMSE estimate and the variance to give alternative 

expression, which are both convenient. So, we have already said, what have we already 

said? We have already said if you go back to our nomenclature, and if you look at our 

definitions. From our definitions what we have, is basically, we have that expected h 

square equals sigma h square. Let us denote this by r h h, expected y square equals sigma 

y square, let us denote this by r y y. just denoting this by the variance by r h h, and the 

variance of y by r y y, and the cross correlation between h and y. This we can denote by 

expected h comma by why we denote by r h comma. So, let me just repeat those 

definitions over here. So, that it becomes convenient. let us define your sigma h square 

as expected value of the parameter sigma h square equals expected h square sigma h 

square equals r h h. Let us define expected value of y square equals sigma y square as r y 

y. And let us define the expected value of h y which is equal to rho sigma h sigma y as r 

h r h y. 
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Now if you look at the MMSE estimate, the MMSE estimate is h hat which is the 

expected value of h given y, which is also you can see for this rho sigma h divided by 

sigma y times y. So, this is basically your rho sigma h divided by sigma y times y. And 

now I can simplify this has follows; that is rho sigma h sigma y multiplying and dividing 

by sigma y I have rho sigma h sigma y divided by sigma y square times y, which is now 

if you look at this, this quantity here, this is basically your r h y, and this quantity in the 

denominator basically your r y y. So, I can write this as something that is going to be 

helpful in our later discussion r h y times 1 over r y y, which is basically the r y y inverse 

times y.  

And this is a very interesting expression, because the same expression can be carried 

over also for the matrix scenario; that is when h and y r vectors. So, I can write the 

estimate h hat as r h y times r y y inverse times y. Now of course, when h and y are 

vectors the interest thing is I can replace r y y by the covariance matrix of y r h y by the 

cross covariance matrix between the parameter vector h and the observation. So, this is 

the very interesting way to write this, because is a very convenient expression to 

remember, and that can also be used in various other much more complicated scenarios, 

such as vector scenario, when y is a vector when h is also a parameter vector. Although 

the expression that we have derived which is rho sigma h divided by sigma y times y is 

equally valid, this is much more convenient and much more standard form to remember 

this expression. 
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And the expression for the MSE can be simplified as, so this is the expression for the 

MMSE estimate. And the expression for the MSE this can be simplified as follows. So, 

this is the expression for MMSE estimate and the expression for the MSE this can be 

simplified as follows this equal to 1 minus rho square sigma h square, which is basically 

your sigma h square minus rho square sigma h square. Now of course, this quantity here 

we already know what this quantity is. This quantity is r y y, so this is, I am sorry this 

quantity here is basically your r h h. So, this is basically r h h minus. Now this quantity I 

can write as rho sigma h times rho sigma h. Now, this quantity I will again manipulate as 

by multiplying and dividing by sigma y square rho sigma h sigma y into 1 over sigma y 

square into rho sigma h sigma y.  

Now you can this quantity is r h y, this quantity is here r y y, and this quantity here I can 

write it as r y h, because for the scalar scenario r h equals r y h which might not to be 

same as the vector scenario. In fact, r h y is r y h transpose for real vector. So, this is r h y 

into r y y inverse into r y h, and this is your convenient expression for the MMSE m s. In 

fact, this is not just the MMSE, but this is the MMSE this. in this case this is the 

minimum mean squared error, it is not just the MMSE, but for this particular scenario 

this is the MMSE; that is your actual minimum mean squared error. So, we have found 

two things; one, we have found the MMSE estimate; that is rho sigma h sigma y divided 

by sigma y square into y which is basically r h y times r y y inverse into y. And also we 

have found the actual value of this minimum mean squared error; that is the MMSE 

which is r h h that is sigma h square minus r h y into r y y inverse into r y h, this is your 

means squared error for this scenario. 

So, that basically completes this derivation where we have started with jointly Gaussian 

random variables h and y, where h is the random parameter, y is the random observation, 

we considered into the jointly Gaussian in nature. And following this we basically 

derived the conditional probability density function of h given y, using the joint 

probability density function of h and y, and the marginal probability density function of 

y, and basically from that we inferred the conditional probability, the conditional mean 

of the unknown parameter h given the observation y which is in fact, the MMSE 

estimate. And we have also found the mean squared error or rather in this case also the 

minimum mean squared error.  



So, we will stop this module here, and we will continue the other aspects in subsequent 

modules. 

Thank you very much. 


