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Lecture – 18 

Linear Minimum Mean Squared Error (LMMSE) Estimate for 

Multi-Antenna Downlink Wireless Channel Estimation – Part I 

 

Hello. Welcome to another module in this massive open online course on Bayesian 

MMSE Estimation for Wireless Communication Systems. Today let us start looking at 

LMMSE estimation for multi-antenna channel estimation, as we seen in the previous 

module the multi-antenna channel estimation problem correspondence to a scenario of 

vector parameter estimation, so now let us look at how we can apply or LMMSE 

principle that is a linear minimum mean squared error estimation principle to the 

estimation of a vector parameter in the contest of multi-antenna channel estimation. 

(Refer Slide Time: 00:51) 

 

So, let us look at LMMSE, where LMMSE as you know stands for linear minimum 

squared error estimation for multi-antenna channel estimation. In fact, multi-antenna 

channels estimation you know wireless system. So, we are going to look at LMMSE 

estimation for a multi-antenna wireless channel. 



And we are already seen that the problem so consider the multi-antenna estimation, so 

we have seen the problem can be expressed as y bar equals x h bar plus v bar, where this 

y bar this is your N cross 1 observation vector x is your N cross M pilot matrix and h bar 

is now your M cross 1 parameter vector previously you had a scalar parameter now you 

have an M cross 1 parameter vector and v bar is the additive noise; that is this is the N 

cross 1 additive. This is the same as before this is N cross 1 additive noise vector. 
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And now if we look at it what is N, Let us define this let us recall this quantity also N 

equals number of pilot vectors. N is basically the number of pilot vectors transmitted in 

the downlink by the (Refer Time: 03:15). Remember we are considering a downlink 

channel estimation scenario where N is number of pilot vectors, M is a number of 

transmit antenna there are multiple antennas M is number of transmit antennas. Recall 

that we are considering a system with M transmit antennas a single receive antenna 

correct and N transmitted pilot vectors. Therefore, the pilot matrix x is N cross M the 

observation vector y bar is N cross 1 the parameter vector h bar is M cross 1 right and v 

bar the noise vector is N cross one as you should as simplification we call it. 

And now we are going to demonstrate or illustrate how to estimate this channel vector h 

bar and this is a vector parameter. So, now consider a Bayesian scenario; remember this 



is a base we are talking about base and estimation considers a Bayesian scenario. 

Bayesian scenario implies there is prior information about the parameter Bayesian 

estimation scenario. Bayesian estimation scenario implies there is prior information 

about the parameter. And this case since we have a parameter vector h bar equals what is 

this we have a parameter vector h 1 h 2 up to h M, where these are the M channel 

coefficients correct. These are the M channel coefficients varying channel coefficients 

rather these are the M channel coefficients and therefore h bar is a collection of M 

parameters, so there h bar this is your parameter vector. These are some things to 

remember this is a parameter vector; we are considering the estimation of a vector 

parameter. 
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And h i is the channel coefficient corresponding to the ith antenna, h i is a channel 

coefficient of the ith antenna. Now, previously remember whenever we consider 

previously so far when we looked at Bayesian estimation we have looked at MMSE 

estimation and we consider the parameter vector parameter h to be Gaussian in nature. 

However, in previous module we have introduce the LMMSE estimation, and for the 

LMMSE the LMMSE is valued for an arbitrarily distributed observation and parameter. 

Therefore, we no longer need to consider the parameter or the parameter vector to be 



Gaussian in nature as long as we are willing to simply accept that it is only the LMMSE 

estimator and it is a best amongst the class of linear estimators. 

Since we are going to be using the LMMSE estimate we now are not going to assume 

that we are going to assume in the h the parameter vector h bar can be (Refer Time: 

06:57) any arbitrary distribution not necessarily Gaussian distributed. And therefore we 

can simply use the LMMSE estimate without any problem. So, we are not going to 

assume any prior distribution for h we are simply going to say that h is any arbitrary 

distribution with each coefficient h i having 0 mean power average gain or expected 

value of magnitude h i square equals sigma h square. Further, we are also going to say 

that this expected value of h i into h j conjugate that is channel coefficient of two 

different antennas this is equal to 0 if i not equal to j. Implies h i and h j are uncorrelated 

random variables; these are since the covariance is 0. 

And once this is the expected value of h i h j conjugate is 0 we can only say that these are 

uncorrelated, because we have not assuming h i h j to be Gaussian we cannot say that 

these are independent. All we can say at this point since we are not made any assumption 

about the prior distribution of h; we can only assume they are uncorrelated. And that is 

sufficient for the purpose of LMMSE estimation. We do not need to nearly assume that 

they are independent. As long as they are uncorrelated we are only concerned with the 

uncorrelated nature, we are not nearly bothered about whether they are independent or 

not because the LMMSE estimates simply considers the covariance information it does 

not need information about the probability density functions of h the parameter vector h 

in fact also the observation vector y bar. 

So, that is something keeps in mind. And therefore, we have since each element h i is 0 

mean if we look at expected h bar naturally since each component is 0 mean expected 

value of this parameter vector h bar is going to be 0. 
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Further, if we look at this covariance matrix, to consider a simple scenario I am simply 

considering a real scenario. Let us simply consider a real scenario I am going to remove 

this complex conjugate just to make this estimate paradime simple consider all quantities 

to be real to begin with. Consider all this quantities to be real. We are going to illustrate 

later how you can extend this to complex scenario. 
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Then what is going to happen this expected value of h bar h bar transpose, if you expand 

this what is a expected value of h bar this is expected value of well take the column 

vector h 1 h 2 h L times h bar transpose which is a row vector h 1 h 2 up to h L. Now you 

can see when you multiply this column vector by the row vector what you are going to 

have is all the diagonal elements are going to be elements of the form h 1 square h 2 

square so on. The off diagonal elements are going to the form h 1 h 2 h 2 h 1, so those 

expectations are going to be 0, because we are considering the different the channel 

coefficient corresponding to the different antennas to be uncorrelated. 

So, just write this more explicitly I think probably if writing one more step will help 

expected value of h 1 square the second diagonal element will be h 2 square, so on the 

last diagonal element will be of course this is M, this is h M square and these entries are 

going to be of the form h 1 h 2 h 2 h 1 and so on. 
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And if you look at the expected value of these the expected value of the off diagonal 

element are going to 0 the expected value of the diagonal element expected value of h 1 

square equals expected value of h 2 square so on. So, this diagonal elements are going to 

be equal to sigma x square or the off diagonal elements are going to be 0, so this is going 

to be sigma x square times the identity matrix and this is the just to the be clear this is an 



M dimensional identity matrix. When I write I M this means an M cross M identity 

matrix, because identity matrix is the square matrix that is well known so I am going to 

simply write the number of rows and number of columns they are both equal. So this is I 

M basically denotes the M cross M identity matrix. 

(Refer Slide Time: 13:01) 

 

So, we can say that expected value of h bar h bar transpose equals sigma h square times 

the identity matrix. You can call this as in this case R hh, since we have parameter vector 

you have the covariance matrix R h h expected value of h bar h bar transpose considering 

uncorrelated channel coefficient each with gains sigma h square each with average power 

sigma h square each antenna. That means, basically the covariance matrix expected value 

of h bar h bar transpose that is R hh is sigma square times sigma h square times identity. 

Now, another assumption that we are going to make which is also valid assumptions is 

that the channel coefficient and the noise samples are uncorrelated and this is a valid 

assumptions because the channel coefficient are related to the channel coefficients of the 

radio propagation of the wireless environment. And the noise samples are the noise 

samples which arise because of the thermal noise at the receiver. These two phenomena 

are basically independent one the channel coefficients are arising because of the 

scattering nature of the wireless environment, because of the reflections and the 



propagation in the wireless environment. And the Gaussian noise at the receiver is 

arising basically because of the thermal property the thermal noise in the cerckets at the 

receiver. And these two phenomena are independent so we are going to assume that the 

channel coefficients and the noise samples are independent. 

In fact, as we already said they are independent, but for purpose we do not need 

independence as long as they are uncorrelated that is sufficient. So, all though they are 

independent we are going to simply use the fact that they are uncorrelated, which means 

that if you take any channel coefficient expected value of h i times any noise samples v j; 

expected value of h i times of v j this is equal to 0 for all i comma j. Remember we have 

M channel coefficients of 1 less than equal to i less than the all, so i can be any value 

between 1 and M and we have N noise samples so j can be any value between 1 and N. 

And therefore this basically arises because of the noise comma channel are independent, 

of course independence means uncorrelated. For any random variables if they are 

independent then naturally they are uncorrelated. So, this is something to keep in mind. 
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Which means now since any channel coefficient is uncorrelated with any noise samples 

if I look at expected value of h bar times v bar transpose this is equal to 0, in fact this 

will be M cross N expected value of v bar times h bar transpose. Remember v bar is N 



cross 1 h bar is 1 h bar transpose is 1 cross m so this will be 0 N cross M, because the 

channel vector and the noise samples are uncorrelated for expected value of h bar v bar 

transpose expected value of v bar h bar transpose both are 0. 

Now let us look at the covariance of the noise, and this is something that we already 

looked at that is the covariance that is we are going to consider the noise samples for the 

similar previous scenario. Similar to previous scenarios consider v bar equals Gaussian 

noise vector with covariance expected value of v bar v bar transpose equals sigma square 

times identity. This implies basically that expected value of each we are going to assume 

0 mean noise. 
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So, expected value of each v i is 0, the each noise is of variance expected value of v i 

square equals sigma square. Further, we are going to assume that the noise samples at 

two different antennas are uncorrelated. Since, the noise is Gaussian this implies also 

independence, if i is not equal to j noise samples at two different antennas are 

uncorrelated. 

Noise samples at the different antennas these are uncorrelated. So, this is (Refer Time: 

019:06) now describe the statistics of the problem we are describe the covariance matrix 



of the channel vector covariance matrix of the noise vector cross covariance of the 

channel and the noise. So, now, let us find the LMMSE estimate. Now we have all the 

ingredients to find the LMMSE estimate of the channel vector h bar. 
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So, let us now proceed to find LMMSE estimate and we know we have derived this 

expression first observe now that we have noise is 0 mean expected of v bar is equal to 0; 

we have channel is 0 mean expected h bar equal to 0. This implies expected y bar equals 

expected x h bar plus v bar equals x times expected h bar plus expected v bar. 
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Now, expected h bar is 0 expected v bar is 0 so this is basically 0, so we have expected 

value of y bar is equal to 0. Basically, we have expected value of y bar equal to 0 

expected value of h bar equal to 0. So, the parameter expected is 0 mean observation 

vector is 0 mean, so we can use the expression for the LMMSE estimate that we have 

derived previously. We have h hat will be R hy into R yy inverse into y bar, this is the 

this is the expression for the LMMSE estimate. 

So, now we have find these two quantities; we have to find R hy and R yy and R yy 

inverse we have to find these two quantities. 
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So, now let us start with R yy; R yy equals expected value of y bar y bar transpose which 

is equal to expected value of x h bar plus v bar into x h bar plus v bar transpose using the 

properties of the transpose this is basically x h bar plus v bar times h bar transpose times 

x transpose plus v bar transpose. This is equal to expected value of x. Now, let us take 

the product term by term x h bar h bar transpose x transpose plus v bar h bar transpose x 

transpose plus x h bar, I am taking the product term by term taking the product v bar v 

bar transpose. 
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Now if you take the expectation operator inside you will get x expectation of h bar h bar 

transpose x transpose plus expected value of v bar h bar transpose x transpose plus x 

expected value of h bar v bar transpose plus expected v bar v bar transpose. Now we 

have already said that the noise and the channels are uncorrelated so therefore expected 

value of v bar h bar transpose expected value of h bar v bar transpose is are both 0. 

Expected value of h bar h bar transpose this is sigma h square times identity, we have 

already derived that expected value of v bar v bar transpose this is square time identity 

this also we have already derived, so this becomes sigma h squares. 

So, let me write this x times sigma h square times identity matrix into x transpose plus 

sigma square times identity which is basically sigma h square is a scalar so bring it out 

this becomes x x transpose plus sigma square times the identity matrix this is your 

covariance matrix R yy; this is the covariance matrix R yy. R yy is the covariance matrix 

which expected value of y bar y bar transpose is sigma x square x x transpose plus sigma 

square times identity, where x of course remember I can recall this is the pilot matrix. 
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And observe that of this matrix observe that this is N cross M this is N cross M, so R yy 

this is N cross M M cross N, so R yy is basically N cross N this is an identity matrix is 

naturally also N cross N. 
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Now, let us look at R hy. R the cross covariance matrix of h comma y R hy is expected 

value of h y bar h bar y bar transpose this is equal to expected value of h bar times x h 

bar plus v bar transpose which is equal to expected value of h bar h bar transpose x 

transpose plus v bar transpose equals expected value of h bar h bar transpose x transpose 

plus h bar v bar transpose expanded it term by term. 
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Again take the expectation operator inside this is going to be expected value of h bar h 

bar transpose x transpose plus expected value of h bar v bar transpose, noise and 

channels are uncorrelated expected value of h bar v bar is 0 this is equal to expected 

value of h bar h bar transpose. You already see this is sigma h square times identity, so 

therefore this becomes sigma h square times x transpose. 

This is your R hy. So, we have now both the quantities we have R hy we have R yy 

therefore the channel estimate is h hat is equal to R hy into R yy inverse into y bar that is 

the LMMSE estimate. Now we are going to substitute these quantities to derive the 

LMMSE estimates. 



(Refer Slide Time: 27:08) 

 

So therefore, now LMMSE estimate is given as; LMMSE estimate of h bar is h hat this is 

h hat equal to R hy which is sigma h square times x transpose R yy inverse sigma h 

square x x transpose plus sigma square times identity this is N cross N identity matrix 

inverse into y bar this is you expression for the LMMSE estimate this is the expression 

for LMMSE estimate of the channel vector h bar. Let us write this down again LMMSE 

estimate of channel vector h bar for multi-antenna downlink wireless. So, multi-antenna 

downlink wireless channel estimation that is h hat equals sigma h square x transpose 

times sigma h square h x x transpose plus sigma square identity inverse times the vector 

y bar y bar is the observation vector. 

So, we have derived the expression for the LMMSE estimate of the channel vector. And 

therefore, you will illustrate basically the general principle of LMMSE that is linear 

minimum mean squared error estimation of a channel vector. Previously we have only 

considered scalar parameter now we have extended to a scenario with a vector parameter. 

Further, there is a way to simplify this expression for the estimate further which we are 

going to do in the subsequent module. So, this module basically involved applying the 

principle of LMMSE estimation to derive the channel derived the estimate of the channel 

vector of a multi-antenna wireless communication downlink scenario. 



So, we will stop here we will simplify this expression for the estimate further in the next 

module and we will also derive the mean squared error, that is the mean squared error or 

the mean squared error of this LMMSE estimate. So, we will stop here. 

Thank you very much. 


