
Indian Institute of Technology Kanpur
National Programme on Technology Enhanced Learning (NPTEL)

Course Title
Error Control Coding: An Introduction to Linear Block Codes

Lecture-4

Decoding of Linear Block Codes

by
Prof. Adrish Banerjee

Department of Electrical Engineering, IIT Kanpur

Welcome to the course on error control coding, an introduction to linear block codes.

(Refer Slide Time: 00:22)

Today we are going to talk about how to decode and we are going to talk about what is known as

syndrome decoding.

(Refer Slide Time: 00:29)

So what is a decoding problem? So let us look at scenario where we are transmitting our code

word which is n bit tuple over a communication channel. And let us consider a binary symmetric

channel, so in a binary symmetric channel bits zeros and ones are transmitted over this

communication channel and with probability 1-P they are received correctly and with crossover

probability of P the bits zeros and ones can get flipped. So the output channel is also binary.

(Refer Slide Time: 01:05)

Then we have total 2k code words right and if we are looking at output received sequence we can

have total of 2n different possibilities, because we – our code bit is – code word is n bit and each

location can be zeros or ones. So our decoding problem is we have to partition these 2n

possibilities into sets of 2kx2k set. So we have to map these 2n possibilities into sets, 2k sets. And

corresponding to each set there should be only one unique code word.

In other words when we map our received sequence to a particular set we should be able to say if

these set of received sequence are obtained or we get these received sequence then corresponding

to these received sequence there is only one code word. So the decoding problem is we have to

partition these 2n different possibilities into total 2k sets such that in each of the set there is only

one valid code word.

So whenever any of these received sequence you know is mapped to a particular set, then we

should be able to say okay if you receive any of these code or receive any of these sequences

then the transmitted code word is also this. So you can think of, we have total 2n possibilities and

we want to partition this 2n possibilities into 2k different balls in some sense. And each ball has

one code word associated with it.

That is basically our decoding problem. So how do we partition these 2n different possibilities

into 2k sets is what we are going to talk about.

(Refer Slide Time: 03:15)

So any decoding scheme is basically to partition these 2n possible code words received code

words into 2k disjoint subsets, to where disjoint is important because we want to – we do not

want basically overlapping decision sets, regions okay.

(Refer Slide Time: 03:45)

And how do we do this partition is basically based on the structure of the linear block code and

that is what we are going to describe in this lecture.

(Refer Slide Time: 03:57)

So let us denote the 2k code words by v1, v2, v3, v2k, v2k so let us say these are my 2k code words

in a linear block code (n, k) linear block code where v1 is all zero code word. Now what do we

do is we form an array of vectors from vector space Vn as follows. In the top row of this array we

will arrange all of these 2k code words with all zero code word being the left most entry in the

row.

(Refer Slide Time: 04:46)

So we are going in the first row of this array, we are going to put all zero code word and then we

are going to put the other code words. So this will be the first row of this array.

(Refer Slide Time: 05:03)

Now suppose we have formed – now I am going to tell you how we are going to form this array,

suppose let us say, we have already formed j-1 rows of this array, then what do we do? We

choose a vector ej from vector space Vn so we pick up a n bit error vector which has not been

chosen previously in any of the previous j-1 rows. We pick that error vector.

(Refer Slide Time: 05:37)

Next we form the jth row by adding that error vector to each of the code words on the top row

and placing the new vector which is ej + vi under the code word vi.

(Refer Slide Time: 05:58)

I will just explain what I mean by this.

(Refer Slide Time: 06:00)

So as I said, in the first row we have listed all the code words with all zero code word as my left

most entry. Now let us say I have already formed some rows and I want to form jth row. So how

do I find jth row, I will pick up an error vector ej which is – let us say this e3 which has not

appeared before. So e3 should not be any of these elements which have already been chosen. E3

should not have appeared in the previous rows of this array.

If I chose such a error vector and then what do I do is, I add this error vector to each of these

elements in the first row which is nothing but code words and I place that element under the

same column. Now what do I mean by that, so let us say this was v2 so I will add e3 to v2 and I

will add the element e3+v2 in the same column as v2 was. Similarly if I have a code word vi I will

add e3 to vi and I will add this element e3+vi in the same column as vi.

So this is how I am going to build up this row in this array. The next row, how do I build up,

again I will pick an error pattern which has not happened before. I will pick up that error pattern

and then I will add that error pattern to v2 put that element here; add that error pattern to vi put

that pattern here. So this is how I will fill up the entries in this array.

(Refer Slide Time: 08:11)

So that is what I meant, form the jth row by adding ej to each of these code words in the top row

and placing ej + vi under the same column as vi. And we will continue doing this until all n bit

vectors have been put in this standard array.

(Refer Slide Time: 08:40)

And this array formed in this way is known as standard array.

(Refer Slide Time: 08:44)

So this is how your standard array will look like. Again I just recap how we are constructing this

standard array. The first row of this array is set of code words v12v2k and the left most entry here

is all zero code word. Next we pick up an element an error vector which has not happened in any

of the previous rows. And then we add that error vector to each of the elements of these code

words and put the new element under the same column as that code word. And we continue

doing that until we have put all the possible vectors in this array.

(Refer Slide Time: 09:45)

So let us look at a (6, 3) linear block codes whose generator matrix is given here.

(Refer Slide Time: 09:53)

Now how do I find its standard array? So as I said.

(Refer Slide Time: 10:03)

The first step involved is you need to write down all possible code words, now you have already

been given the generator matrix for this code.

(Refer Slide Time: 10:17)

So you can find out what are the possible code words, you just have to do v is nothing but u

times G, so there are total eight code words and you can find those eight code words because you

know that G is given to u and you know what is your u, u is basically goes from 000 to 001, 010,

goes to 111 so you can find out what these code words are and I have listed these

(Refer Slide Time: 10:52)

Codes words here so you have one all 0 code word and then you have the other code words are

011100, 101010, 11001001, since I could

(Refer Slide Time: 11:07)

Not fit in all the columns in one slide I have continued it here so this is I had up to

(Refer Slide Time: 11:19)

 Vo I have V1, V2, V3, V4 and then I had.

(Refer Slide Time: 11:24)

V5, V6, V7, V8, so these are my eight code words for this six three linear block code.

(Refer Slide Time: 11:35)

Now how do I find entries in the next column, as I said I have to pick up a vector which has not

appeared in the previous rows. So let us look at what is appeared in the previous row we had all

zero sequence here, we had a sequence which has 3 ones, a sequence which has 3 ones, sequence

which has I mean

(Refer Slide Time: 11:59)

3 ones, code word 4 ones, so we see we do not have n tupels which have just weight one

hamming weight one

(Refer Slide Time: 21:11)

They have not appeared so far so this 100000 has not appeared so far in the first row of this

array, so I pick this 100000 as my first element now how do I find this element? I am going to

add this to this so I am going to add this to this, if I add it what do I get? 1+ 0 is 1, 0+1 is 1, 0+1

is 1,l 0+1 is1,0+0 is 0, 0+0 is 0 so this is what I get, how do I get this entry? Again I add this to

this so 1+1 is 0, 0+ 0 is 0, 0+1 is 1, 0+0 is 0, 0+1 is 1, 0+0 is 0. So this is how I populate the

entries in this row. Next how do I pick this, I will now have to look at

(Refer Slide Time: 13:24)

The first two rows of this array and see, pick one end tuple which has not happened before and

this particular n tuple can see 0 1 and all zeros.

(Refer Slide Time: 13:40)

It has not appeared so far in the first two rows of the standard array, so I can then pick

(Refer Slide Time: 13:40)

This as my n tuple here and then I fill up this whole entry, how? I add this vector to this v2 put it

here, add this vector to this put it here, add this vector to this put it here.

(Refer Slide Time: 14:08)

 Add this vector to this you can just verify one such entry so 0+1 is 1, 1+0 is 1, 0+1 is 1, 0+1 is

1, 0+0 is 0 and 0+1 is 1, so this is how you populate this entry and we will.

(Refer Slide Time: 14:32)

Keep on doing it until we have written all those n tuples here, so we have already written this

way we have written all the 2 end possibilities, we have written it in this array. Now this array

have some interesting properties and we are going to talk about that which we will make use of

while decoding our linear block code.

(Refer Slide Time: 15:02)

(Refer Slide Time: 15:03)

 Every vector in this standard array appears exactly, once this is not very difficult

(Refer Slide Time: 15:11)

To prove, this follows from the way we are constructing our standard array okay, and the proof is

by contradiction so I will just

(Refer Slide Time: 15:25)

(Refer Slide Time: 15:26)

Is a very small proof

(Refer Slide Time: 15:26)

So I can just give you that, let us say so how does the proof by contradiction work? We will

assume some thing and then we will show that our assumption is wrong, that is not possible okay

so we have to prove that every element.

(Refer Slide Time: 15:43)

Here is basically unique so let us say that is not true, let us say two elements let us just call it this

element and this element, let us say these two element are same okay, if these two elements are

same then we can write this as e 2n-k +v2 to be equal to e3+ vi correct. Now we can write this e2n-

k as e3 + vi + v2, why because these are all binary words so basically when we add 1+1 that is

basically 0 so we added v2 to both the sides so v2 + v2 will be 0 so we can write this error pattern

as e3 +vi + v2, and what is vi + v2? vi + v2 is another code word, why because that is the property

of the linear code word.

 Linear block code, so this will be e3+ some other code word let us call it vi, vi´, so this error

pattern e2 n-k is e3+ v´. Now e3 + vi´ this should be in the row containing e3 because these are,

how do we find the entries in the row containing e3 we add all code words v3 and that is what

these entries are so e3 + vi ´ should have been some entry here, what does that mean, that means

we made a mistake in selecting this error pattern.

Note what did we say, we are choosing these error patterns in such a way that in the previous

rows this error pattern has not appeared but here we have shown if these two elements would

have been same if these two vectors in this standard array would have been same then this is the

condition which would mean that this error pattern is already there in the row containing e3, so

that means we cannot choose that as our error pattern

(Refer Slide Time: 18:29)

Here because we can only choose an error pattern which has not appeared before hand, so in

other words we are contradicting our self, on one hand we are saying we are picking up these

error patterns such a way that they have not appeared in the previous rows but if we are saying

the two elements in this array are same then this is not possible, so hence by contradiction

basically we prove that this is not possible. We could not choose a2n-k as this because this has

already appeared, hence this condition that these two elements are same is incorrect okay so all

the elements

(Refer Slide Time: 19:19)

(Refer Slide Time: 19:20)

(Refer Slide Time: 19:20)

(Refer Slide Time: 19:22)

Of this standard array are distinct and they appear exactly once.

(Refer Slide Time: 19:28)

 No two vectors in the same row are identical, again this is.

(Refer Slide Time: 19:28)

Very easy to prove because all code words are distinct so elements in one row will all be distinct.

(Refer Slide Time: 19:48)

We call each row of this standard array as coset and the left.

(Refer Slide Time: 19:53)

Most entry of each coset or row is known as coset leader and we have total 2n-k such cosets.

Now the question is can we make any other element as our coset leader, so if you just go back

here.

(Refer Slide Time: 20:24)

Let us say look at this row, coset leader was this right. The left more centre in this standard array,

now what happens if we instead of choosing this is as a coset leader if we had chosen let us say

this as coset leader, would it have changed our elements of this array no, why?

(Refer Slide Time: 20:50)

 If you go back.

(Refer Slide Time: 20:51)

(Refer Slide Time: 20:52)

And see the entries of a particular row; here the coset leader was e3, if instead of v3 we would

have use e3 + v2 what would have happened, this would have e3 + v2 this would have been e3 +

v2+ v2 so this would be e3, this would be e3 + v2 + vi and v2+ vi would be another code word vi’,

so this would have been some other code word so the elements in each row would have remained

the same only they would have just got reordered okay.

(Refer Slide Time: 21:32)

So if we pick any other element in the row as coset leader it does not change the elements in a

coset.

(Refer Slide Time: 21:42)

Or in a row.

(Refer Slide Time: 21:44)

The next property is all the 2k elements in a row or in a coset have the same syndrome, this we

can show because each element in a coset are of the form like this ej + vi H transpose and since

viH transpose is 0 they will only depend on the error pattern and in each row basically it is the

same error pattern that appears in the elements of the row.

(Refer Slide Time: 22:21)

We can again go back to our diagram for standard array.

(Refer Slide Time: 22:24)

(Refer Slide Time: 22:25)

(Refer Slide Time: 22:25)

(Refer Slide Time: 22:26)

And we can see this, we can see an each row, in this row is e3, in this row all these elements

have e2, so they will have the same syndrome.

(Refer Slide Time: 22:39)

And in the previous lecture we talked about that there are n – k syndrome equations and n

unknowns and there are total 2k solutions and you can see here.

(Refer Slide Time: 22:54)

Each row has 2k elements and they are the same syndrome so these 2k elements are exactly the

solution of your syndrome equations because they, these 2k elements of a row, of a coset they all

have the same syndrome and they corresponds to the 2k solutions of the syndrome equations, so

the 2k elements of a coset are actually the solutions of your syndrome equation, and another

interesting thing is each of these cosets or each of this coset leader will have a different

syndrome, why?

Because each of these row if you look at each of these row, each of them corresponds to a

different error pattern, again let us go back.

(Refer Slide Time: 23:52)

To the diagram that we had for the standard array.

(Refer Slide Time: 23:56)

(Refer Slide Time: 23:56)

(Refer Slide Time: 23:57)

(Refer Slide Time: 23:57)

(Refer Slide Time: 23:58)

This row.

(Refer Slide Time: 23:59)

Is related to e2, so if we compute syndrome for any of these receive factors we will get syndrome

corresponds to e2, this row corresponds.

(Refer Slide Time: 24:13)

To e3 this e4, this one e is plot to n – k so if you look at syndrome for each of these rows they all

correspond to each row corresponding to a different syndrome, but within a row the syndrome is

same, so in another words you can map one syndrome to one row or you can map one syndrome

to one coset.

(Refer Slide Time: 24:44)

(Refer Slide Time: 24:45)

So this is interesting that now we have one to one mapping between each cosets or each coset

leader to a syndrome.

(Refer Slide Time: 24:59)

Another thing to note is if you look at columns of these standard array each column of this

standard array corresponds to one particular code word. If you recall when you started the lecture

we said we want to partition our 2n vectors into 2k different sets and each of this 2k set should

corresponds.

(Refer Slide Time: 25:25)

To only one code word and this is what is happening here as well.

(Refer Slide Time: 25:32)

You have this whole thing as total possible to n vectors, now we have already partitioned them

into 2k different partitions and these are all distinct partitions, there is no element in here which

is common with this element and another thing to be of interest, if you look at each of these

partition, this partition has all zero vector, this partition corresponds to v2, this partition

corresponds to Vi, this partition corresponds to v2k.

(Refer Slide Time: 26:11)

So this is the.

(Refer Slide Time: 26:12)

Point basically I am trying to make that.

(Refer Slide Time: 26:14)

(Refer Slide Time: 26:16)

The way we have.

(Refer Slide Time: 26:16)

Created the standard array.

(Refer Slide Time: 26:19)

If you look at the jth column of the standard array it contains exactly one code word, it

corresponds to only one particular code word.

(Refer Slide Time: 26:32)

Now if they receive code word belongs to this column Dj then r will be decoded as code word vj,

so whenever r belongs to a set this we will decode this r as correspond to code word vj. So if vj is

our transmit code word and the error pattern is ei and if they receive sequence is in falls in the

column Dj then we would decode it as vj which is correct decoding. We would not make any

error, however if the error pattern is not a coset leader then.

(Refer Slide Time: 27: 25)

r will not be in column Dj and in that case we will make an error in decoding, so let us look at an

error pattern x caused by a channel and it is in the Lth coset , so if it is in the Lth code coset we

are writing this as let us say this error pattern has el corresponding to the error pattern el + vi so in

that case if we are transmitting code word vj and we encountered this error pattern what we

would receive is vj + x this would be nothing but el + vi + vj, now what is vi + vj, vi + vj sum of

two code words is also a valid code word.

Let us call that code word as vs so now the receive vector is in partition Ds and in this case what

are we going to decode it as, we are going to decoded it as vs which is not same as the

transmitted code word vj so that is what I meant, if your error pattern is not a coset leader then r

would not be in the same column as Dj if this would have been coset leader this would have been

just el and then receive sequence would have been just el + vj so this would have still remained in

the partition Dj and we would not have made a mistake okay. So if the error pattern is not a coset

leader.

(Refer Slide Time: 29:19)

Then we are basically going to make an error.

(Refer Slide Time: 29:24)

So from this we can conclude that our decoding is going to be correct if and only if our error

pattern is a coset leader.

(Refer Slide Time: 29:39)

And how many such coset leader exists?

(Refer Slide Time: 29:43)

We have total 2n-k so this we call as correctable error patterns because whenever our error pattern

is a coset leader we are not going to make a mistake in decoding and hence we call these as

correctable error pattern.

(Refer Slide Time: 30:04)

Now the next question to think about is how should we choose our coset leader? So clearly our

objective is to minimize probability of error so the error patterns that are more likely to happen

we should choose them as our error coset leader and what are those error patterns, these are the

error patterns which have least hamming weight so we start with first start with error pattern of

hamming weight one, if we run out of them start with hamming weight two, three like that

because they are more likely error pattern.

(Refer Slide Time: 30:56)

And we have shown that for a binary symmetric channel the error pattern with smaller weights

are more likely than error pattern.

(Refer Slide Time: 31:05)

With larger hamming weight, so among a coset we should choose element which has basically

the smallest error pattern as our coset leader.

(Refer Slide Time: 31:19)

(Refer Slide Time: 31:21)

(Refer Slide Time: 31:23)

And this decoding is basically also maximum likelihood decoding because we have shown

earlier that maximum likelihood rule for binary symmetric channel it basically chooses v in such

a way such that the hamming distance between r and v is minimized, so in other words we have

to choose an error pattern that has the minimum hamming weight.

(Refer Slide Time: 31:50)

So that is also the maximum likelihood decoding.

(Refer Slide Time: 31:53)

So suppose our received vector is found in the ith column and lth coset of the standard array so in

that case because our received vector r is in ith column we are going to decode it as vi.

(Refer Slide Time: 32:13)

Now our received vector is in ith column and lth coset so the error pattern is ee
l so our received

sequence is our transmitted code word plus error pattern, now let us try to find out the hamming

distance between our receive vector.

(Refer Slide Time: 32:40)

And this code vector vi and hamming distance between receive vector and some other code word,

so when we try hamming distance between received code word r and this code vector vi we can

see hamming distance is nothing but number of locations where these two bits are differing, so if

we add r and v and then count the number of ones that would give us the hamming distance

between r and v.

(Refer Slide Time: 33:09)

So hamming distance in r and v is nothing but hamming weight of the vector r + vi and what is r?

It is el + vi and plus vi so this was nothing but weight of error vector.

(Refer Slide Time: 33:29)

Next, consider now the hamming distance between r and any other code word let us call it vj, so

we are finding hamming distance between r and any other code word vj so that would be given

by weight of this vector r + vj, so r is nothing but el + vi + vj now vi + vj sum of two code words is

another code word so this would be let us call that code word vs .

(Refer Slide Time: 34:06)

So this will be weight of el + vs so what have we done so far, we found out that the hamming

distance between the receive code word and this code vector vi is given by this.

(Refer Slide Time: 34:22)

And hamming distance between receive code word in any other code word which is not vi is

basically given by this, now el and el + vs are going to be the elements in the same coset, right?

And if we choose el to be our coset leader which has minimum number of ones

(Refer Slide Time: 34:52)

Then this would be less than this so we, our minimum distance decoding will decide in favor of

vi and not any other code word vj.

(Refer Slide Time: 35:05)

So as I said since el and el + vs are in the same coset and our coset leader has minimum hamming

weight, weight of this is less than equal to weight of this.

(Refer Slide Time: 35:21)

Then this will always happen, in other words vi will be closer to r then any other code word vj to

r so this will be our correct decoding.

(Refer Slide Time: 35:35)

So if we choose our coset leader to be the one which has minimum weight in that coset the

decoding basically based on maximum likelihood decoding will be basically a maximum

likelihood decoder, because maximum likelihood decoder for binary symmetric channel we have

said is the one which minimizes hamming distance between receive code word and the selected

code vector v, okay.

(Refer Slide Time: 36:02)

(Refer Slide Time: 36:07)

So now to summarize then, how do we do the decoding? We will first compute the syndrome

then each of these syndrome corresponds to one coset leader, so we find out the coset leader

corresponding to each syndrome and once we find the coset leader we add that coset leader

which is our likely error pattern to our receive sequence and that would be our estimated code

word.

(Refer Slide Time: 36:39)

And this mapping from syndrome to error pattern basically can be implemented as a table look-

up, so which syndrome corresponds to which coset leader this can be implemented as a table

look-up.

(Refer Slide Time: 36:57)

Now we can use this syndrome decoding for both error correction and error detection and we

will give an example to illustrate this.

(Refer Slide Time: 37:05)

Again basically as we said the coset leader corresponding to lowest weight error patterns are

essentially used for error correction and these are the most likely error patterns according to the

maximum likelihood rule.

(Refer Slide Time: 37:21)

Now we could use this standard array for both a combination of error correction and error

detection and we could, we are going to illustrate this point that we could use a syndrome

corresponding to higher weight error pattern for error detection rather than correction.

(Refer Slide Time: 37:41)

So let us take an example to illustrate how we can use this standard array for error correction and

error detection. So this is our (6, 3) systematic linear binary code whose generator matrix is

given by this and parity check matrix is given by this.

(Refer Slide Time: 38:06)

These are encoding equations.

(Refer Slide Time: 38:10)

This is a mapping of the syndrome to the coset leader.

(Refer Slide Time: 38:17)

So the first step involved in this is creation of standard array. And I believe now you know how

to create a standard array. The first step is.

(Refer Slide Time: 38:31)

The first row of the standard array will be a set of code words. You are already given the

generator matrix so you can generate what are the set of code words. The left most entry in the

first row which is the row of code words should be all zero code words and then you can place.

(Refer Slide Time: 38:49)

The other code words in any order. Now I could not fit in all the columns in one slide so I have

v1 to v4 in this slide and next I have.

(Refer Slide Time: 39:01)

v5 to v8 in the next slide okay.

(Refer Slide Time: 39:08)

Now, let me explain what I mean by correctable error patterns, detectable error patterns and

undetected decoding error. So out of these all possible error patterns which are the error patterns

that are correctly decodable? Now if you choose your coset leader to be the one which has the

least hamming weight.

(Refer Slide Time: 39:45)

Which has the least number of ones, and if you make that error pattern as your coset leader then

you can correctly decode those error patterns. So let us look at each of these rows of course.

(Refer Slide Time: 40:01)

This corresponds to all correct code words. If the error pattern is this, these are the set of other

elements of the coset.

(Refer Slide Time: 40:12)

And you can see here, none of these elements have weight less than two, they are all like 3, 3, 5,

4.

(Refer Slide Time: 40:23)

And this has weight 4, 2, 2, so this is the minimum weight error pattern and this is hamming

weight one. So this error pattern is correctable, if this error happens this can be corrected. What

about this? Just look at other elements this has 2 ones, 4 ones, 2 ones.

(Refer Slide Time: 40:54)

3 ones, 5 ones, 3 ones, 4 ones. So clearly this has.

(Refer Slide Time: 41:04)

Only one, one rest others all have weight two or more. So if this is the error pattern and we make

this as coset leader this is also correctable. Similarly, we can see from other rows also this single

error pattern is correctable, this single error pattern is correctable, this is correctable, this is

correctable, these are all correctable patterns. So when I talk about correctable patterns

essentially I mean if you get this, this, this, this, this, this, of course there is no error case which

also I am counting in correctable pattern. So these seven patterns if these are the error patterns

then it is correctable. So these are the seven correctable patterns.

(Refer Slide Time: 41:51)

Now what happens here, this error pattern has weight two, this has three, this has three, this has

three.

(Refer Slide Time: 42:02)

Oh this has two. So this has two, this also has two, this also has two, so in this last row my coset

leader is no longer the error pattern with lowest hamming weight.

(Refer Slide Time: 42:21)

There are two other error patterns which also have hamming weight two okay. So in this

situation

(Refer Slide Time: 42:30)

When my syndrome is pointing to this coset I would not be able to do error correction, why,

because I know this could be a likely error pattern, or this could be a likely error pattern, or this

could be a likely error pattern, and they are all equally likely. Because here two bits got flipped,

here two bits got flipped, here two bits got flipped. So any of these three patterns are

(Refer Slide Time: 42:57)

Equally likely in my, in this case. So whenever syndrome points to this coset I cannot do error

correction. However I can detect error why, whenever it points to this row I know there is an

error. Because syndrome is non zero, but I do not know what is my error. So that is why I call it

as detectable error pattern. So what are those detectable error pattern, this is our detectable error

pattern. This is my detectable error pattern, this is my detectable error pattern. Maybe I can use a

different this in color so I use red, these are my detectable error pattern. These are my detectable

error patterns. These are four of them and then

(Refer Slide Time: 43:50)

Remaining four are these.

(Refer Slide Time: 43:58)

So these are my eight detectable patterns, error patterns. Now let us use a different color pen,

what about these patterns which have been left out, this, this, this like other error patterns. What

happens to them?

(Refer Slide Time: 44:18)

These are red pen let us say if this error pattern happens what is going to happen. If this happens

I am not able to.

(Refer Slide Time: 44:29)

Detect these error pattern, why?

(Refer Slide Time: 44:33)

Whenever this error pattern happens this is hamming weight three, its coset leader was already

hamming weight one. So whenever these error patterns happen, whenever these error patterns

happen I am not able to detect.

(Refer Slide Time: 44:50)

Any of these error patterns why? Because whenever any of these error patterns happen any of

these error patterns happens I have already taken decision in favor of these coset leaders.

Because it is less likely to get this error pattern than this. So these set of 49 error patterns, if any

of these error patterns happen then I am going to make a mistake. This will result in undetected

error, because whenever any of these error patterns happen I would have assumed that the error

pattern was this. So this would result in undetected error probability.

So through this example essentially I have illustrated how we can use this standard array for

error correction and error detection. So in summary we would like to make our coset leader as

one having minimum hamming weight, minimum number of ones. And whenever we get an

error our syndrome will be non zero, the syndrome will point out to a particular coset or a row of

this standard array, and we will if the coset leader has the minimum number of one’s then we

will pick that coset leader as our likely error pattern. And we are going to.

(Refer Slide Time: 46:23)

(Refer Slide Time: 46:24)

(Refer Slide Time: 46:24)

(Refer Slide Time: 46:24)

(Refer Slide Time: 46:24)

(Refer Slide Time: 46:25)

(Refer Slide Time: 46:25)

(Refer Slide Time: 46:26)

Decode it by picking that likely error pattern, adding it to our receive code word and that would

be our estimated code word. So with this I will conclude this decoding of linear block codes.

Thank you.

Acknowledgement
Ministry of Human Resource & Development

Prof. Satyaki Roy

Co-ordinator, NPTEL IIT Kanpur

NPTEL Team
Sanjay Pal

Ashish Singh
Badal Pradhan
Tapobrata Das
Ram Chandra
Dilip Tripathi

Manoj Shrivastava
Padam Shukla
Sanjay Mishra

Shubham Rawat
Shikha Gupta
K. K. Mishra

Aradhana Singh

Sweta
Ashutosh Gairola

Dilip Katiyar
Sharwan
Hari Ram

Bhadra Rao
Puneet Kumar Bajpai

Lalty Dutta
Ajay Kanaujia

Shivendra Kumar Tiwari

an IIT Kanpur Production

©copyright reserved

