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Lecture - 21 

Error Covariance Derivation and Example for Linear Minimum Mean Squared 

Error (LMMSE) Estimation of Multi-Antenna Downlink Wireless Channel 

 

Hello. Welcome to another module, in this massive open online course, and Bayesian 

MMSE estimation for wireless communications. So, far, we have looked at estimation 

LMMSE or MMSE estimation, of a vector parameter, content, we illustrated this in the 

context of the, multichannel, eh, multi antenna, downlink wireless channel estimation. 

And we have also shown an example, to illustrate its application. So, now, what we are 

going to do is, we are going to derive the error covariance for the estimation of vector 

parameter, again illustrating within the context of, multilateral downlink channel 

estimation. 
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So, in this module, we are going to derive the error covariance, error covariance of multi 

antenna LMMSE channel estimation, or we can also think of this basically as, we can 

also think of this as, error covariance for vector parameter estimation - Error covariance 

of vector parameter estimation. 
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When we know that the system model, for multi antenna, for this multi antenna downlink 

channel, is given as y equals X h bar, plus v bar. This is the model for the multi antenna 

downlink channel. This is our model for the multi antenna downlink channel, and the 

error covariance explanation for the error covariance, this is given as, error covariance 

that is your expected value of h bar, minus h hat. 
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So, this is your expected value of h hat, that is, error vector h hat, minus the vector h bar, 

times h hat, minus h bar transpose, and this can be obtained as, this is given as again, 



Rhh minus Rhy into Ryy inverse in to Ry. This is the expression, for the error 

covariance, of course, for a scalar parameter, we is, previously we had look at only a 

scalar parameter, for a scalar parameter this will be the error variance, simply the error 

variance. Now we are looking at a vector parameter. So, we have to consider the 

covariance matrix, of the estimation error. And that is what we are going to now find, 

what is the covariance matrix of the estimation error, that is expected value of h hat, 

minus h bar, times h hat minus h bar, transpose.  
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And now we know also we know each of these quantities. We know that Rhh, this Rhh, 

equal sigma h square, times identity, and we also know that, we also know that, Rhy 

equals, sigma h square, times, X transpose, Ryy equals, sigma h square, times XX 

transpose, plus sigma square times identity. And Ryy, where is identity, remember this is 

in n cross n, because X is n cross n, n cross n matrix. r , eh, we have look at now at Ryh, 

that is of course, expected value of, remember Rhy is expected value of, h bar into y bar 

transpose, Ryh is a different. This is the expected value of y bar, h bar transpose, which 

is basically transpose Ryh is transpose of Rhy. 
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So, this is basically your Rhy transpose, and indeed this is equal to sigma h square, X 

transpose, transpose of course, sigma X square is a scalar. So, this is simply sigma X 

square, X transpose - transpose is x, where X is, remember this is your pilot matrix. So, 

X is your n cross m, this is the n cross m, pilot matrix, now, therefore, substituting these 

quantities in this expression. 
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Substituting in this expression over here, what we have is that basically, your error 

covariance. Expected value of h hat, minus h bar, into h hat, minus h bar transpose, this 



is equal to, this is equal to, well, Rhh, which is sigma square, sigma h square identity 

minus, Rhy, which is sigma h square X transpose, Ryy inverse, that is sigma h square, 

XX transpose plus, sigma square identity, this is n crossed in identity matrix, times, Ryh 

which is sigma h square, times, simply the matrix x. 

So, that is expression that is expression that we have and now, we are going to simplify. 

So, this is the expression for the error covariance, correct? This is the expression, initial 

expression, for the error covariance, rather error covariance matrix, and remember this 

error covariance matrix, this is of size, because h is of size, is an m dimensional 

parameter vector, naturally, this will be of size m cross m, this is an m cross m error 

covariance matrix. And what we are going to do now, is we are going to simplify this 

expression for the error covariance matrix, get into a nice compact form, a, basically 

which gives us, what is the expression for the error covariance. 
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So, have to again simplify this, we will use the principle, or there is a result that we have 

did earlier. So, observe, we have already shown, or we have already shown, in the 

previous module, or in one of the previous module, during the simplification of the 

LMMSE estimate. We had shown this property, that is sigma h square, X transpose, 

times, sigma h square, XX transpose, plus sigma square identity, inverse, is equal to, 

sigma h square, sigma h square X transpose x, plus sigma square, identity inverse, times, 

X transpose, and remember XX transpose is n cross n matrix, X transpose n, X transpose 



X is in m cross m, this is the result that we have already shown. And now if you look at 

this, this part, sigma h square X transpose sigma h square XX transpose sigma square 

identity, if you call this as star. If you call this as star, this is exactly your star. 
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So, I can replace this quantity, this star, by sigma h square, by sigma h square, X 

transpose x, plus, sigma square identity, inverse, times, X transpose, therefore, now the 

error covariance using the above principle, or using the above identity, using the above 

identity, the expression for the error covariance matrix can be simplified as, the 

expression for the error covariance matrix, this can be simplified as, well, I have 

expected value of h hat, minus h bar, into h hat, minus h bar transpose, this is equal to 

sigma h square, identity, minus. 

Now, instead of sigma h square, X transpose, sigma h square, XX transpose sigma X 

square identity inverse, I am going to employ, sigma h square, X transpose X plus, of 

course, this is sigma h square over here, all right, we just write it clearly, this is going to 

be, sigma h square, X transpose X plus, sigma square identity inverse, into X transpose 

times, sigma, a times we are going to have, well times we are going to have, sigma h 

square, X transpose of x, what we are doing is, basically this sigma h square. So, 

basically what we are doing, we are replacing this sigma h square h transpose, sigma X 

square, XX transpose, the sigma square identity, inverse, by this quantity, and there is 

another sigma h square, outside, which will basically continue to be over here. 



Now, to this X transpose x, what I am going to do, is I am going to add and subtract 

sigma square identity, of this X transpose x, and that is have I am going to simplify. 
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So, adding and subtracting sigma square identity, now this is a slightly tricky step. So, 

please pay attention. So, this will be sigma h square identity, minus sigma h square, into 

sigma h square X transpose x, plus, sigma square identity, inverse, sorry, this is only 

going to be, and now into these X transpose x, times, I am going to have, sigma h square, 

X transpose x, plus sigma square identity, minus sigma square identity, adding and 

subtracting sigma square. So, this is basically your adding, adding and subtracting sigma 

square identity. 

Now, we can see, the sigma square h square, X transpose, sigma square identity, into this 

first part, sigma h square, X transpose, sigma square identity, these 2 are inverse of each 

other. So, multiplication of these 2 will give identity. So, so we will have sigma h square, 

I. So, what we will have is, net, sigma h square I, minus of course, sigma h square, times, 

these 2 will give identity. So, you are left with sigma h square, times, identity, plus, what 

we have is sigma h square, sigma h square, X transpose x, plus, sigma square identity, 

into sigma square identity. So, what we will have net is, sigma h square, sigma square, 

into sigma h square, X transpose x, plus, sigma square identity, inverse, and that is what 

we are left. And now you can see, these 2 quantities, sigma h square identity, minus, 

sigma h square, identity, these 2 cancel, and what we have left with is basically the error 



covariance, is sigma h square, sigma square, sigma h square, X transpose x, plus sigma 

square, identity, inverse, this is the expression for the error covariance. 
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So, what we have is X sigma square, into sigma square, times, sigma h square X 

transpose x, plus, sigma square identity, inverse. Now what we are going to do, we are 

going to take the sigma, the sigma is the h square, into sigma square, this is a scalar 

factor. So, I can take it inside the matrix inverse. if I take it inside the matrix inverse, 

taking this sigma h square, sigma square, inside the matrix inverse, I get the final 

expression, that is X transpose x, divided by sigma square, plus, identity, divided by 

sigma h square, inverse. 
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So, this is your final expression, for the error covariance. So, error covariance, expected 

value of h hat, minus h bar, into h hat, minus h bar transpose, equals, X transpose x, by 

sigma square, plus, I, divided by sigma h square, inverse. This is the expression, and this 

is the error covariance, for your vector parameter models. So, this is the covariance. Of 

course, we are done this is in the context of, your, downlink multi antenna channel 

estimation, but realize that, this is the general expression, for an error covariance, for the 

estimation of a vector parameter. So, this is the expression for error covariance of 

estimation, of a vector parameter, that is X transpose x, divided by sigma square, plus, I, 

divided by sigma h square, whole inverse. This is the error covariance for the estimation 

of a vector parameter. 
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So, now we have this error covariance. So, now, let us do an example to understand this 

better, let us do an example to understand this better. So, let us do an example. So, let us 

do an example, to compute this, to compute, this error covariance for the vector 

parameter, and what we consider is, let us consider the same parameters, or the same 

values, or the same set up, as the previous example, that we have done for the LMMSE, 

LMMSE estimate, of the vector parameter. This is a multi antenna downlink channel. So, 

we are considering the pilot matrix 5 4, 4 5, 3 4, 4 3, basically this is the same, same set 

up as previous example for LMMSE estimate, of your LMMSE estimate, of the multi 

antenna channels. 
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So, the pilot matrix, this is your pilot matrix, this is the pilot matrix. We consider sigma 

square equals, 2, this is your noise variance, this is your noise variance, sigma h square, 

equals 1 by 4, this is the, this is the channel variance, correct? Sigma square equals 1 by 

4, this is the channel variance, this is the channel variance, or the prior variance of the 

channel, rather the prior variance, the prior variance of your IID, prior variance of your 

IID channel coefficients therefore, what we get is that, your error covariance, this is 

equal to, as we had just derived, that is, 1 over sigma square, X transpose x, plus I over, 

sigma h square, inverse. That is the expression, that we have we have computed, X 

transpose x, in the previous example, where X is the pilot matrix. 
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So, I am going to reuse those values. So, X transpose x, which is the transpose of the 

matrix x, times, itself. Remember this is m cross m matrix, it is a 2 cross 2 matrix, which 

is basically your, 5 4, 4 5, 3 4, 4 3, times, X, which is the pilot matrix. 
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Once again, 5 4, 4 5, 3 4, 4 3, which is equal to, which is equal to, 66, 64, this is the 

matrix, that we have already computed 66, 64, 64, 66, this is m cross m, equals, basically 

your 2 cross 2 matrix, and X transpose x, divided by sigma square, plus I, divided by 

sigma h square, this is half, where sigma square is 2. 
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So, this is 1 of sigma square is half, 66, 64, 64, 66, plus 1, over sigma h square, is 1 by 4. 

So, 1 over 1 by 4, 2 cross 2 identity matrix, 1 0 0 1. So, this will be basically your 33, 32, 

32, 33, plus 4 times the identity matrix, that is 4 0 0 4 this will be, 37, 32, 32, 37, and for 

therefore, the error covariance equals now, equals well, X transpose x, by sigma square 

plus, I, divided by sigma h square, inverse, which is basically inverse of this matrix, your 

37,32, 32, 37, inverse, this is equal to, well there are 2 cross 2 matrix, so, inverse is easy 

to compute 1 over the determine that 37 square minus 32 square, yesterday we saw, that 

is 37 minus 32, times 37 plus 32, that is, a 69 times, swapped off diagonal elements, both 

them are same. 
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So, that will be no change, negative, swap of the diagonal elements, negative of the off 

diagonal elements, minus 32 minus 32. 
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The diagonal elements are 37, 37. So, this will be now, simplifying this, this will be 1 

over 345 times, well 37, minus 32, minus 32, 37 and therefore, finally, bringing this 

thing inside, that we can write this, as your 37 by 345, minus 32 by 345, minus of course, 

this as to be minus 32, minus 32, by 345, 37 by 345, and this is basically the expression 

for, this is basically the expression for the error covariance matrix, expected value of h 

hat, minus h bar, into h hat, minus h bar transpose. 
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So, this is the error covariance, this is your, this is the expression for the error covariance 

matrix. And of course, now if we look at these diagonal elements, diagonal elements, 

these diagonal elements are the MMSE, of the individual channel coefficients, right? 

This is the error covariance, we considered, considered basically, has both estimate of 

the variances, and also the, the co-area, the cross correlation, the cross co-relation 

between the errors of the estimates of channel coefficients. 
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So, now what you see is, it the diagonal elements, are basically the variances, in the 

estimates of the channel coefficients, h one h 2, which means, basically, your expected 

value of h 1 hat, minus h 1 square, this is equal to expected value of estimate of h 2 hat, 

minus h 2 square, and this is equal to, this is basically equal to 37, divided by 345, all 

right? The diagonal elements are the variances in the estimates of the channel 

coefficients. 

Let me write that down, just write that down, for the sense of completion. These diagonal 

elements are basically variances, of your estimates, are the variances of the estimates, 

variances of the estimates, of your channel, and variances of the estimates of the channel 

coefficients. So, the diagonal estimates are the covariance. So, basically what we have 

done in this module is, we have derived the expression, for the error covariance matrix, 

of the estimate of a vector parameter, the vector parameter is h bar, which is basically the 

channel vector, corresponding to the multi antenna downlink channel.  



Previously we have looked at the LMMSE estimate, now we have also derived the error 

covariance expression, for the error covariance, and we are simplified the expression for 

the error covariance, to do an elegant closed form expression, and we have also, with the 

aid of an example, demonstrated how to compute this error covariance, and from the 

error covariance, how to extract the information about the, variances of estimates of the 

individual coefficients, of the individual components, the estimate of the individual 

components, of the vector parameter.  

So, we will stop this module here, and continue with other aspects in the subsequent 

modules. 

Thank you very much. 


