Indian Institute of Technology Kanpur National Programme on Technology Enhanced Learning (NPTEL) Course Title Error Control Coding: An Introduction to Linear Block Codes

Lecture – 3B Problem Solving Session – I

by Prof. Adrish Banerjee Department of Electrical Engineering, IIT Kanpur

Welcome to the course on error control coding, an introduction to linear block codes, before we discuss decoding of linear block codes let us solve some problems today.

(Refer Slide Time: 00:25)

(Refer Slide Time: 00:27)

So first question that we are going to look at is, consider a linear block code c.

Whose parity check matrix is given by this and you are asked what are the code parameters n (n, k) n which is a block length a code word length and k is the size of, is the dimension of the basically information sequence length is k, now how do we solve it? We know, we will first find out what is the rank of this matrix H, now you can see this is a 4 x 7 matrix right?

So the maximum rank possible is four, let us see whether it has rank four, now if you add row one, two and three what do you get? 1111010 sorry 1110010 this is what you get, you can see this is 1, this is 1, this is 1, this is 0, this is 0, this is 1, and this is 0, and what is row number four, this is exactly same as this so you can see row 1, row 2, row 3 and row 4 add up to zero, that means it does not have rank four, so maximum rank possible is three.

(Refer Slide Time: 02:06)

So let us see if any three rows combination add up to zero.

(Refer Slide Time: 02:16)

So let us see, let us see if we consider some of these two rows, this is what 1100101. Now none of the rows are equal to this you can see if we consider this row and this row we add these two rows let us see we what do we get is 1011100. Now note none of these rows are 2nr four is equal to this so these set of three rows basically they are independent, let us try adding up this and this, so if we add first row and fourth row what do we get 011100 and 1.

Now note row number three and two are not same as this, so like that we can check we can check for example row two and four we add up row two and four what do we get 1011100. Now note row number three and row number one are not same as this so we can see that any three rows do not add up to zero, so the rank of this matrix H is three.

(Refer Slide Time: 03:55)

So if the rank of this matrix is three now we know parity check matrix is n-k x n.

(Refer Slide Time: 04:00)

So n-k is in our case equal to three and what is n, n is number of columns of this so that is one, two, three, four, five, six, seven so n is 7, so that would then give us k=4, so this is an example parity check matrix for a (7, 4) linear block code, okay.

(Refer Slide Time: 04:41)

Now let us look at another problem, you are given a set of code words and what are these code words these are binary code words.

(Refer Slide Time: 04:50)

So this is all zero, 110011, 011101 and 11 all 1 sequence and the question that has been asked is, is this a linear code, is this a linear code? Now what do we know about linear code? A linear code should have all zero code word which this code word has and sum of any two code words is also a valid code word.

(Refer Slide Time: 05:24)

(Refer Slide Time: 05:25)

(Refer Slide Time: 05:30)

· Proble	m # 2: Consider the following binary block code, C,
	$C = \{000000, 110011, 011101, 111111\}$
ls C a	linear block code? Justify your answer.
· Solutio	ons: No.
 Sum of 	two codewords for a linear block code is a valid codeword

So let us see so let us see if sum of all code words is already a valid code word.

(Refer Slide Time: 05:34)

So let us call this v_0 , v_1 , v_2 and v_3 so what we want is all possible combinations of v_0 , v_1 , v_2 , v_3 should also be a valid code word, they should be in c.

inear bl	ock code		
e Pr	oblem # 2: Consider the follow	ving	binary block code, C,
	$C = \{000000, 1100\}$	11,0	11101, 111111}
ls • So • Su • Le v1 co	C a linear block code? Justify yes Notions: No. m of two codewords for a linear t $v_0 = 000000$, $v_1 = 110011$, v_2 $+ v_2$, $v_1 + v_3$, $v_2 + v_3$, and v_1 + deword.	bloc = 01 v ₂ +	inswer. k code is a valid codeword. L1101, and $v_3 = 111111$, then v_3 must also be a valid
	$v_1 + v_2$	\mathbf{H}	101110
	$v_1 + v_3$	=	001100
	$v_2 + v_3$	=	100010
	$v_1 + v_2 + v_3$	=	010001

inear	block code		
•	Problem # 2: Consider the follow	wing	binary block code, C,
•••	$C = \{000000, \underline{1100} \\ v_1 \\ v_2 \\ v_3 \\ v_4 \\ v_5 \\ v_1 + v_2, v_1 + v_3, v_2 + v_3, and v_1 + codeword. \\ \end{array}$	11.0 our a bloc = 01	$\frac{11101}{v_2}, \frac{111111}{v_3}$ inswer. k code is a valid codeword. (1101, and $v_3 = 111111$, then v_3 must also be a valid
	$v_1 + v_2$	-	101110
		22	001100
	$v_1 + v_3$	-	001100
	$v_1 + v_3$ $v_2 + v_3$	=	100010

So let us see, so as I said we take v_0 to be all zero code word, v_1 is given by this, this is v_1 , this is v_2 and this is v_3 , now let us see all possible combinations of v_1 , v_2 , v_3 the non zero code words. So we consider v_1+v_2 what is v_1+v_2 , so v_1+v_2 is we can see this is 101110 this given by this, now is this code word in c, we do not see any code word which is 101110 listed here that means the c is not a linear code, why it is not a linear code?

Because sum of any two code words is also a valid code word, now v_1 and v_2 are valid code words in c, so sum of v_1+v_2 should also be in c but we noticed that 101110 which is sum of v_1+v_2 is not there in c and that is why we said that c is not a linear block code. Now my next question is can we add additional code words here such that c becomes a linear block code, now how do we do that?

inear block code		
• Problem # 2: Consider the follow	ing	binary block code, C,
$C = \{000000, \frac{1100}{V_0}\}$ Is C a linear block code? Justify yo Solutions: No. Sum of two codewords for a linear Let $v_0 = 000000$, $v_1 = 110011$, v_2 $v_1 + v_2$, $v_1 + v_3$, $v_2 + v_3$, and $v_1 + codeword$.	bloc $v_2 \neq v_2 \neq$	$\frac{11101}{v_{3}}, \frac{111111}{v_{3}}$ inswer. It code is a valid codeword. 11101, and $v_{3} = 111111$, then v_{3} must also be a valid
$v_1 + v_2$	-	101110
$v_1 + v_3$	=	001100
$v_2 + v_3$	=	100010 -
$v_1 + v_2 + v_3$	=	010001

To do that we will have to ensure all possible combinations of these code words is also there in c, so let us then compute v_1+v_3 which is basically given by 001100. Let us look at v_2+v_3 which is given by 10010 and let us look at $v_1+v_2+v_3$ is basically given by 010001. So note that I have listed all possible combinations of these code words here. Now none of these sums are there in this linear block code so if we add them in this set of c, set of code words then we, our block code c will become a linear block code.

(Refer Slide Time: 08:26)

So if we want to make it a linear block code what do we need to do?

(Refer Slide Time: 08:30)

In this set of four code words v_0 , v_1 , v_2 and v_3 we need to add these set of code words which was basically v_1+v_2 .

(Refer Slide Time: 08:42)

(Refer Slide Time: 08:44)

This is v_1+v_2 .

(Refer Slide Time: 08:48)

This is v_1+v_3 .

(Refer Slide Time: 08:52)

 $v_1 + v_3$

(Refer Slide Time: 08:56)

Then this one is v_2+v_3 .

 v_2+v_3 and this one was $v_1+v_2+v_3$, so let us look at these two code words, this is v_1+v_2 and this is $v_1+v_2+v_3$, so if we add these two what we will get is v_3 , we can double check so if we consider add these two the first bit will be 1, this 0+1 will be 1, then 1+0 will be 1.

And this is already there in this set of code words this is v_3 , okay. Similarly take this two, this one is v_1+v_2 and this is v_2+v_3 if we add them what we get is v_1+v_3 we will get this. If we consider these two, we will get v_2 we consider this we will get v_3 if we consider these two sum of these two we will get v_3 , we consider sum of these 3 what we will get, we will get v_3 . So you can see basically linear combinations of all the code words of already there in the sea, so this sea which contain.

(Refer Slide Time: 10:31)

This set of 8 code words is a linear code.

(Refer Slide Time: 10:41)

And what are the parameters n and k, now the length of this code words is 6 each, each of these code words are 6 bits so that is why n is 6, and there are total 2k code words and in our case 2 K is basically 8 so k is 3, so this is basically a 6, 3 linear binary code.

(Refer Slide Time: 11:09)

Now if I ask you tell me what is a generator matrix that will generate this set of code words, now how can you do that?

(Refer Slide Time: 11:19)

So we know the generator matrix is basically a k x n matrix right, so if you take basically 3 k in this case is 3 if you take 3 code words which are linearly independent basically if you take them and form them as rows of your generator matrix then you get your generator matrix. So I just took this v1, v2 and v3 and you can verify that rank of this matrix G is 3 so it full rank okay. So then this G will be able to, this generator matrix will be able to generate this set of code words.

(Refer Slide Time: 12:08)

Now can we put this, is this generator matrix in systematic form, the answer is no, because if to get it in systematic form what we need is our generator matrix should be of the form like this or something like this okay, but this is not in this particular form so we will have to get some identity matrix and some matrix p. Now by doing elementary row operation we can put this in systematic form so let us do that.

(Refer Slide Time: 12:49)

So note if we want to get let us say this in the form of identity what do we need, we would need basically here we would need a 0, here we would need a 0, here we would need a 0, here we would need a 0 right. So let us first try to get this 1 to 0, now how can we make this 0? So if do this transformation that row 3 is row 3 + row 1, so row 3 is row 3 + row 1, if we do that then 1+1 this will be 0, 1+1 this is 0, 0+1 this is 1, 0+1 this is 1, 1+1 this is 0, and 1+1 this is 0, okay.

So we got a 0 here right, next we want a 0 here, we want this you want to make this 0 so how can we do that?

(Refer Slide Time: 14:00)

We do this transformation that row 2 is row 3+ row 1 row 2, so if we row 2 is row 2+row 3 then what is going to happen this will remain 0, this will remain 1, but this 1 will become 0, so let us do that. So this is 0+0 is 0, 1+0 is 1, 1+1 is 0, 1+1 is 0, 0+0 is 0 and 1+0 is 1 okay, so we got these zeros, we got this 0 okay, now what do we have to do, we will have to get this a here, we have to get a 0. So how can we get a 0 here?

(Refer Slide Time: 14:49)

We will do this transformation we will add row 1 and row 2 and replace row1 by this, so we are going to add these 2 rows, if we add these 2 rows what is going to happen, this 1 will remain 1, 1+1 this will become 0, and this will remain 0, this will be 0, this will be 1, and this will be 0.

(Refer Slide Time: 15:16)

So if we do this transformation what we get is this. Now note that this is our NG matrix, it is a 3 cross, 3 identity matrix and then this is your another matrix speed okay, so by doing elementary row operation we are able to get our generator matrix in a systematic form.

(Refer Slide Time: 15:43)

And if we have a generator matrix in a systematic form then we can very easily find out the parity gen matrix in systematic form, so this is like I $_k$ P then this H matrix will be P transpose IN - k so this is basically your p transpose, so this 010 this is will come here 010, 001 is, this is 001 and 100 is this, 100, and then you have this identity matrix which is here, okay.

(Refer Slide Time: 16:28)

Next we are given a parity check matrix H of a linear block code with parameter nnk and it is given that this code C has both odd weight code words and even weight code words, in other words the number of ones in the code words, it contains both odd number of ones as well as even number of ones, and we are constructing a new code that we are calling as C_1 and the parity check matrix of the new code C_1 is given by this, so how do we find this new matrix parity check matrix H one we are adding a new column.

Which is 0 in the initial rows except in the last row where there is a 1, and here we are put our original $n - k \ge n$ matrix and the last row is basically all ones okay, so the dimension of this matrix is so number of rows is n - k + 1 and number of columns are n+1.

(Refer Slide Time: 18:03)

Now you are asked to show that the code generated by this parity check matrix each one is a linear code with parameters n+1 and k. Second thing you are asked to prove is that all the code words of this new code C_1 will have even weight, that means they will have even number of ones in them, the third thing that you have to prove is this new code C_1 is obtained from old code C by adding an additional parity bit which we are denoting by v infinity to the left of this code word and how do you select this parity bit v infinity? If the original code word has odd weight then you put v infinity as 1 otherwise if the original code word has even weight then you put this v infinity as 0. So let us prove one by one, let us first prove this, that code generated by this new parity check matrix is basically a new code with n given by n+1 and k given by k.

(Refer Slide Time: 19:30)

So as we know that this H matrix has these dimensions because we are adding a new column and we are adding a new row. Next now what is the rank of original matrix H, the rank of the original matrix H is n - k that means the n - k rows of the original parity check matrix H are linearly independent okay.

(Refer Slide Time: 20:04)

(Refer Slide Time: 20:05)

Now go back and look at the new construction.

(Refer Slide Time: 20:07)

So these n-k rows are linearly independent and what have we added here, we have added 0 here. So these new rows will, these new n-k rows will also be linearly independent. (Refer Slide Time: 20:30)

So that is what we are saying that since n-k rows of the original parity check matrix H are linearly independent. So the first n-k rows of the original parity check matrix H_1 will also be linearly independent.

(Refer Slide Time: 20:54)

Now let us look at the last row of

(Refer Slide Time: 21:00)

(Refer Slide Time: 21:02)

This new parity check matrix H₁.

(Refer Slide Time: 21:02)

Note that we have a 1 here and these are all ones here. Whereas here all of these are zeros so this new row will also be linearly independent from any of the other rows of this parity check matrix H₁.

(Refer Slide Time: 21:26)

So any linear combination including the last row of H_1 will never result in a all zero vector. So what does it mean? It means that n-k+1 rows of a new parity check matrix H_1 are linearly independent.

(Refer Slide Time: 21:50)

Hence, the dimension of H_1 is n-k+1.

Now how do we find the dimension of basically the null space of this parity check matrix H_1 , this is given by so number of columns is n+1, the dimension of H_1 is given by this, so this is the dimension of the null space of this parity check matrix. So then basically the number of information bits is then k and number of coded bit is n+1. So this proves that C_1 is an (n+1, k) linear code.

(Refer Slide Time: 22:41)

Next we are going to show is, every code word of C_1 has even weight, so how do we prove this? Please note that the last row of this parity check matrix H_1 contain all-one vector, if you go back.

(Refer Slide Time: 23:00)

Recall the last row of this parity check matrix has all ones.

(Refer Slide Time: 23:08)

	m # 3 (contd.)
	The matrix H_1 is an $(n - k + 1) \times (n + 1)$ matrix.
•	First we note that the $n - k$ rows of H are linearly independent. It is clear that the first $(n - k)$ rows of H ₁ are also linearly independent.
•	The last row of H_1 has a "1" at its first position but other rows of H_1 have a "0" at their first position. Any linear combination including the last row of H_1 will never yield a zero vector.
•	Thus all the rows of ${\bf H}_1$ are linearly independent. Hence the row space of ${\bf H}_1$ has dimension n-k+1.
•	The dimension of its null space, C_1 , is then equal to
	$\dim(C_1) = (n+1) - (n-k+1) = k$
	Here Charles I to Bernards

And if v is a valid code word what property does it satisfy?

(Refer Slide Time: 23:13)

If v is a valid code word then vH^T should be 0.

(Refer Slide Time: 23:22)

Now let us take a code word, let us say there exists a code word with odd weight which is generated by, described by this parity check matrix H_1 . Now if we do v H^T so when you are going to take the other product of this code vector v with the last row of this parity check matrix what will you get? You will essentially get sum of

(Refer Slide Time: 23:58)

So basically if you do vH^T so your H is of the, so vH^T where H is H_1^T H1 is given like this, this is all zeros, here we have parity check matrix H and you have here all one, sorry you have your this is one, this is one and this all-one vector. Now when you do vH^T so let us say v is your v₀ to v_{n-1} . When you do vH_1^T what you will get is $v_0+v_1+v_2$ up to v_{n-1} is going to be zero. Now if this v has odd number of ones, this sum cannot be zero right. Hence we proved that v has to have even number of ones.

Because we know if v is a valid code word then vH_1^T should be zero. So if we do vH^T because the last row of this para digit matrix H_1 is all one, the condition that we will get is individual components of this parity code vector v, $v_0+v_1+v_2+v_3$ up to v_{n-1} basically v_{n-1} they should all add up to zero. Hence we cannot have an odd weight vector which will give vH^T , vH_1^T to be zero. (Refer Slide Time: 25:50)

Hence every code word in C₁ has even weight.

(Refer Slide Time: 25:57)

Next we are going to show, prove how we can generate this new code C_1 from the original code C. and what did we

(Refer Slide Time: 26:08)

Mention, we mentioned that this new code C_1 can be obtained from the original code C by adding an extra parity bit which we are denoting by v_{∞} to the left of the original code word v in this fashion. If v has odd weight then v_{∞} is odd parity and if v has even weight then v_{∞} is 0 parity, is zero is even parity. So let us prove this

(Refer Slide Time: 26:42)

So let us see, let v be a code word in C then vH^T will be zero. Now we are extending this original code v by adding a bit v_{∞} to its left. So we are defining a new code word of length n+1 which is defined as follows. So this is your original code word v which is basically v_0 to v_{n-1} and then this is the additional parity bit that you added to the left.

(Refer Slide Time: 27:18)

Now if v^1 is a valid code word then it should satisfy the property that $v_1H_1^T$ should be zero. And what is our H_1 , again please recall our H_1 is a form like this so the first column here is zero, then you have here the original H matrix H and this is all one vector. So when we do vH^T so when v_1 will be multiplied by this last row what we will get is

(Refer Slide Time: 27:58)

Condition of this form, $v_{\infty} + v_0 + v_1 + v_2 + v_{n-1}$ that is basically should be equal to zero okay. Now how are we getting this condition again?

(Refer Slide Time: 28:19)

1000	
roble	m # 3 (contd.)
٠	Show that C_1 can be obtained from C by adding an extra parity check digit, denoted by v_{∞} to the left of each codeword v as follows 1) if v has odd weight, then $v_{\infty} = 1$, and 2) if v has even weight, then $v_{\infty} = 0$
٠	Solution: Let v be a code word in C. Then $vH^T = 0$. Extend v by adding a digit v_{∞} to its left.
	This results in a vector of n+1 digits,
	$\mathbf{v}_{\mathbf{I}} = (\mathbf{v}_{\infty}, \mathbf{v}) = (\mathbf{v}_{\infty}, \mathbf{v}_0, \mathbf{v}_1, \cdots, \mathbf{v}_{n-1}).$
	For v_1 to be a vector in C_1 , we must require that $H_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix} H_1$
	v ₁ H ₁ ^T = 0
	101-00-00-00-00-00-00-00-00-00-00-00-00-

We are making use of the fact that $v_1H_1^T$ is zero and H_1 is a form like this. So when we do $v_1H_1^T$ the last row which will be in H^T will be last column, if you multiple v with that H_1^T column what we would get is

(Refer Slide Time: 28:42)

Something of this form. Now this should be equal to zero if v1 is a valid code word right.

(Refer Slide Time: 28:51)

So if the sum has to be zero what do we need? So if the original code word is odd weight code word we need v_{∞} to be one. And if the original code word is even parity then this new parity bit should be zero. And that is basically the proof, how we can extend our original code to construct a new code.

(Refer Slide Time: 29:23)

ole	m # 3 (contd.)
•	Note that the inner product of v_1 with any of the first n-k rows of H_1 is 0.
•	The inner product of $\boldsymbol{v_1}$ with the last row of $\boldsymbol{H_1}$ is
	$v_\infty+v_0+v_1+\dots+v_{n-1}$
•	For this sum to be zero, we must require that $v_\infty=1$ if the vector ${\bf v}$ has odd weight and $v_\infty=0$ if the vector ${\bf v}$ has even weight.
•	Therefore, any vector v_1 formed as above is a codeword in C_1 , there are 2^k such codewords.
•	The dimension of C_1 is k, these 2^k codewords are all the code words of C_1 .

And this is basically if this is equal to 0 we know that vH^T , $v_1H_1^T$ is zero. So v_1 is a valid code word in C₁. And total there are 2^k code words. This we have already proved in the first part that there are total 2^k code words of length n+10kay.

(Refer Slide Time: 29:49)

So with this I will conclude this lecture. Thank you.

<u>Acknowledgement</u> Ministry of Human Resource & Development

Prof. Satyaki Roy Co-ordinator, NPTEL IIT Kanpur

> **NPTEL Team Sanjay Pal Ashish Singh Badal Pradhan Tapobrata Das Ram Chandra Dilip** Tripathi Manoj Shrivastava Padam Shukla **Sanjay Mishra** Shubham Rawat Shikha Gupta K. K. Mishra **Aradhana Singh** Sweta **Ashutosh Gairola Dilip Katiyar** Sharwan Hari Ram **Bhadra Rao** Puneet Kumar Bajpai Lalty Dutta Ajay Kanaujia Shivendra Kumar Tiwari an IIT Kanpur Production

> > ©copyright reserved