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Linear Minimum Mean Squared Error (LMMSE) Estimate for Multi-Antenna 

Downlink Wireless Channel Estimation - Part II 

 

Hello. Welcome to another module in this massive open online course on Bayesian 

MMSE estimation for wireless communication. So, we are looking at MMSE estimation 

for a vector parameter, and as a particular example, or as a particular instance of its 

application, we are considering the estimation of a downlink wireless, of a downlink 

multi antenna wireless channel; that is, we are considering the base station which has 

multiple antennas, m antennas to be more specific, and a user who has a single antenna; 

and, we are considering transmission from the base station to the user; that is, we are 

considering the downlink, and we have illustrated how to perform channel estimation for 

this downlink. 
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So, the system model that we have considered is your y bar equals X h bar, plus v bar. 

This y bar is your N cross 1 observation vector; X, this is the N cross M pilot matrix. 

Recall that, your N equals number of observation, or basically, number of pilot vectors; 



that is, basically your number of. And, M equals to number of antennas; h bar is the M 

cross 1 channel vector; and, v bar is the N cross 1 noise vector. h bar is, naturally, it is an 

M cross 1 channel vector. It contains the m channel coefficients, one channel coefficient 

corresponding to each transmit antenna, and the single receive antenna, alright. 
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So, for instance, if we consider ith transmit antenna, the channel coefficient between the 

ith transmit antenna at the base station, and the single antenna of the user, this is denoted 

by the coefficient h i. So, h bar is this vector parameter; that is what we are talking about. 

h bar is equal to, if you recall, this is basically h 1, h 2, h m; this is your m dimensional 

vector, and therefore, we have vector parameter. And further, we are considering the 

Bayesian vector parameter. Recall that, we are considering a Bayesian vector parameter 

which, in which, we are assuming each coefficient h i to be Gaussian in nature, with zero 

mean and variance sigma h square, alright. So, this is a Bayesian, MMSE estimation 

scenario, alright. So, there is some prior information about these channel coefficients, or 

this channel vector to be estimated. 
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So, we are considering h 1, h 2, h m to be more specific. We are considering h 1, h 2, h 

m, these are IID Gaussian, which means, basically, independent, identically distributed 

Gaussian, with expected, each h i equal to zero, expected value; that is, the mean of each 

coefficient h i equal to zero; the variance, expected magnitude h i square equals sigma h 

square. Further, they are independent, which means, your expected value of h i into h j, if 

they are complex, h j conjugate equals zero, if i is not equal to j. 

Now, currently, we are considering only real symbols, alright. So, I can simply call this 

as expected value of h i times h j. But, if I have complex coefficients, and we can use this 

MMSE estimation framework also when the channel coefficients are complex, alright. I 

will shortly show you how to extend this to a complex vector parameter estimation 

scenario; and, it is fairly simple; it is a relatively straight forward extension from the 

estimation of the real parameter to estimation of a complex parameter, alright. So, 

expected value of h i times h j equals zero, if i is not equal to j, and the parameters, h 1, 

or, the coefficients h 1, h 2, up to h m are real parameters.  

We are considering a real estimation scenario so far. And therefore, the covariance, if you 

look at the covariance, we have expected value of h bar into h bar transpose, once again, 

considering real parameters, that will be, sigma h square times, sigma h square times 



identity. And, we also derived for this model that, we have given over here, that is, we 

have your y bar equals X h bar plus v bar. We have derived the various quantities; we 

have derived the covariance matrix of your, the covariance matrix of the observation 

vector y; that is, R y y, this is the covariance of observation, and this, we have said is 

sigma h square X X transpose plus sigma square times identity. 
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We have also derived the cross covariance, or the cross covariance between R h y. This is 

nothing, but expected value of h bar y bar transpose; this covariance matrix, this is 

nothing, but expected value of y bar y bar transpose. 
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So, this is expected value of y bar y bar transpose; this is expected value of h bar y bar 

transpose, which we have derived as sigma h square times X transpose. Therefore, the 

LMMSE estimate, remember, even when it is Gaussian, when the channel coefficient are 

non– Gaussian, we can talk about the LMMSE estimate. Of course, if they are Gaussian, 

then, the LMMSE estimate itself is the MMSE estimate; that is, the minimum mean 

square error of the estimate. Anyway, considering a general scenario, probably not 

necessarily Gaussian channel coefficients h, the LMMSE estimate, the LMMSE 

estimate, the L LMMSE estimate is h hat equals, this is the estimate; that is, R h y into R 

y y inverse into y bar, which is h hat equals.  

Now, I have to substitute R h h; this is sigma h square X transpose, times sigma h square, 

X X transpose, plus sigma square times identity inverse into y bar. So, this is the 

expression for the LMMSE estimate. This is the expression for the LMMSE estimate. 

Now, of course, the LMMSE estimate itself is the MMSE estimate, if the channel vector 

h h bar is Gaussian, alright. 
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Now, what we are going to do is, let me simplify this LMMSE estimate in a form, that is 

much more convenient, and I am going to illustrate that. So, now, first realize, and again, 

similar to what we have done several times before, realize, I will start with this quantity, 

sigma h square X transpose X X transpose plus sigma square times identity; and, I can 

expand this in two ways. I can either, I can take X transpose common on the left. So, 

taking X transpose common on the left that will give me X transpose sigma h square X X 

transpose plus sigma square. I have changed this identity; this should be X transpose; 

that will be sigma square times identity.  

Now, I can also take a look at this; I can also take X transpose common on the right. So, 

X transpose, taking it outside on the right, what I am going to have, I am going to have 

sigma h square X transpose X plus sigma square identity times X transpose. And 

naturally, since both these quantities are derived from the same quantity, therefore, I have 

these two quantities are equals, since both are derived from same quantities, which 

implies basically, what I have, let me just write this clearly; I have sigma h square. 
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Let me just write it; sigma h square X transpose X plus sigma square identity into X 

transpose equals X transpose sigma h square X X transpose, plus sigma square identity. 

And now, since both these quantities are equal now, I can multiply with this inverse of 

sigma h square X transpose X plus sigma square identity on the left. So, this will come 

over here; this will become the inverse, and come over here, and sigma h square X X 

transpose sigma square identity, I can take its inverse, and I can bring it on the right over 

here. And therefore, now, what you will observe, you can observe that, what i have is, 

well, X transpose times sigma h square X X transpose plus sigma square identity inverse; 

this is equal to sigma h square X transpose X plus sigma square identity inverse times X 

transpose. And, this is the result that we have. 

Now, I can multiply both sides with sigma h square; that is the last step. Multiply both 

sides with, multiply both sides with sigma h square, and that implies, that is very simple 

of course, sigma h square, this is the scalar. 
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So, I can simply multiply both sides by sigma h square. So, I have sigma h square X 

transpose sigma h square X X transpose plus sigma square identity inverse; this is equal 

to sigma h square X transpose X plus sigma square identity inverse times X transpose. 

And now, if I look at this, now, look at this quantity. This quantity is sigma h square X 

transpose times sigma h square X X transpose plus sigma square i inverse. Now, if you 

look at this quantity, look at that, that quantity is exactly equal to this quantity. If I call 

this quantity as your star, this quantity is exactly equal to this quantity, is exactly your 

star. 
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So, this quantity is equal to this quantity, which means, I, can replace this star by sigma h 

square X transpose X plus sigma square times identity inverse into X transpose. And 

therefore, I will have h hat equals, previously it was sigma square h square X transpose 

sigma h square X X transpose plus sigma square identity inverse into y bar. I can 

equivalently write this as, now, replacing star by sigma h square X transpose X plus 

sigma square identity inverse times. Of course, I am missing a sigma h square here, 

because I am multiplying both sides by sigma h square. So, times sigma h square is a 

scalar quantity. So, I can multiply it anywhere. So, sigma h square X transpose y bar. 

In fact, I can simply bring the sigma h square all the way to the left; I can write this 

sigma h square sigma h square X transpose X plus sigma square identity inverse into X 

transpose y bar; that is your, that is your h hat, and this is the simplified expression. This 

is what we are saying as your simplified expression for the MMSE estimate; or rather, 

LMMSE estimate. This is the simplified expression for the LMMSE estimate. So, h hat 

equals sigma h square times sigma h square h X transpose X plus sigma square identity 

inverse into X transpose y. Now, why we are saying this is a simplified estimate, 

because, look at this. If you look at the first expression, this expression, X into X 

transpose; look at this. So, if you have X into X transpose, this is an N cross M; X is N 

cross M; X transpose is M cross N; as a result, this whole matrix will be N cross N. 



(Refer slide Time: 16:32) 

 

So, this X X sigma h square, X X transpose plus sigma square identity is an N cross N. 

So, this is the inverse; we have to compute the inverse. In the first technique, we have to 

compute the inverse of an N cross N matrix. But, if you look at this quantity, X 

transpose; X transpose is basically, X transpose. This is basically M cross N; X is 

basically N cross M. So, this is basically your sigma h square X transpose X plus sigma 

square identity, this is an M cross M. In fact, if you look at this identity, the identity here 

is M cross M; the identity here is N cross N. So, in the first case, you are inverting an N 

cross N matrix, where N is the number of pilot vectors.  

In the second case, you are inverting an M cross M matrix, where M is the number of 

antennas. And typically, the number of pilot symbols, pilot symbol vectors transmitted, is 

always much more than the number of antennas; that is, if we look at N cross M, that is, 

if we look at X; remember, if you look at X, X is N cross M, N is number of pilots; M is 

antennas.  
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Typically, number of pilots is much greater than the number of antennas. Number of 

pilots is much greater than the number of antennas, implies, your N is typically much 

greater than M. Therefore, therefore, it is much easier to compute the inverse of an M 

(Refer Time: 18:50), because N is much larger. So, N, first matrix is N cross N; which 

means, it is much larger matrix. So, it is much more, much more to difficult to inverse, 

alright. The second matrix is an M cross M matrix, since M is much smaller. So, it is 

much easier, it is easier to compute the inverse of this M cross M matrix, rather than N 

cross N matrix, the second one that is, the second implementation, has a much lower 

complexity. 
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So, this one has a lower complexity. And, in fact, we had seen that, earlier, we had seen a 

special case of this, where M is equal to 1, when we have a single channel coefficient, 

then, M cross M becomes simply 1. So, the inverse is simply a scalar, correct. We have, 

might have N pilots symbols, that is a 100 pilot symbols, but if M equal to 1, M cross M 

is simply 1 cross 1, which means, it is a scalar quantity. So, inverse is, of a scalar is 

simply the reciprocal, alright. And, in fact, that is the property that we had used earlier 

also to simplify the, simplify the LMMSE, or the MMSE estimate for a channel 

estimation, for the estimation of a fading channel coefficient, with a single antenna, 

single transmit and single receive antenna. 

And now, of course, we are extending to the estimation of a channel vector 

corresponding to M antennas. So, what we are saying is, we can do this with complexity 

of inversion of an M cross M matrix, where M is the number of antennas, rather than N 

cross N matrix, where N is the number of pilots symbols. 
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So, let me again write that down, summarize that, the channel, final channel estimate is h 

hat equals sigma h square times sigma h square X transpose X plus sigma square 

identity. This is M cross, this is an M cross M identity matrix inverse X transpose into 

into y bar. So, this is the LMMSE estimate. And now, the additional thing that we can 

look at here, is that, for complex, I can simply replace that transpose by Hermitian. For 

complex channel vector, let me just try to write down for a complex channel vector, this 

is the trick that we use fairly off, and you simply replace that transpose by the Hermitian; 

that is all you have to do. sigma h square sigma h square X Hermitian X plus sigma 

square identity inverse x bar Hermitian y bar, this is for a complex vector h bar.  

Remember, we said in the beginning that, this can be expanded, extended also, to 

complex parameters. So, when the channel vector h bar is complex, in relatively straight 

forward fashion, the simple trick is to be replace that transpose by the Hermitian. So, it 

will become sigma h square times sigma h square into X X Hermitian X plus sigma 

square identity inverse times X Hermitian y bar; that is the simple extension to the, when 

the channel vector h bar is complex; that is, the coefficients are complex, the transmitted 

pilots symbol are complex; the noise is complex; hence the received observations at the 

receiver are also complex. For the complex estimation scenario, this is the straight 

forward exchange. 
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And, one small point to observe here, which is very interesting, that is, we look at this 

estimate h hat equals sigma h square sigma h square X transpose; going again back to the 

real scenario; sigma X times X transpose y. Now, consider the scenario where high signal 

to noise power ratio scenario; consider, consider a high S N R scenario. In a high S N R 

scenario, remember, what will you have? The signal power is much greater than the 

noise power. So, look at this, this is the signal component. This is your noise covariance. 

In high signal to noise power ratio, the signal power, or signal covariance, is much 

stronger, much stronger, than the noise covariance.  

Therefore, what will we have is, this sigma h square will be much larger; sigma h square 

X transpose X will be much larger than sigma square identity, which implies that, I can 

neglect, that is, sigma h square, which implies basically, sigma h square X transpose X 

plus sigma square identity is approximately equal to sigma h square X transpose X; 

because, the noise power, or noise covariance, is insignificant compared to signal 

covariance. I can approximate this quantity, sigma h square X transpose X plus sigma 

square identity simply by sigma h square X transpose X. 
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And now, you can see something very interesting. Therefore, h will be approximately 

equal to, or h hat is approximately equal to, sigma h square sigma h square X transpose 

X inverse times X transpose y bar, which is equal to, now, if I bring the sigma h square 

outside, this is a scalar quantity. This is equal to simply X transpose X inverse X 

transpose y bar. And, this is simply, you can recall, this is the maximum likelihood 

estimator. 
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This is the maximum likelihood estimator, and if you look at this, this quantity. In fact, 

this is also known as the maximum likelihood, or this is known as the least squares 

estimator, or the L S. Least square is basically short; it can be shortened as L S. And, if 

you can look at this quantity, X transpose X inverse X transpose, this is known as the 

pseudo inverse of the matrix X. The reason being, if you look at X transpose X inverse X 

transpose, and multiply that by X, now, you have X transpose X inverse into X transpose 

X. This is equal to identity. So, X transpose X inverse X transpose is pseudo inverse, or, 

this also equal to the left inverse of X of X, pseudo inverse of matrix X. So, X transpose 

X inverse X transpose is the pseudo inverse of X. It is also the left inverse of X, because 

if you multiply it on the left of X, you get the identity matrix. 

Even though X might not be an invertible matrix, because, N is greater than or equal to 

M. Because, remember, again, this is very interesting; X is N cross M; and, N we are 

saying, is greater than, can be greater than M; N can be greater, number of pilot symbols 

can be greater than the number of antennas. So, if N is equal to M, of course, it is a 

square matrix, and can be inverted, alright. If inverse exists; but, if N is greater than M, 

then, no inverse exists for X. Therefore, this matrix which we will multiply by on the left 

by X gives the identity; this is known as pseudo inverse, or basically, this is acting as an 

inverse of X. This is the pseudo, or sort of a fictitious inverse of this matrix X. And, what 



is interesting is, at the high signal, in a high signal to noise power ratio, this MMSE 

estimator again reduces to the least squares estimator, that is the maximum likelihood 

estimator alright. 

What is more interesting, what is also interesting is, what happens in low signal to noise 

power ratio, in low S N R, in this case, the signal covariance will be very small 

compared to the noise covariance; that is, sigma h square X transpose X is much smaller 

than sigma square times identity.  
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Therefore, we have h, we observe closely, h hat is sigma h square sigma h square X 

transpose X plus sigma square identity inverse X transpose y. We are saying this is very 

small; this is much smaller compared to sigma square identity. Therefore, this can be 

approximated as sigma h square times sigma square identity inverse X transpose y bar. 

And, I have to write y bar over here, and what is this? Now, if you look at this sigma 

square, it is a scalar. 
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So, this is simply sigma h square divided by sigma square times X transpose y bar. This 

is simply X transpose y bar; this is simply a matched filter, or your M F, because your 

signal is X, right; your y bar equals X h bar plus v bar; you are simply multiplying by X 

transpose into y bar. And, of course, it is a scaling factor, right; sigma h square divided 

by sigma square; this is simply your matched filter. So, it is very interesting; at high S N 

R, it becomes the least square estimator, the LMMSE estimator; and, at low S N R, it 

becomes the matched filter. So, that is the, that is a very interesting aspect. 

And, the other interesting aspect of this is that, this matrix sigma h square X X transpose 

X into sigma square times identity, this inverse of this, always exists even when X 

transpose X is not invertible; even when X transpose X is not invertible. So, this is also 

known as a regularized inverse. 
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So, this is known as a, the sigma square identity is known as a regularized, regularization 

term. So, this known as, what it says is, if X transpose X is not invertible, that is, you 

cannot compute the least squares estimate, all we can, what we can do is, we can add a 

simple sigma square times identity term to that, compute the inverse of it. So, the inverse 

becomes stable; this is known as the regularized inverse. So, this LMMSE estimate is 

beneficial, because the inverse is always stable; even when X transpose X is ill-behaved, 

it cannot be inverted, sigma h square X transpose X plus sigma square times identity is 

always invertible, alright. So, the inverse is always stable. So, the LMMSE estimate is 

stable, alright, which means, your solution can be computed in a very controlled fashion, 

right, without computing the inverse of, without, unlike least squares when X transpose 

X is not invertible, then, the solution will become out of bounds, alright. It is similar to 

taking inverse of zero. 

So, the LMMSE estimate will always be a stable estimate, because of the regularization 

nature of it, where you are adding sigma square identity to X transpose X, and then 

taking the inverse. So, there are a lot of interesting interpretations of this LMMSE 

estimate, particularly for this vector scenario, alright. So, with this, basically we have 

simplified the LMMSE estimate for the computation, for the channel, channel vector h 

bar, and we also demonstrated several interesting simplification, several interesting 



observations, what happens in the low S N R regime, what happens in higher S N R 

regime, etcetera, alright. Then, in the subsequent modules we will do a simple example, 

to further illustrate this concept. 

Thank you very much. 


