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Lecture - 02 

Optimal Bayesian Minimum Mean Squared Error (MMSE) Estimate 

 

Hello. Welcome to another module, in this massive open online course in Bayesian, 

minimum mean squared error estimation, for wireless network. So, yesterday we 

motivated, or in the previous module, we basically motivated the need for estimation of a 

parameter h, more specifically a Bayesian parameter h. 
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By Bayesian, we mean, a parameter about which there is some prior information that is 

available, in terms of the probability density function p of h correct? This is the prior 

probability density function. This is the prior probability density function. Also we have 

a set of measurements, or observations, which is also called the Observation Vector. We 

have a set of n observations. We can represent them, using the Vector y1, y2 up to yn. 

This is y bar, which is, we also said, this is our observation, this is our Observation 

Vector, all right? And we also have the conditional probability, density of the 

Observation Vector py bar, given the parameter h, remember we also termed this h; this 

quantity h is also termed as a parameter, which has to estimated, all right? 

So, this parameter h has to be estimated, given the observations y1, y2, yn, the n 



observations, or the Observation Vector y bar, all right? And now, let us denote this 

estimate of h, by h hat, all right? So, h hat, which is estimate of h, is naturally going to be 

a function of the observation, Vector, all right? So, h hat, this is the standard notation 

used to denote the estimate, h hat, is a function of the Observation Vector. So, h hat is the 

estimate, estimate of the parameter h, and observe that, and it is important to realize that, 

although it is a simple point, h hat is a function of the Observation Vector. This is a 

function of the Observation Vector, y bar. And another important to be realized, although 

it is also very simple point, is that, the estimate h hat, can only be a function of the 

Observation Vector y bar, and not a function of the unknown parameter h, because h, the 

underline parameter itself is unknown, and that is a reason we are trying estimate h. 
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Therefore, h hat cannot depend on the unknown parameter h, and that is an important 

parameter, important aspect, although simple, it is an important, it is an important 

property, that as to kept in mind. 

So, h hat cannot depend on h. So, it does not, it does not depend on h, or rather cannot 

depend on h, which is basically your unknown parameters, because h is the unknown 

parameter. This is the unknown, because h is the unknown parameter. Now what we 

would like to do, is that, we would like to come with an estimate, which minimizes the 

estimation error. Now what is the estimation error? Estimation error is naturally, the 

difference between the estimate and the parameter, all right? So, we have the error, this is 



the estimate, correct? So, this is, I have my estimate, h hat of y bar, minus h, this is the 

estimation error. And what I am going to do, is am going to consider the square, of the 

estimation error, because I can have the scenario in which the estimation error is positive, 

and negative, and cancels each other, all right? So, I am interested in minimizing the 

absolute value of the error, so I am going to considering the square, of the estimation 

error.  

And more importantly, I am not interested in minimizing, a particular instantiation of the 

estimation error, rather, I am interested minimizing, the estimation error on an average, 

that is where I repeat this experiment several times, I would like to come up with an 

estimator, which minimizes the average estimation error. That is also termed as the mean 

squared error of the estimation. 

So, I am going to denote this average, by the expectation operator, which gives me the, 

basically the mean. So, basically this mean, also represents, this quantity also represents, 

basically your averaging, this also represents the average, and therefore, now, this total 

quantity that you have over here, this is known as the MSE, which is the mean squared 

error. 
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 And this is an important quantity, that we will be consider considering, in the rest of this 

course, that is the, this is the, MSE or the mean squared error, and that is from which we 

get the term MMSE, that is we want to find the minimum, of this MSE, that is the 



minimum, of this mean square error. 

Now, how do we come up with an estimator that yields the minimum of this mean 

squared error? That is the procedure, we are going to, which we are going to discuss, that 

is the general principle, to obtain the minimum mean squared error estimate, that is the 

procedure, which we are going to describe now all right. So, now, let p y bar comma h, 

all right? Let this quantity, denote the, denote the, joint distribution of the Observation 

Vector y bar, and your parameter.  

This denote the joint observation, the joint distribution, or the joint probability density 

function, of the Observation Vector y bar, and parameter h. Therefore, what I would like 

to do, is to basically average, so what now, the mean squared error, the MSE, which we 

have represented as the expected value, of h hat, y bar, that is the, let me just write this 

clearly, that is h hat, of y bar, minus h, whole square. Now this quantity can be written as, 

given the joint probability density function, I am going to integrate it, I am going to write 

this expression, and I am going to, and I am going to write this expression. 
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So, this expression is basically, h hat, of y bar, that is the error, all right? So, this is the 

squared error, what is this? This is the squared error, that is, h hat, of y bar, minus h, 

whole square. I have to average this over the joint probability density function, of; I have 

to average this over the joint probability density function of, the parameter and the 

observation error, all right? So, this is an important expression, all right? So, let me take 



some time to explain it. So, h hat, y bar minus h, whole square, is the squared error, all 

right? But it depends on a particular value, of the parameter h, and the particular value of 

the Observation Vector y bar. 

So, now to get the average, or this mean squared error, I have to average this random 

quantity, right? Over the joint probability density function of the both, the Observation 

Vector y bar, and the parameter h, all right? Because as we have said in the Bayesian 

framework, the observations y bar, as well as the parameter h, is random in nature, 

therefore, to compute the mean squared error, I have to average, this instantaneous 

quantity, over the joint probability density function, of the random, of the Observation 

Vector y bar, and the parameter h. So, that is what we are doing over here, this is your 

squared error, this is the squared error which is the function of y bar, and h, and what we 

are doing over here, is averaging, over the joint, PDF of y bar, comma h. And now, I am 

going to use important property, of this joint probability density function, to simplify this 

expression. Now we are going to use the following property, of the joint property, 

probability density function, that is, p of y bar, comma h, sorry, this is not h bar, this is h, 

can be expressed as, p of h, given y bar, times p of y bar. 

So, the joint probability density function p of y bar, given h, can be expressed as p of h, 

that given y bar, the conditional probability density function, of the parameter h, given 

the Observation Vector y bar, times, p of y bar, that is the marginal probability density 

function, of the Observation Vector y bar. So, this is an important quantity, p of h given y 

bar, this is also the posterior probability density function, or the a posteriori probability 

density function, of, h, given your Observation Vector y bar, and what is this? This is the 

marginal probability density function of, where PDF basically represents, probability 

density function, the marginal probability density function, and marginal probability 

density function of y bar, so p h given y bar.  

This is an important quantity; this is the a posteriori probability density function, of the 

parameter h, right? So, remember we said, we have a prior probability density function 

of h, which gives information of the parameter h. Now the a posteriori probability 

density function, p of h, given y bar, basically gives the modified probability density 

function of h, on observing, the Vector y bar right. So, now, we have the Observation 

Vector y bar, having observed, this Vector y bar, what information does that convey about 

the parameter h, that is captured in this a posteriori probability density function, p of h, 



given y bar, all right? I am now going to use this, plug this simplification, or plug this 

property of this probability, joint probability density function of y bar, comma h, in the 

expression for the mean squared error above, and simplify the mean squared error as 

follows. 

(Refer Slide Time: 13:05) 

 

So, now I can right the same expression, for the mean squared error. This is integral 

minus infinity, integral minus infinity. Remember there are 2 integrals, one with respect 

to y bar, the outer integral with respect to I bar, y bar, the inner integral with respect to h, 

and we have well, h hat, y bar, minus h, whole square, times, instead of the joint 

probability density function, I am going to write it as, p of h, given y bar, into, p of y bar, 

d of h, d of y bar. And what is this? This is basically, were we had your joint probability 

density function, p of y bar, comma h, earlier. I am substituting for p of y bar, comma h, 

as p of h, given y bar, times, p of y bar. And now I am going to simplify this, as basically 

first I am going to write the outer integral, with respect to y bar. and I am going to write 

the inner integral, now with respect to h. I am going to right it, as follows, that is going to 

be, h hat, of y bar, minus h, whole square, p of h, given y bar, times, d of h, correct? 

Now, I am going to take all the quantities, with respect to y bar, because p of y bar, this 

depends only on y bar. I can remove it, from the integral, inner integral, which depends 

only on h. So, p of y bar, depends this, depends, this depends, only on y bar. So, it is a 

probability density function of h, given by y bar. So, this depends only on y bar. So, I can 



move this into the outer integral, alright. So, this is basically your inner integral with 

respect to h. Let me just write that clearly. This is your inner integral, with respect to h. 

And it depends only on the parameter h, with respect to your, because in this inner 

integral, with respect to h, basically y bar (Refer Time: 15:58), because y bar is in the 

outer integral. So, we are carrying out the double integration, in 2 steps. First, an inner 

integration, with respect to h, we get a function of y bar, and then integrated with respect 

to y bar. 
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So, therefore, as far as the inner integral is concerned, y bar is a constant. So, that is an 

important to realize. For this inner integral, y bar is a, y bar is a constant for this inner 

integral. Now, therefore, what I am going to do, all right. Now let us take a look on this 

inner integral. What is this inner integral? This inner integral is the mean squared error, 

averaged over, what is this, this is the mean squared error, error or a squared error, 

average over the parameter h, for a fixed y bar. That is, for a given Observation Vector y 

bar, you were to ask the question, what is the mean, what is the average of the squared 

error corresponding to a given Observation Vector y bar, that is given by this inner 

integral, because we are averaging only with respect to the parameter h, while fixing y 

bar in the inner integral. So, the inner integral basically is the mean squared error, 

average, with respect to h, that is it is the mean squared error, for a fixed y bar, that is 

important. 



So, this inner integral is the MSE for a fixed Observation Vector y bar. That is the first 

that is the first important point to keep in mind. Now, the second important point is, 

basically, that if you were to come up with an estimator h hat of y bar, remember h hat of 

y bar, depends only on y bar. So, if I obtain the minimum, obtain an estimator h hat of y 

bar, which yields a minimum squared error, or which is the minimum mean squared 

error, for each y bar, at, for a given y bar, all right? So, for a given y bar, if I obtain the 

minimum mean squared, obtain the estimator h hat a y bar, which is the minimum error, I 

do that for every value of y bar, then naturally, it is mean squared error, with respect to 

averaging over y bar, is going to be it is going to be the minimum mean squared error, 

with respect to y bar. 

So, what I am going to do, I am going to now, derive, the estimator, h hat y bar, which 

yields, which minimizes the MSE. So, for every given y bar Observation Vector y bar, 

we derive the error, we derive the estimator h hat of y bar, which minimizes the, which 

minimizes the squared error, or which minimizes the mean squared error, averaged, with 

respect of the parameter h. And therefore, now, since this is the best estimator, or this is 

the best, or this yields the minimum error, with respect to every y bar, naturally, when 

you average the performance, over y bar, it is going to yield the best performance, in that 

sense, it is going to be the minimum mean squared error estimator. 
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So, now, how do we derive the estimate, which yields the minimum error, for a given y 



bar? So, to do that naturally, look at this, we have this expression, for the mean squared 

error, for a given y bar. This is h hat y bar, minus h, whole square, p of h, given y bar, d 

of h. This is the expression of the mean squared error for a given y bar, to find the best, 

to find the expressed y, in the h hat, y bar, that is the estimator which minimizes the mean 

squared error, we simply differentiate this with respect to h, differentiate with respect to 

h hat, and set this equal to, and set this equal to, 0. So, this is, this mean squared error, is 

the function of h hat. So, naturally to find the minimum, we differentiate with respect to 

h hat, and set this equal to 0, all right? So, now, we differentiate this, with respect to h 

hat, h hat of y, minus h whole square, p of h, given y bar, d of h. 

(Refer Slide Time: 21:52) 

 

Now take the derivative inside, inter change the derivative, and the integral, we have, 

minus infinite to infinity, duo by duo h hat, h hat of y bar. In fact, this has to be the 

Observation Vector y bar, minus h, whole square, p of h, given y bar, d of h. 

Now, look at this, only this quantity here, depends on h hat, this does not depend on h 

hat, does not depend on, this does not depend on h hat. Therefore, now if I differentiate 

this with respect to h hat, what I am I going to have? It is integral, this is going to be 

integral, minus infinity to infinity, twice, h hat y bar, minus h, this is differentiating with 

respect to h hat, I have twice h hat y bar minus h, p of h, given y bar, of times d h. Now 

this has to be equated to 0. To find the minimum, to find the h hat, which is the 

minimum, basically I want to differentiate this, and equal to 0, this we equate into 0, 



basically to find the, to find the, to find the minimum. 
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 And now what we get is basically, what this implies is basically, this implies, now this 2 

cancels, because we have 0. So, I can cancel the 2. This implies h hat, of y bar, p of h, 

given y bar, d of h, equals, integral minus infinity to infinity, h, p of h, given y bar, d h. 

Now, observe these 2 quantities. Integral h hat, y bar, p of h, given y bar, d of h. Now 

remember the important property of the estimator, h hat, of y bar. The estimator h hat of 

y bar, does not depend on h. This integral is with respect to h; therefore, since h hat of y 

bar does not depend on h, it can come outside of the integral, that is important point. So, 

this does not depend on, this does not depend on h, which means I can take this and 

move it out, of the integral, which means, h hat, of y bar, integral, minus infinity to 

infinity, p of h, with respect to y bar, d of h, equals, this should be equal to, integral 

minus infinity to infinity, h p of h, given y bar, into d of h. Now look at these two, this 

integral first, this integral is an integration of the probability density function, p of h, 

given y bar. This is the a posteriori probability density function of h. We are integrating 

this, over the range, minus infinity to infinity. 

So, will when we integrate any probability density function, over the range minus 

infinity to infinity, naturally the integral is going to be 1. Therefore, this integral is 1. 

Now look at this, this is basically, what is this? This is the probability density function of 

PDF of h, given y bar. I am multiplying this by h, and integrating from minus infinity to 



infinity. So, this is basically the average. So, what is this? This is the expected value of h, 

given y bar.  

Remember, from the properties of the probability density function, if I take any random 

variable x. Probability density function f x, of x, multiplied by x, integrated from minus 

infinity to infinity, that is minus infinity to infinity, x times f x, of x, d x, that yields the 

expected value of x. Here, I have integral minus infinity to infinity, h times, of 

probability density function of h, given y bar, times d h integrated from minus infinity to 

infinity, that is nothing but, the expected value of h, but for a given y bar, that is 

condition on the Observation Vector y bar. And therefore, naturally finally, we have the 

estimator, which minimizes the mean squared error, is basically h hat, y bar, equals the 

conditional mean of h. 
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And this is the most important principle, of MMSE estimation, which basically says that, 

and that is, it this is basically the estimate of the parameter h, for a given y bar, what is 

this? This is the estimate which minimizes the mean squared error. 

This is the MMSE estimate, or basically the minimum mean, the minimum mean squared 

error, estimator, all right? And that is given by, the expected value of the parameter, 

average of the parameter that is expected value of h, given by y bar that is the conditional 

mean of the parameter h that is expected value of h. What is this? This is your expected 

value of the parameter h, expected value of the parameter h, given y bar, and therefore, 



the simple and elegant result, basically gives us the minimum mean squared error 

estimator. What it says is, a very simple principle, that is basically, the estimate, which 

minimizes the mean squared error for a given y bar, for a given Observation Vector y bar, 

is basically the conditional mean, that is if you look at the a posteriori probability density 

function, p of h, given y bar, the probability density function of the parameter h, given 

the Observation Vector y bar, and look at its mean, look at the expected value, of this a 

posteriori probability density function, that itself gives me basically, the best estimator, 

or basically the estimator which minimizes the mean squared error, for a given value of h 

bar. 

Now, naturally since it minimizes the mean squared error, which minimizes the squared 

error, for a given y bar, it minimizes the mean squared error, for every y bar. Therefore, it 

minimizes the mean squared error, on average, that is, when you average it over that 

probability density function of y bar. And this is the most important principle of 

minimum mean squared error estimate, estimation. That is, the h hat of y bar is basically 

expected value of h, expected value of the parameter h, given the Observation Vector y 

bar. And that basically captures, the sense of MMSE estimation, and we are going to use 

this principle of MMSE estimation, further, in wireless, in several wireless examples, to 

illustrate the application of this principle of MMSE estimation. So, we will stop this 

module, here. 

Thank you very much. 


