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In this lecture we are going to talk about what do we mean by weight distribution of a linear
block code and then we are going to talk about how is the error correcting capability and error

detecting capability of a linear block code dependant on the minimum distance of a code.
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Lecture #5B: Distance Properties of Linear Block Codes-1I

So we will continue basically our discussion on distance properties that we started last time.
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Distance properties of block codes

Eaump[e 3.2- Lt k = 3- and i = 6. The table F'iveﬂ. & I'lﬁ 3] linear black
code

Message Codewords
(up, g, 12)  (vo, vy, Vo, 15, Vg, )
@00 [000000)
(100) (011100)
(a10) (101010
(110) (110110)
(001) (L10001)
(101) (101101)
(011) 011011}
(111) (000111)

So this is one example of a linear block code where number of information bits is three.
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Distance properties of block codes

Example 3.2: Let k = 3 and n = 6. The table gives a (6. 3) linear block

code

Message Lodewords

(g, thy, 4z)  (vo. ¥, va. 4, v, )
(000) —(D00D000) 0
(100) —> (011100} 3
(010)—=s (101010) 3
(110) (1L10110) i+
(001) (110001) 3
(101) (Lo1101) 4
(011) (011011) o
(111) (000111) 2

And number of coded bits is six, this is a list of 2k code words which is eight code words, a
message bits and these are their corresponding code words. So these are the from 000 to 111
these are our 2k message bits and corresponding to each of these message bits these are the
corresponding code words, okay. Now let us look at what is the weight distribution of these code
words, so this code word this is all zero code word so the weight, hamming weight for this is

basically zero, what about this?

This code word has three ones so hamming weight is three, this code word has three ones so its
hamming weight is three, this code word has four ones so the hamming weight is four, this code
word has three ones so hamming weight is three, this one similarly has hamming weight four,
this one hamming weight four and this one has hamming weight three. Now what is the
minimum distance of the code? As you recall we define the minimum distance of a code as

minimum weight of a non - zero code word.
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Distance properties of block codes

Example 3.2: Let k = 3 and a = 6 The table gives a (6, 3) linear block
code

Message Codewords
(up, wy, ua)  (vp, v, v, va, vy, ¥5)

(000) —>(000000) 0
(100) —s (011100) 3
(010)—s (101010) 3
(110) {110110) 4
(001) (110001) 3
(101) (to1101) 4
(011) D11011) <
(111) f000111) 3

So what is the minimum weight of a non - zero code word in this case? It is three, so the

minimum distance of this code is three.
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Distance properties of block codes

@ Let A; be the number of codewords in C with Hamming weight +

So let Ai denotes the number of code words in C with hamming weight 1.
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Distance properties of block codes

Example 3.2: Let k = 3 and a = 6. The table gives a (6. 3) linear block
code

Message Codewards

(vg by, 02) (v vy, v, v, g, )
(000) —>(000000) 0
(100) — s (011100) 3
(010)—s (101010) 3
(110} {110110) i+
(001) (110001) 3
(101) {101101) 4
(011) 011011) =
(111) (000111) 3

So is you look here if i, so I will use Ao.
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Distance properties of block codes

Example 3.2: Let k =3 and n = 6. The table gives a (6,3) linear block

code

1]
Q9

Meszage Codewords
(g, iy, 1) [vo. vy, b, v, vy, )

p g

{000) —> (000000 0
(100) —> (011100) 3
(010)—s (101010 3 Ay=4
(110) (110110) i+ A+=3
(001) (110001) 3
(101) (101101) 4 Ag=0
(011) (011011) 4 Acﬁo
(111) (000111) !

To denote number of code words which have hamming weight zero and that number is 1, do we
have any code word with hamming weight one? No, so A1 is going to be 0, what about A2? How

many code words we have with hamming weight two, again that is zero, what about A3?

That is basically one, two, three, four, you have four code words with hamming weight three, A4
one, two, three okay, we do not have any code with hamming weight five or hamming weight six
and you can do a quick check, the number of code words should add up to number of code words

that we have which is eight 1+4+3, okay.
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Distance properties of block codes

@ Let A, be the number of codewords in C with Hamming weight 1

So we are denoting by Ai the number of code words in this linear block code with hamming

weight i.
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@ Let A; be the number of codewords in C with Hamming weight

@ The set {Ag, Ay, --- Ay} 15 called the weight distribution of C

Now this set which describes how many code words we have of particular weight, this is

basically known as weight distribution of a linear block code c.
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Distance properties of block o

Example 3.2: Let k = 3 and n = 6. The table gives a (B, 3) linear block

code

Meszage Codewords AU =1
(g, . ) (. vy, v, v, vy, ¥5) A=0
(000) —> (000000) 0 A1=O
(100) —s (011100) I
(010)—s (101010) 3 A=4
(110) (L1o0110) 4 A+:3
(001) (110001) 3 A
(101) (101101) %+ c=0
(011) (011011) 4 A("O
{111) (000111) 3

So for this block code the weight distribution is given by this.
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Distance properties of block codes

Example 3.2: Let k = 3 and n = 6. The table gives a (6. 3) linear block

code

Message Codewords AU =1
(. tn,0) (v, v, 4,14, 4, v5) A=0
(000) —>(000000) 0 A_L:O
{100)—s (011100) X
010)— (101010) 3 As=4
(110} (110110) 4 A*=3
(001) (10001 3,
(101) {to1101) 4 s=0
(011) [011011) 4 Acf,o
(111) (000111) =

This completely specifies the weight distribution of this particular (6, 3) linear block code.
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Distance properties of block ¢

@ Let A be the number of codewords in C with Hamming weight 7
@ The set {Ag, Ay,--- . A} is called the weight distribution of C
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Distance pre

@ Let A; be the number of codewords in C with Hamming weight «
@ The set {Ag, Ay, A.} s called the weight distribution of C
# Notethat 4 =1, and 30, A; = 2°

And since we have said a linear block code will have a non - zero code word.
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Distance properties of block codes

@ Let A, be the number of codewords in € with Hamming weight
@ The set {Ag, Ay, --- . A, 5 called the weght distribution of C
@ Notethat 4 =1,and 37 A, =2

So Ao will be one and sum of all these code words they should all add up to total number of code

words which is 2%
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Distance properties of block codes

@ Let A; be the number of codewords in C with Hamming weight
@ The set {Ag. Ay, --- . A, s called the weight distribution of C
@ Notethat 4, =1, and 30 A =2"

@ Example 3.3: For the (6.3) code in example 3.2

&J - l)q: =U’.A_' = OA-: = 4!44 —3.-"‘1-; - Dﬂm LU.

I just worked out this example for the (6, 3) code that we have shown in the previous slide and I

showed you that in this particular example.
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Distance srties of b

@ Let A, be the number of codewords in C with Hamming weight &
@ The set {Ag, Ay, --- . A, ) 15 called the weight distribution of C
® Note that Ay =1, and 3 7 A, = 2*
@ Example 3.3: For the (6,3) code in example 3.2
.dq = l‘fh = UA; = UA\ — 4A4 = 3)‘1-1 - Gnqh - ﬂ

—

Aois 1, Az is 4, A4 is 3, rest all others are zero.
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Distance properties of block codes

Let A, be the number of codewords in C with Hamming weight
The set {Ag, Ay.--- . Ag} 15 called the weight distribution of C
Note that 4y =1, and 30 (A =2°

Example 3.3: For the (6.3) code in example 3.2

A=1A4=0A=0A=4A=3A=0A=0

Oin in the above example s 3.

And I also showed you that the minimum distance of this code is three because minimum weight

of a non — zero code word in this example is three.
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Error detecting properties of block ¢

@ The probability of undetected error on a BSC is given by

P.AE) =3 Ag(1-p)
=1

Now the probability of undetected error for a linear block code over a binary symmetric channel

is basically related to the weight distribution of the code.
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Error detecting properties of block codes

& The probability of undetected error an a BSC is given by
PUE) =Y Ap(1-p)"
=1

@ Example 3.4: For the (6, 3] code in example 3.2,

P.(E) II"".l:'-‘[l P]! +3p'(1 p): 2x ﬂp1 (far small p)

So for a (6, 3) linear block code and so when does an, when does a undetected error happens? An
undetected error happens if let us say you send one particular code word and at the receiver you
receive some other code word, so without loss of generality let us assume that we sent a all zero

code word and at the receiver you received any other non — zero code word.
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Error detecting properties of block codes

@ The probability of undetected error on a BSC is given by
P.(E) =3 Apl(1 - )"
Frl

@ Example 3.4: For the (6, 3) code in example 3 2,

PAE) =41 - p)* + 3p*(1 - p)* =4 (for small p)

So if I send an all zero code word at the transmitter and at the receiver you receive any other non

— zero code word then that will be the case of undetected error, so you can see basically.
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Error detecting properties of block codes

@ The probability of undetected error on a BSC is given by
PE) =Y Ag(1-p)
=1

& Example 3.4: For the (6,3) code in example 3.2,

P(E) =4p'(1 - p)' + 3p*(1 - p) =4’ (for small p)

That is why I have written it as, so what is the probability of when you are sending an all zero
code word what is the probability of getting another code word of weight Ai of weight i, what is
the probability that when I am sending an all zero code word and you receive a code word which

has weight 1?
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& The probability of undetected error on a BSC s given by —

n T B -
PUE) = Y Agi(1 - p)"
i=1

| =
@ Example 3.4: For the (6. 3) code in example 3.2, =P |

P.E)=4p*(1-p) +3p*(1 - p)* =4p* (for small p)

Now that probability is given by, since we are considering a binary symmetric channel now
recall what happens in binary symmetric channel, two inputs 0 and 1, two outputs 0 and 1, and
what is the crossover probability? That is basically given by P, so with probability P, 0 can get
flipped to 1, 1 can get flipped to 0, and the probability of correct detection is 1-p so you are
sending a code word which is an n bit tuple. Now what is the probability that you are sending an

all zero code word which is of all zero bits?
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Error detecting properties of block codes

@ The probability of undetected error on a BSC is given by - P
[+ I
Pu F B Fjl I l n—r
(E) %‘:"‘p{ P) 2

| =
@ Example 3.4: For the (6, 3) code in example 3.2, = |

P.E) =4p%(1 - p)* + 3p*(1 - p)’ = 4p®  (for small p)

You receive another code word of weight i, now that probability is given by P! this will happen
when i bits get flipped and n-i bits do not get flipped, so that probability is given by p' (1-p)™and
how many such code words exist? That number is given by Ai so the probability of getting a

weight 1 code word at the receiver when you send an all zero code word.
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Error detecting properties of block codes

& The probability of undetected error on 2 BSC is given by =P
n D N
PE) =Y Ag(1-p)"
P
@ Example 3.4: For the (6, 3) code in example 3.2, I=p |

F.(E) 4p'(1 p:l‘ +3p%(1 - pY = dp'  (for small p)

That probability is basically given by this okay, now an undetected error will happen if the

receiver receives any non — zero code word.
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Error detecting properties of block codes

& The probability of undetected error on a BSC is given by —p

P S o
P.(E) X:‘_.p'{l p)" 2
] ——

| S

@ Example 3.4: For the (6,3) code in example 3.2,

P.(E) _ﬂpifl p)' +3p'(1 - p) =g’  (for small p)
—_—

So I have to sum up this probability for all 1 going from 1 to n, so this is my overall undetected
error probability if I send a linear block code over a binary symmetric channel, so for the
example that I have considered I know the weight distribution, so if I plug that in here what I get
is, so there were four code words with weight three so this is 4p> and what was n, n is six so 6-i

which is three in this case is three so first term that I will get is this.
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tecting properties of block codes

@ The probability of undetected error on a BSC is given by

PAE) =3 Ap(1-p)"
i=1

The next term corresponding to these code words is given.
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Distance properties of block codes

@ Let A, be the number of codewords in C with Hamming weight
& The set [Ag, Ay, -+ A,} 1 called the weight distribution of C

o Notethat A, =1, and 3 A =2

@ Example 3.3: For the (6,3) code in example 3.2

A=1.4=0A4=0A=44=34=04=0

@ duin in the above example is 3.
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Distance properties of block codes

@ Let A; be the number of codewords in C with Hamming weight i
@ The set {Ag, Ay, -~ A,} is called the weight distribution of C
@ Notethat g =1,and } A, =2

# Example 3.3: For the (6.3) code in example 3.2

A=lLA=0A=0A=4A=3A=0=0

@ dpny in the above example 5 3.
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Error detecting properties of block codes

@ The probability of undetected error on 2 BSC is given by

PAE) =3 Ag(1-p)
i=1
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Error detecting properties of block codes

& The probability of undetected error on a BSC is given by —p

0

PAE)= Y Ap(1-p) >
] ———

# Example 3.4: For the (6, 3) code in example 3.2, =p |

PAE) =45°(1 - p)* + 3p*(1 - pf’ = 4p> (for small p)
—_—

So there are three code words of weight four probability of four bits getting flipped is p* and
probability of the other two bits not getting flipped is (1-p)* and since p is typically small I mean
I can approximate it for a small p, I can approximate this undetected error probability as 4p*
because this will be close to one and since p is small a small number p* will be a small number so

this be roughly equal to 4p° this is for the case when p is small.
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scting properties of block codes

# There @ust (k) linear block codes for which
pu[F]i 2718 ferallp<i/2

on a BSC

So you can see in general.
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Error detecting properties of block codes

& The probability of undetected error on a BSC is given by - P
n D =
P.(E) ;‘Tip'{l P >
| =
@ Example 3.4: For the (6. 3) code in example 3.2, I=p |
P.(E) _ap3[1 g + 31 - p) = 4;@ (for small p)
— s

So in this particular example the undetected probability basically varies as p® which is basically

same as n-k, in general we can show that.
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Error detecting properties of block c
E prop

@ There exist (n k) linear block codes for which
PE)=27'" " forallp <1/2

on a B3C
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@ There exist {rl,l-() linear block codes for which

PE)=2-=2 forallp<1/2

an a BSC

That undetected error probability is dependent on how many parity bits that we have, so more the

number of parity bits lesser will be the undetected error probability.
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@ There exist (n.k} linear block codes for which

PlE)=27 "% frallp<i1/2

on a BSC

@ The above bound shows that the undetected error probability can be

made to decrease exponentially with the number of parity check bits
n— k in a linear code

So we can make the undetected error probability go small by increasing the number of parity
bits.
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Error detecting properties of block c

& There exist (n k) linear block codes for which
PE)=2"" farallp=1/2

on a BSC

@ The above bound shows that the undetected error probability can be

made to decrease expanentially with the number of parity check bits
n— k in a linear code

@ For a codeword with minimum distance dmia. NO EffOF pattern with

weight g — 1 or less can change a transmitted codeword into
anather codeword

Now if we have a code word with minimum distance dmin we know that any error pattern, a
weight less than equal to d min -1 is not going to change that code word into any other valid code

word, so in other words if there is an error pattern.
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Error detecting properties of block cc

@ There wast (n k) linear block codes for which
PAE)=2 '™ Fwallp<1/2

on a BSC

@ The above bound shows that the undetected error probability can be
made to decrease exponentially with the number of parity check bits
n— kin a linear code

@ For a codeword with minimum distance dn.,, no error pattern with

weight diye — 1 or less can change 3 transmitted codeword into
another codeward

Of weight dmin -1 or less, then it cannot change a valid code word into another valid code word

what does that mean? It means that we can actually detect any error pattern of weight upto dmin -
1.
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Error detecting properties of block codes

@ There edst (n k) linear block codes for which
PAE)<27™ M forallp<1/2

on a B5C

@ The above bound shows that the undetected error probability can be
made to decrease exponentially with the number of parity check bits
n— kn a linear eode,

@ For a codeword with minimum distance dyin. no error pattern with
weight dwin — 1 or less can change a transmitted codeword into
another codeword

@ Therefore, all error patterns with dg, — 1 or fewer errars are
detectable, and dy, — 1 15 called the random error detecting
capability of a block code.

So all error patterns of weight dmin-1 or fewer errors are basically detectable and this is.

(Refer Slide Time: 13:00)

E = l_ i iz
@ There exist (n.k) linear block codes for which Z -C{mh
—s
PAEY<2 ™" forallp<1/2 O olo
i —11
on a BSC 10

@ The above bound shows that the undetected error probability can be
made 1o decreace expanentially wath the pomber of party check batg
n— k n a linear code.

& For a codeword with minimum distance dp,, no =rror pattern with
wright dew — | of less can change a transmitted codeword into
anorher codewond

@ Themfore all error patteErng with e — 1 OF fewweir erroes are

detectable, and g — 1 B called the random error detecting
capability of a block code




Also known as random error correcting capability of a linear block code, now take an example of
a repetition code that we did in the first class so let us say we have a rate one 1/2 repetition code
so then for 0 we are sending 00 and for 1 we are sending 11, now let us assume because of error
in the channel some other bits got flipped so let us say this a what we received in when these
what we — let us say what we received is 1 0 if you receive 1 0 can you detect, so what is the

minimum distance of first answer this question?

What is the minimum distance of this code, this rate one ' repetition code, we can see basically
a minimum distance is 2, minimum distance of this code is 2 so according to this we should be
able to detect all error patterns of weight 1, so let us take an example, let us say we receive 1 0,
can you detect the error, yes we can because since it is a rate one 2 repetition code what we

expect is we expect to receive either 00 or 11.
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Error detecting properties of block codes
|
R= = Adwins 2
@ There exist (n.k) linear block codes for which Z i

—8
PAE)=2 "™ forallp=< 12 D 00
1 =11

on a B5C i0

@ The above bound shows that the undetected srror probability can be
made (o decrease epanentially wath the midmber of parity check bats
m— km a linear code

@ For a codeword with minimum distance de,, no =rror pattern with

weight dey — | or less can change a transmitted codeword into
another Codesarnd

@ Therefans, all errar patierns with tes 1 o feveir errors are
detectable, and dpy — 1 B called the random error detecting

capability of a block code

If we transmit these code word over a binary symmetric channel but what we have received is 1
0 which is neither 00 nor 11, so we are able to detect single error, so to repeat basically if you
have a linear block code whose minimum distance is dmin you will be able to detect all error

random errors of error pattern up to dmin - 1. Next we are going to show how is the error



detecting capable, error correcting capability of a linear block code related to the minimum

distance of a code.
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Error correcting properties of block codes

Theorem

@ A block code € with minimum distance des s capable of correcting
all error patierns af weght U of less, whers | i85 an integer such that

2t + 1 < iy S 2+ 2
e T e
Froof

So if we have a linear block code C whose minimum distance iS dmin, Where dmin satisfies this
relation dmin is > than equal to 2t + 1 where t is an integer and it is < than equal to 2t + 2. If dmin

satisfies this relation and if we have a linear block code with minimum distance dmin.
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Error correcting properties of block codes

|
Theorem ‘

@ A block code C with minimum distance de. 15 capable of carrecting
all arror patterns of weight © or less, where t s an integer such that
2t + 1 < by < 28+ 2

e e
Froof

Then it is capable of correcting all error patterns up to weight t, so let us prove this result.
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Error correcting properties of block codes

Thearem

@ A block code € with minimim dstance de;. & capahble of cormecting
all error patterns of wesght t or [ess, where t s an integer such that
2t 4+ 1 %5 oy S 2t + 2
Proof
@ Assuming codeword v is transmitted and r is the received sequence
Lat w # w ba any other codeword Then adfw, w) < d{w r) + dr, w)
[trnangle ineguality)

=
@ |f the error pattern has weight t', then divr) =t V¥ =

Let us assume the code word that is transmitted is given by v and what we received is this n-
tuple r. Let us assume there is another code word w which is not same as v, now we know from
triangular inequality that hamming distance between v and w will be < than equal to hamming
distance between v and r + hamming distance between r and w. Now let us assume that the error

pattern has weight t* and what is r, r is nothing but v+ this error pattern.

Correct, so the hamming distance between v and r is going to be the weight of this error pattern

and which we are denoting by t -.
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Error correcting properties of block codes

Froof {contd)

@ Since v, and w are codewords.
div.w) > dpn > 28+ 1
Therefore |

dir.w) = div.w) —div.r) > 2t + 1 - ¢

Now since v and w are valid code words so the hamming distance between v and w will be at
least equal to minimum distance of the code, so the hamming distance between v and w is > than

equal to minimum distance of the code and in the beginning we define.
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Thearem

@ A black code C with mimmum distance d,.,. s capable of cormecting
all error patterns of weight t or less, where © S an nteger such that
2041 €ty S 24 2

Proof

@ Azsuming codeword v is transmitted and r & the received sequence
Let w # v be any ather codeword Then div, w) < diw, r) + dir, w)
[triangle inequality).

=
@ If the error pattern has weight t7, then diwr) =t Ve =

That our minimum distance is at least 2t + 1.
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Error correcting properties of block codes

Froof {contd)

@ Since v, and w are codewords.
div.w) = dpn = 28 + 1
Therefore

dir.we) = diw,w) — d{v.r) = 2t + 1 - ¢

So from these 2 we can write that hamming distance between v and w is > than equal to 2t + 1.
Now from the triangular inequality we know that hamming distance between r and w this we can

see from here.
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Thearem

@ A hlock code C wiath minimum distance d.. is capahle of correcting
all error patterns of wesght ¢ or less, where tis an integer such that
2t L€t S 21+ 2

Proaf

@ Asgzuming codeword v is transmitted and r i the received sequence
Lot w +# w be any ather codeword Then d{v, w) < div, r) + dr, w)

(E i lity)
riangle ineguality r=v+e

@ [T the error pattern has weight t°, then divr) =t

This relationship basically triangular inequality, what we have is.
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Error correcting properties of block codes

Proof {contd)

@ Since v, and w are codewords

div.w) > dpn = 28+ 1
Thermfome :l_{\": ‘-'] 5 d—{-r-‘ ""'} +J'-("r’ *]
dir. w) n‘w.wi diw.r) > 2+ 1

The hamming distance between v and w to be < than equal to hamming distance between r and w
+ hamming distance between r and v right? Now this we can write as, we can bring this here and
we can bring this here, what we can write this as let us say we can write this, this relation in this
particular form okay? Now what is this quantity, hamming distance between v and w, the
hamming distance of between v and w is at least equal to 2t+ 1 and what is the hamming distance

between the transmitted code word and the receive code word?

This is, we denoted by t — so then hamming distance between r and w is given by 2t + 1 — 2-.
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Error correcting properties of block codes

Proof {contd)

@ Since v, and w are codewords
div.w) > dpe = 2t + 1
Therefore
dir-w) = d{v.w) —d{v.r) =2¢ +1 -+

# |ft" < t, then

B ——

dir.w) >+ 1>t and diwv.r) =i t
e

Now as long as your error pattern is < than equal 2t the weight of the error pattern is < than equal
to t, in that case the hamming distance between r and w will be, we can plug that value of t here
and what we will get is hamming distance between r and w is > than equal to t +1 which is >
than equal to t, whereas the hamming distance between transmitted code word and the received
code word is t hat which is < than equal to t what does it mean, it means that the received code

word is closer to v then any other code word w.

So what will your maximum likelihood decoder for binary symmetric channel will decide in
favor of? It will decide in favor of v so you will correctly decode this receive sequence to be v
and this was our transmit code word, so you will not make an error. So what we have shown here

is as long as your error pattern has weight u to t those error patterns are correctable provided
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Error correcting properties of block codes

Proof {contd)

@ Since v, and w are codewords
div.w) > dpn > 286+ 1

Therefore, d(v,v) £ d_{'nu} 1+dfx "]

dir. w) = n‘w.wi div.r) > 2e+ 1"




(Refer Slide Time: 21:43)

Error correcting properties of block codes

Theoeam

@ A block code C with minimum distance d... s capable of cormcting
all error patterns of weight t or less, where t 1S an integer such that
2041 Lt S+ X

Proof

@ Assuming codeword v is transmitted and r is the received sequence.
Lot w + v be any ather codeword Then div, w) < div, r) + d(r, w)

(triangle ineguality). Y=vie

@ |f the error pattern has weight t°, then d(ur) =t

The minimum distance of your code is dmin and it satisfies this relationship, so if minimum
distance of the code is at least 2t + 1 and it is < than equal to 2t + 2 then it can correct all error

patterns of weight t or less.
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Error correcting properties of block c

Froofl {contd)
# Since v, and w are codewords,

div.w) > dpm = 2t + 1
Therefare
dir.w) = div.w) —d{w.r) > 2t +1 -1t
e [ft" < t, then
dirrw) >t4 1>t and diwr)=1t <t

@ Hence r is closer to ¥ than any other codeword w, and an ML
decndar will decode corractly

So as we can see here the received code word is closer to v then any other code word w so it will

decide in favor of v and this r will be decoded as v.
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@ For all | =  + 1, there 5 atleast one error pattern of weight | that

may not be correctly decoded by an ML decoder
Froof

@ Let v and w be two codewords such that div.w) = dw,. Let e, and

&; be btwo error patierms such that |
i) &+8 —=¥V+Ww

(i) weimy + @) = wiey) + wies] [nonoverlapping 1's)
L) weleg) ) o T
Then,

wie ) + wie) = wiey + ;) = wiv + w) = div + w) = dnia

Next we are going to show that if there exists an error pattern of weight greater than equal to t +1
then our decoder whose minimum distance is at least 2t+1 but less than 2t + 2 this decoder will
make an error, in other word it would not be able to correct this error pattern of weight t + 1so
for all error patterns of weight L, if L is at least t + 1 then our maximum likelihood decoder may

not be able to correctly decode.

Or correct that error so let us prove this, if v and w are 2 code words and let us assume that the
hamming distance between v and w is equal to the minimum distance of the code which is
denoted by tmin, and let e1 and ez are two error patterns which satisfies these 3 properties and what
are these 3 properties? The sum of e1 and ez is same as v + w, the second property is e1 and ez

they do not have any over lapping ones so weight of e1 +e2 can be written as.
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Error correcting properties of block codes
E prop

r'hle!,ln-,-!n
@ For all | = ¢+ 1, thers 5 atleast one error pattern of weight | that
may not be correctly decoded by an ML decoder
Froof
@ Let v and w be two codewords such that d{vw) = de,. Let ey, and
&; be two error patterns such that
i} Byr8—=—¥+rWw

(] wefm = o) = wim ) + wie) [ nemoverlapping 1's)
L) wwie ) ! | |
Then,
wiey ) + wieg) = wiey +a;) = wiv + w) = div g w) = dyia

Weight of e1 + weight of e2, and we will show that if there is an error pattern of weight L where L
is at least t + 1 then our maximum likelihood decoder will make an error in decoding. So the way
we have chosen our error pattern weight of e1 + weight of e2 is given by weight of el + €2 this is
from 2, and from 1 we know el + €2 is nothing but v + w so this is same as weight of v + w and
this is nothing but this is hamming distance between v and w and we have said the hamming

distance between v and w is the minimum distance, so this is equal to minimum distance.
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Error correcting properties of block codes

® Azsuming v is transmitted and r = w + e is received. Then

diw.r) wiw +r) = wiw+ v+ ey) = wieg) = dy, — wiey)
2t+2=(t+1l)=t+1

Now let us assume that we transmitted this code word v and what we received is r so this v got

corrupted by this error pattern el.
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Error correcting properties of block codes

[ heorem
@ Far all | = ¢+ 1, there s atleast one error pattern of weight | that
may nat be correctly decoded by an ML decoder
Froot
@ Let v and w be two codewords such that d{v.w) = du,. Let &y, and
& be two error patterns such that
B te VW

(] wefm = o) = wie; | + o) { nonowerlapping 1's)
Lo} welmp ]2 6L
Then,

wie | + wieg) = wiey +e3) = wiv +w) = d{v’wﬁ = hynin

Which has hamming weight of at least t + 1.
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Error correcting properties of block codes

@ Assuming v is transmitted and r = v + &} is received. Then

diwe. r) wiw +r) = wiwt+viey) = wieg) = do, — wieg)
2+2—-(t+1ll=t+1

Now we will repeat the same exercise, we will try to find out the hamming distance of this
received code word from the correct transmitted code word v and hamming distance between the
received code word and any other code word w. So if we calculate the hamming distance
between w and the received code word we know that hamming distance between w and r is
nothing but hamming weight of w and r. And what is r? r is my received code word v+ei. So I

can write this as w+v+ei1. Now what is w+v?
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Error correcting properties of block codes

Thearem
@ For all | = t + 1, there is atleast one error pattern of weight | that
may not be correctly decoded by an ML decoder.
Proof:
@ Let v and w be two codewords such that d(v,w) = du,. Let e, and
e; be two error patterns such that
(1) & +& W+ W
(i) wier + &2) = w(e1) + wlez) (nonoverlapping 1's)
(i) wie)=Ize+1
Then,

wiep) + wies) = wie; + e3) = wiv+w) = d{v_, w) = diin-

From one I have w+v is same as ej+ea.
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g properties of block codes

@ Aszuming v is transmitted and r = v + @; is received. Then

diw.r) = ww+r)=wlw+v+e)=wle:)=du — wie)
< A+2-(t+1)=1+1

So then this is e1+exte1 so e1t+er will be zero so this will be e2 w(e2) and what is w(ez2)?



(Refer Slide Time: 26:37)

Error correcting properties of block codes

Thearem
@ For all 1 = ¢+ 1, there is atleast one error pattern of weight | that
may not be correctly decoded by an ML decoder.
Proof:

@ Let v and w be two codewords such that d(v.w) = ds. Let &, and
e; be two error patterns such that

(i &1+ =v+w

() wier + ez) = wiey) + wiez) (nonoverlapping 1's)
(i) wlie1)=I>e+1

Then,

wie, ) + wles) = wie; + e;3) = wiv +w) = d{u_,w'] = s

From this relation we can see w(er) + w(e2) is dmin. So w(e2) is dmin— w(e1).
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rrecting properties of block codes

@ Assuming v is transmitted and r = v + @; is received. Then

diw,r}] = wiw+r)=ww -r-u+e1}—w[ej}—fml- wie;)
2t+2—(t+1)=1t+1



So this we can write as w(e2) as dmin — w(e1). So dmin is less than equal to 2t+1 and w(er) is

atleast t+1 so w(e2) will be less than 2t+2-(t+1) which is t+1. So the hamming distance between

w and r is less than t+1.
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Error correcting properties of block codes

d(v,7)= v(<)
@ Assuming ¥ is transmitted and r = v + €; is received. Then

diw.r)] = wiw-r)=wlwi+vi+e)=uwle)=dn—we)
2t42=(t+1)=¢t+1

@ Therefore d(w, r) < d{v,r) and an ML decoder may decode
incorrectly.

And what is the Hamming distance between v and r, this is w(e1) okay. And what is w(ei1), w(e1)

is given by
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Error correcting properties of block codes

Thearem:
@ For all | = t + 1, there is atleast one error pattern of weight / that
may not be correctly decoded by an ML decoder.
Proof:

@ Let v and w be two codewords such that d(v.w) = dps. Let ey, and
e; be two error patterns such that
{-:I & + 8 W+ W
(i1) wien + e2) = wler) + wlez) (nonoverlapping 1's)
(i) wie)=I=t+1
Then, ==

wiey) + wiex) = wie; +e1) = wiv+w) = d{u_’ w) = diin.

1 which is atleast t+1.
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@ Assuming v is transmitted and r = v + e; is received. Then

diw.r)] = wwi+r)=wwt+wv :—el}—w[&_}—r_:',m_,,-- wie;)
A+ 2-[txl)=t+1

So what we have shown here is
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Error correcting properties of block codes

d(v.7)= v(=)
@ Assuming v is transmitted and r = v + e; is received. Then

diw.r) = ww+r)=wlw+v+e)=wle)=dn, — w(e)
2t+2=(t+1)=¢t+1

@& Therefore d{w, r) < d(v,r) and an ML decoder may decode
incorrectly.
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Error correcting properties of block codes

@ Assuming v is transmitted and r = v + ey is received. Then

diw.r) = wwir)=ww+v+e)=w(e)=dnm—wie))
2t+2=(t+1)=t+1
@ Therefore d(w.r) < d(v.r) and an ML decoder may decode
incarrectly
@ Hence for a block code with minimum distance d;,. an ML decoder

iy

£ - -
will correctly decode any error pattern of weight t = | %21 | or |ess

Weight of w, hamming distance between w and r is less than t+1 whereas hamming distance
between v and r is greater than equal to t+1. So what we have shown is hamming distance w and
r is less than equal to hamming distance between received code word r and the true code word

which was actually transmitted which is v. So in this case the maximum likelihood decoder will



decode in favor of w and not v and will make a mistake. So through this construction we have
shown that if your error pattern is a weight t+1 then you are not guaranteed to correct that error.

So from this and the previous result
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Error correcting properties of block codes

@ Assuming v is transmitted and r = v + &, is received. Then

diw.r)] = wiw-r)=wlw+v+e)=w(e)=dn.— wley)
2t +2={t+1)=¢t+1

@ Therefore d{w,r) < d(v.r) and an ML decoder may decode
incorrectly.

@ Hence for a block code with minimum distance d,,,. an ML decoder

. A
will correctly decade any error pattern of weight t = | = L

| or less

We can conclude that if we have a block code with minimum distance dmin Which satisfies
relationship that dmin lies between 2t+1 and 2t+2 then this linear block code with minimum

distance dmin should be able to.
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@ Assuming v is transmitted and r = v + &, is received. Then

diw,r)] = ww+r)=w(w+v+e)=we)=dy— w(e)
242=(t+1)=t+1

@ Therefore d(w.r) < d(v,r) and an ML decoder may decode
incorrectly

@ Hence for a block code with minimum distance dy;,. an ML decoder

a |
will correctly decode any error pattern of weight t = | Z=a—1 | or less

Correct all error patterns upto weight t, where t is given by this.

(Refer Slide Time: 29:12)

- s Sl CLL e

f Y (T T e

@ Assuming v is transmitted and r = v + &, is received. Then

diw.r) = w(w+r)=wlw+v+e)=wle:)=dunu — w(e)
2t4+2=(t+1)=¢t+1

@ Therefore d(w,r) < d(v,r) and an ML decoder may decode
incorrectly.

@ Hence for a block code with minimum distance d,;,. an ML decoder
. 5 A
will correctly decode any error pattern of weight t = | “—La—ll or less
@ t is called the random error correcting capability of the code

So this t is known as random error correcting capability of the linear block code. Next we are

going prove a result which is as follows.
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Error correcting properties of block codes

Theorem

@ For an (n, k) linear code C with minimum distance dy,, all the
n-tuples of weight t = |(dwis — 1)/2| or less can be used as coset
leaders of a standard array of C

Proaof

So if we have an (n ,k ) linear block code whose minimum distance is given by dmin then we can
show where dmin lies between 2t+1 and 2t+2, then we can show that all n-tuples of weight t or
less can be used as coset leader in our standard array. So we are going to prove this result using
method of contradiction. Now let us say, so how does method of contradiction work, so we will

say let us say they are all error patterns are weight upto t. Let us say they are not coset leader.

So let, let us we will assume our scenario where there are two such n-tuples with weight up to t
which are not coset leader. In other words, they lie in the same coset or same row. And then later

on we will show that, that is not possible. So that is how this
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Error correcting properties of block codes

Thearem
@ For an (n, k) linear code C with minimum distance dy,;,, all the
n-tuples of weight ¢ = |(dmia — 1)/2] or less can be used as coset
leaders of a standard array of C
Proof
@ Since minimum distance of C is d,. minimum weight of C is also
s

@ Let x and y be two n—tuples of weight [ or less
@ wixt+y)< wix)+ wly) <2t < dun

@ Suppose x and y are in the same coset, then x + y must be 3
nonzero codeword in C.

Method of contradiction will work. So minimum distance of a code is dmin SO minimum weight
of the code is also dmin. Let x and y are two n-tuples of weight t or less. Now w(x+y) will be less
than equal to w(x)+w(y), why because there might be some over lapping ones at some locations

of this n-tuple x and y, and we are given that the weight of x and weight of y is at most t.

So then w(x)+w(y) will be less than equal to 2t and this is less than minimum distance because
minimum distance of a code is atleast 2t+1. Now let us assume that these x and y which are error
patterns of weight t or less, let us assume that they are not coset leader, so if they are not coset

leaders let us assume they are in the same coset, they are in the same row.
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Error correcting properties of block codes

Thegrem:

@ For an (n, k) linear code C with minimum distance dy,, all the
n-tuples of weight t = |(dmis — 1)/2] or less can be used as coset
leaders of a standard array of C

Proof

@ Since minimum distance of C is dyi.. minimum weight of C is also
=

[, . O ¥y = v,
@ Let x and y be two n—tuples of weight £ or less 51 L34V, - "E’“i‘
@ wix +y) < wix) + wly) < 2t < du I

@ Suppose x and y are in the same coset, then x + y must be a
nonzero codeword in C.
———

So if we assume x and y are in the same row or same coset then x+y must be a code word, why
this is so, if you recall your standard array we had something like this, first row first column was
all zero vector and then we had other code words. And then we had error pattern let us say ez so
this was ex+v2 like this was ex+v2¥. Now if you look at any two elements in the same coset or

same row and if you add them up what do you get?

Let us add this and this, what do we get, ext+ex+v2 we will get v2. If we add this and this we will
get vo+v2¥ which is another code word vs. So if we take any two elements in the same coset and
we add them up, we are going to get a non zero code word. So if x and y are in the same coset

then x+y must be a code word.
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Theorem:

@ For an (n, k) linear code C with minimum distance duy;,, all the
n-tuples of weight t = |(dmis — 1)/2] or less can be used as coset
leaders of a standard array of C

Proof

@ Since minimum distance of C is d,, minimum weight of C is also
(.

@ Let x and y be two n—tuples of weight | or less
o wix+y)< wix)+ wiy) <2t < dain

@ Suppose x and y are in the same coset, then x + y must be a
nonzero codeword in C.

@ This is impossible as weight of x + y < dwin

This is impossible, why, if x+y is a code word then what is the minimum distance of x+y, x+y

minimum distance of that must be dmin.
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Error correcting properties of block codes

Thearem

@ For an (n, k) linear code C with minimum distance dy,, all the
n-tuples of weight t = |(dmis — 1)/2] or less can be used as coset
leaders of a standard array of C

Proof

@ Since minimum distance of C is dyi,. minimum weight of C is also

dimic m—

® Let x and y be two n—tuples of weight t or less

o wix +y) < wlx) + wly) < 2t < diy

@ Suppose x and y are in the same coset, then x + y must be a
nonzera codeword in C.

@ This is impossible as weight of x + ¥ < dmia

—_—



But what is the, what is the weight of x+y we just showed in this bullet that weight of x+y is less
than dmin, that means weight of x+y is less than dmin. If weight of x+y is less than dmin then x+y
cannot be a non zero code word, because the weight of a non zero code word should be atleast
dmin. So our assumption that x and y are in the same coset is wrong. In other words then x and y
must be in different cosets, different rows and we can always make these x and y as coset

leaders. So this proves our result that.
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Error correcting properties of block

Theorem

@ For an (n, k) linear code C with minimum distance dy,, all the
n-tuples of weight t = |(dms — 1)/2] or less can be used as coset
leaders of a standard array of C

Proaf

@ Since minimum distance of C is d,,,, minimum weight of C is also

dmsin =

@ Let x and y be two n—tuples of weight [ or less

o wix +y) < w(x) + wly) < 2t < duo

@ Suppose x and y are in the same coset, then x + y must be 2
nonzero codeword in C.

@ This is impossible as weight of x + y < duis

———

All n-tuples of weight n of weight t or less can be used as coset leaders in the standard array.

And we know that if we use them as coset leaders we, those are our correctable error patterns.
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Error correcting properties of block codes

Theorem

@ For an (n, k) linear code C with minimum distance dmia. if all the
n-tuples of weight t (dmin — 1)/2]| or less are used as coset
leaders of a standard array of C, then there is at least one n-tuple of
weight £+ 1 that cannot be used as coset leader

Proof

@ Let v be the minimum weight codeword of C

Next I am going to show your result which is as follows. So if you have an (n, k) linear block
code whose minimum distance is dmin and if all n-tuples of weight t or less are already used as
coset leader, then there is atleast one n-tuple of weight t+1 which cannot be used as coset leader.

So this essentially is going to show us again the same result that any weight pattern of weight

pattern, error pattern or weight t+1 is not guaranteed to be corrected.
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Error correcting properties of block codes

Theorem

@ For an (n, k) linear code C with minimum distance dmia. if all the
n-tuples of weight ¢ (dmin — 1)/2] or less are used as coset
leaders of a standard array of C, then there is at least one n-tuple of
weight ¢ + 1 that cannot be used as coset leader

Proof
@ Let v be the minimum weight codeword of C
@ Let x and y be two n-tuples that satisfies the following conditions:

* Xty w
# x and y do not have nonzero component in comman places.

So how do we prove it, so let us assume v is the minimum weight code word of C and we have
two n-tuples x and y which satisfies these following conditions. First x+y=v and x and y do not

have any component common, so they do not have ones common in same position.
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Proof (contd )

@ From definition. x and y must be in the same coset, and

w(x) + wiy) = wiv) = duin

So from the definition
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Error correcting properties of block codes

Theorem

@ For an (n, k) linear code C with minimum distance dyn, if all the
n-tuples of weight t (dmin — 1)/2]| or less are used as coset
leaders of a standard array of C, then there is at least one n-tuple of
weight ¢ + 1 that cannot be used as coset leader

Proaf:
@ Let v be the minimum weight codeword of C
@ Let x and y be two n-tuples that satisfies the following conditions:

& X4y W
@ x and y do not have nonzero component in common places

x and y must be in the same coset, why because we know if two elements are in the same coset
and if we add them the sum is a valid code word. So if x+y=v which is a valid code word then x

and y must be in the same coset.
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Error correcting properties of block codes

Proof (contd. )

@ From definition, x and y must be in the same caoset, and

w(x) + w(y) = w(v) = duin



So that is what I said from definition x and y must be in the same coset because x+ y is v which
is a valid code word. And we know that if we add any two elements in a coset their sum is a

valid code word.
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Error correcting properties of block codes

Proof (contd )
@ From definition, x and y must be in the same coset, and

wix) + wiy) = wiv) = doie.  2ENE dmhsl-l:-ﬂ

@ |f we choose w(y) = t+ 1, then w(x) = tor t + 1 (since
: ! e e
2t+ 1 < dy S 2+ 2)

And similarly w(x) + w(y) = w(v) and we have chosen v to be the minimum distance code word
so this is given by dmin. Now if we choose our y to have a weight of t+1 then we can see from
here dmin 1s greater than equal to 2t+1 but less than equal to 2t+2. So from this and using the fact

that dmin lies between 2t+1 and 2t+2 using these two results what we get is w(x) can be t or t+1.
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Proof (contd.)
@ From definition, x and y must be in the same coset, and

wix) + w(y) = w(v) = diin-

@ |f we choose w(y) = £+ 1, then w(x) = tor ¢t + 1 (since
2t + 1 < Owin < 28+ 2)
@ Therefore if x is chosen as coset leader, y cannot be coset leader

So therefore if we choose x to be our coset leader then we cannot choose y as our coset leader.
You can see, because x and y are in the same coset and w(x) is t or t+1, whereas w(y) is t+1 so [

will choose x as my coset leader and if I choose x as my coset leader then I cannot choose y as

my coset leader.
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Theorem
@ For an (n, k) linear code C with minimum distance dmin, if all the
n-tuples of weight ¢ (dmin — 1)/2]| or less are used as coset
leaders of a standard array of C, then there is at least one n-tuple of
weight ¢ + 1 that cannot be used as coset leader
Proof:
@ Let v be the minimum weight codeword of C
@ Let x and y be two n-tuples that satisfies the following conditions:
* x4y W
@ x and y do not have nonzero component in common places

Which proves my result which says that if all n-tuples of weight t or less are used as coset
leaders then there exists atleast one error pattern of weight t+1 which cannot be used as coset

leader.
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Proof (contd. )

@ From definition, x and y must be in the same coset, and

w(x) + wiy) = w(v) = duin
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Error correcting properties of block codes

Proof (contd.)
@ From definition, x and y must be in the same coset, and

i) + wiy) = w(v) = dhia. 25N %Sl-l:ﬂ

@ |f we choose w(y) =t + 1, then w(x) =rtort+ 1 (since
2+ 1< dy <2t +2) -

(Refer Slide Time: 38:52)
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Proof (contd.)

@ From definition, x and y must be in the same coset, and
wix) + wiy) = wiv) = dn

@ If we choose w(y) = t + 1, then w(x) = tor t + 1 (since
2t+1<dy, <2t+2)

@ Therefore if x is chosen as coset leader, y cannot be coset leader

And if this error pattern of weight t+1 cannot be put as coset leader then this is not a correctable

error pattern.
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Error correcting properties of block codes

Proof (contd. )

@ From definition, x and y must be in the same coset, and
w(x) + wiy) = w(v) = dia

@ If we choose w(y) = t + 1, then wix) = tor t + 1 (since
2+ 1 < dpia =26+ 2)

= Amin
@ Therefore if x is chosen as coset leader, y cannot be coset leader

So with this I will conclude my lecture on random error correcting and random error detecting

properties of block codes. Thank you.
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