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Welcome to the course on error control coding, an introduction to linear block codes.
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Lecture #9B: Decoding of low density parity check codes-11: Belief
Propagation Algorithm

We will continue our discussion on decoding of LDPC codes. Today we are going to talk about

probabilistic decoding algorithm.
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@ Message passing algorithm

So we are going to talk about belief propagation algorithm.
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Outline of the talk

& Message passing algonthim

@ dacoaling in prolability domain

So before we do that we are going to prove some results and then use those results for decoding

of LDPC codes.
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Frobabilistic decoding

Theorem:

@ Consider a sequence of m independent random warables

_A_ — |4, Az, ... A,], where Pl — 1) — pu. Then
i';‘[.ﬁ. has ewen parity) ,_1, | ]2' H[l 2y ) 'Irr
iz w1 !
and e =
1 Iy : 1
F"in Tiss o] |H-II'I|.L.|- = 5 = ].—Il” .-’.l!‘] |
| !

So we are going to use this lemma theorem to prove the decoding algorithm results. So what is
this result which says if you have a sequence of m independent random variables which denote
by A, So A1, Az, As,........ Am are m independent random variables. And probability of Ak being
1 is given by Pk, then probability that A has even parity is given by this expression. And
probability that A has odd parity is given by this expression. Now we will use, we will derive our
expression for decoding algorithm based on these, this result. So let us first try to prove this

result.
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& Consider the funcuon [T (1 — /@A —F

@ The cocfficient of £ is the probability of t i's.

@ | bhe lunction ][:" L1 — F = Fit) s dentical except lor the facl that
all odd powers of t ars negative, 03

@ Addhing these wo Tundlsons, all even penaesrs of ©double up and ol
powers cancel each other. B

@ |latting + — 1, and dividing by 7 we gat the probahility of getting

EVEN QmEs.

0T
PA has oven parity) = | 2 1_[[! 2o
3 o=l

& Similarly we can prove

PR Lis el parily) = = —

|. I
2]

P =

1{1—zmj.
1

So let us consider a function of the form this 1-Pi+Pit, so if we look at the co-efficient of t here
this will give us the probability of t i’s. Now we can similarly consider this function where this
is, this + has been replaced by — here. So this function is identical to this, except that the odd
powers of t will be, have — in expansion. So if we expand this and we expand this, if we add both

of them together what we will get is all the odd powers of t will go away okay.

So what we will be left with this even powers of t which are doubled up, and odd powers have
cancelled out. Now if you put t=1 and divide by 2 we will get essentially probability that A has

even parity, because we are left with only powers of t which is even.
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@ Consider the function [T {1 — A @A) —2

@ The coefficient of t' is the probability of £ i's.

@ |he unction [[}5 (1 — P = Fi) s identical excepl for the lacL that
all odd powers of t are negative, L2

a Acdding these bwo Tunctens, all even poreers of | eloubbe up and odd
pawers cancel =sach other. - !

a letting + — 1, and dividing by 2 we et the prabahility of getting
£ven ones.

T (.
F{A has even parity) a | 5 n[! 2m)
=1

@ Sirnilarky we can prove

™

ks,
Siiw {].—2;’;,_].
a1l

PR Lass odd parily) =

Pa =

And similarly we can also prove probability that A has odd parity. Now in this case this will
have all terms positive, odd powers also positive, this will have odd powers negative. So if we
subtract this from this, we will get basically the probability of odd parity and that is basically
given by this.
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Probabilistic decoding
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Now the same method can also be proved using mathematical induction. So if you want to prove
it using mathematical induction let us just say we take m=1. If we take m=1 what do we get here,
for m=1 we get basically 2 + 2 (1-2P). So this is nothing but 1-Pi. And what is P1? P is the
probability, it is 1, so what is the probability it is even parity, it is 1-P1. So this relation holds for

m=1.

Now let us see it holds for also some m, then we have to show that it also holds for m+1. Now if
it holds for m to show that it holds for m+1 we have to find what is the probability that sequence
of m+1 independent random variables have even parity. Now when will the m+1 independent
random variables will have even parity? They will have even parity when m of them have even

parity and the mth bit that we get, mth with this 0.

Or some of m independent random variables they give odd parity and the mth bit that we receive
is actually 1. So then we will get m+1 as even parity, so is it clear? So there are two cases, two
ways in which we can get even parity when we are considering m+1 independent random
variables. Either m of them had even parity and m+1 is actually 0, or m of them add up to odd

parity and m+1 is also odd parity, okay.



So what is this probability of m being even, that is given by this. What is the probability that
m+1 is O that is given by 1-P m + 1. What is the probability that m of them is odd, that is given
by this probability. And what is the probability that m+1 random variable is 1, that probability is
given by P times m+1. So the overall probability will be this multiplied by this plus this
multiplied by Pm+1.

And if you simplify this we can show that this plus this will come out to be 1+1, K=1, m+1 1-
2Pk. So details of the calculation I am just leaving it, but this is how using mathematical
induction we are going to prove that this also holds true for m+1 and hence proof. Similarly we
can prove that probability that A has odd parity is given by this expression. We will first show
that for m=1 this is nothing but P;.

So that it holds true for m=1, assuming it holds for m then we have to show it also holds for
m+1. Now for m+1 to have odd parity 2 ways, m has odd parity and the m+1 bit that we get is
even parity is 0 basically is 0, or m has even parity and m+1 bit that we get is actually 1. So
similar to this case we can also find out these probability and if we add them up we can show
that this will be equal to half minus half product from k= 1 to m+1 of this, so we can say that
P(A) has even parity is given by this and P that A has so some of these m random variables have
odd parity is given by this, so these are the crucial expressions that we will be using in our

decoding algorithm.
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Probabilistic decoding

@ Consider the function [[",(1 — A@F) —J

@ The coeflicient of ¢' i3 the probability of t i's.

@ The function | [ ,(1 — Py = Bt} is identical except for the fact that
all odd powers of ¢ are negative.

@ Adding these two functions, all even powers of t double up and odd
powers cancel each other, =— — i

@ Letting r = 1, and dividing by 2 we get the probability of getting
EVEN onas.

i

+ % h[.'[lnl — 2]

1
P{A has even parity)] = 5

@ Similarly we can prove

P{A has odd parity) = i ;H{'I 2p)-

=1




(Refer Slide Time: 08:40)

s ﬂ r i | ':'\ ".‘\ ":'i. I.Li ul-_j
O TEowed o @i EE LB e

@ Consider the code with party check matrnix, H:

0
il

0 ¢ 10
0

So let us consider an example, so this our parity check matrix we
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& Consider the code with panty check matrixz, H:

I T E Bk 80
H g & 01 L 1 B @
1001 80148
g 1 ap1i1oodi1
a c=|a.q.....co1] is the codeward under consideration.

Will first describe the notations that we are going to use and then we will state the decoding

algorithm and the corresponding equations and then we illustrate using one example.
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@ Consider the code with parity check matriz, H:

1 S 1 - O SR
H ¢ 0. I I O 49
1 001 ¢ ¢ 10
1006 1 6012
C [/ 90 = r:.._._] is the codeword under consideration.

So we are using ¢ to denote our code word, so this is an n bit code word, Co,Ci1,C2,Ch, that is our

code word .
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@ Consider the code with parity check matrix, H:

1 T 1 @G @& 00
H ¢ o 0 I I 1 O 0
1 ¢0 1t 000G 1 0
0 1 F Y @ px
@ c= [y, €. ... Cai] is the codeword under consideration.

@ X; =(—1)* £ {+1, -1}, the BPSK-modulated version of c.

Now
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@ Consider the code with parity check matriz, H

P XL 08 @5 a8
H - 0010 1 1 1 o 0
) 1 80190 010
G ¥ -0 0 3 @ 0
@ c = [cp, €. ... En-1] & the codeword under consideration

@ X, =(—1)% & [+1, -1}, the BP5K-modulated version of «.
@ Y, = X, +n;, where n is zero-mean Gaussian with variance o7

This code word is modulated using BPSK modulation so we are mapping 0 tol we are mapping

to -1, so that is your BPSK modulated version of the code bits denoted by Xi
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@ Consider the code with parity check matrix. H:

1 1100000
H— g 00 1 ¥ 1 90
L e 10 0 E D
g 1 ¢ 0 @ 0 1
@c=|q, .., £p-1] is the codeword under consideration.

* X =(—1)° & {+1,—1}, the BPSK-modulated vérsion of &
H "r=;= Xi + my, where p; is zero-mean Gaussian with variance o AlWen

Yi is your received modulated code word so this is we are considering an additive white

Gaussian noise channel with noise variance given by n? and this is zero- mean Gaussian noise
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@ Consider the code with parity check matriz, H:
I 1 - 0@ 068 0
H— 0 0011100
=1 a.g e d . B
01001 001
@ c= g ..., cy 1] is the codeword under consideration
@ X o (-1)F € {1, -1}, the BFSK-madulated version of ¢
@ Y= X + n;, where n; is zero-mean Gaussian with variance o,

O'— {i: 4 =1} = location of 1's in row j of H = the indices of

e bits checked by the j** parity check.

We use this notation Rj to denote the location of 1°s in row j. Now what does location of 1’s in
the rows of the parity check matrix denote? It denotes the bits that are participating in the parity

check equation, so let us take
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@ Consider the code with parity check matrix, H: Ry - i?{f 4, 53
(- T T R T S R“'h},ﬂ'
I 1180 800 . e
S Ry=514,T
H_|0 0011100 "E‘L'"j
|1 aé T8¢ Q10
¢ 1 0 031 001
@ c=|o.cy... ., q] i the codeword under consideration.

@ X; = (—1)° £ {+1.—1}. the BPSK-modulated version of ¢
a Y, = X, +n;, where n; is zero-mean Gaussian with variance 7.

@R = {i =1} = location of 1's in row § of H = the indices of
the hits checked by the j™ parity check

This example, what is Ro, now Ro, so what are, so Ro correspond to the 0™ row which is this row.
Now look at the bits that are 1 here 1,2,3 these are bits which are 1, so Ro corresponds to let us
just label them 0,1,2,3,4,5,6, so Ro corresponds to 0, 1, and 2 and what does it mean, it means for
the first parity check equation the bit number 0, 1, and 2 are participating. Similarly R will be
this, this, this, so R1 will be 3, 4, and 5, R2will be 0, 3, and 6, and R3 will be 1, 4, and 7, so that is
your Rj
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@ Consider the code with parity check matrix. H:
11 100 000l
H— 0011100
B R s T - S
g 1 00 ¥ g 0 1
e=|g. e -y tn-1) i& the codeward under consideration.

X = (-1} £ {+1. —1}. the BFSK-modulated version aof ¢
¥Y; = X; + m, where m; is zerc-mean Gaussian with variance o,

e

Ry ={i:h;; =1} = location of 1's in row j of H = the indices of
the hits checked by the j°" parity check

[

€ — i hjis — 1] — location of 1's in column i of H — the parity
iﬁeck:{. invalving the /™ codebit =

Now we use this notation Cito denote the location of 1’s in column I, now what does location in
column i denotes?Itt denotes that, that i bit it participating in how many parity check equation,

which parity check equation, so let us
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@ Consider the code with parity check matriz, H: _ & = 50'33
Ve e b [ P
Ll 100000 =2
g
H=— ¢ o011 L1080 -
.08 160 ¥ @ |=%
IJLIILILUUIF——"-"
* = |g. 6,0 n, £p-1] 15 the codeword under consideration.
@ X, =(—1)° & {+1, —1}. the BPSK-madulated version aof ;.
@ Y, = X; + m, where n; is zerc-mean Gaussian with variance o7
@ Ry={i_h; =1} = location of 1's in row j of H = the indices of
the bits checked by the [ parity check
P “ A 'I] lacation of 1's in r,nl_lﬂ'lr__nf H the parrty
l'_ﬁeck:; involving the /™ codebit I

Look at what is Co, so this was again 0, 1, 2, 3,4, 5, 6, 7. So Co is what, Co is again this is just
call it 0,1, 2, and 3, so this 0™ parity check equation 1, 2, and 3, so bit number so if we look at
column 0 so you can see this bit is participating in 0" parity check equation and second parity
check equation Co will be 0 and 2. Similarity C1 is going to be 0 because it is participating in 0"
parity check equation and 3 okay, you can take any let us take Cs what is Ca, 4™ bit is
participating in parity check equation 1 and participating in parity check equation 3 so like that

you can find out what is Ci, fine?
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Now we define this set Rj- a particular element i1 so
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@ Consider the code with parity check matriz, H: _ & = 50'33
G a sk T [ P
Ll 100000 =2
g
H=— ¢ o011 L1080 =
.08 160 ¥ @ |=%
lJlll[.'lLﬂL'l'l. !
* = |g. 6,0 n, £p-1] 15 the codeword under consideration.
@ X, =(—1)° & {+1, —1}. the BPSK-madulated version aof ;.
@ Y, = X; + m, where n; is zerc-mean Gaussian with variance o7
@ Ry={i_h; =1} = location of 1's in row j of H = the indices of
the bits checked by the [ parity check
P “ T 'l] lacation of 1's in r,nlllmnr__n'F H the parrty
l'_ﬁeck:; involving the /™ codebit I

Let us go back, so what was our R let us say Ro what was Ro2 Ro was location of 1’s in 0™ row, so

that location was 0, 1, and 2, right, so if
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I define let us say Ro / o that would be then because Ro, Ro is what, Ro is 0, 1, 2, so Ro— 0 will
have 1 and 2. Similarly Ro -1 this will be set containing 0 and 2, and this will be set containing 0

and 1.
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a RI = E'_, {l}
e = G\h

Similarly we define the set Ci — this element j so for example



(Refer Slide Time: 14:35)

o

@ Consider the code with parity check matriz, H: _ & = 50'33
Ve e b A
Lol I @@ 8 n B-as
g
H=— ¢ o011 L1080 -
.08 160 ¥ @ |=%
lJLlI[.]]#UL'I'I. !
* = |g. 6,0 n, £p-1] 15 the codeword under consideration.
@ X, =(—1)° & {+1, —1}. the BPSK-madulated version aof ;.
@ Y, = X; + m, where n; is zerc-mean Gaussian with variance o7
@ Ry={i_h; =1} = location of 1's in row j of H = the indices of
the bits checked by the [ parity check
& O “ T 'l] lacation of 1's in chnf H the parrty
l'_ﬁeck:; involving the /™ codebit I

In this case let us say Ci is 0 three
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fo- To,023 Rp= Tr2}  Ryue fail
Ry, - for2d
@ Ry o= Ri\{A) (L %C‘J 33
Che= $3]
Chas - §o%

So Ci has element 0 and 3 so if we define this, this notation is like this, this is this O this will be 3

or Ci will be 0 okay
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Notation

& Ry = Rp\{i}

a Gy = G\{j}

@ o (i) = k*" bit in the ' parity check involving the code bit ¢. (So
je G and k € R;.)

Now we defined
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@ RJ"‘I r‘trt\\':’}
@ CF“'._,' = CJI"\.{.III}
@ gli}= k'™ bit in the /™ parity check involving the code bit . (S

JeCand ke R

by Cxkj the k ™ bit in the j' parity check equation involving code bit ci, that is denoted by ck,j(i)
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® Ry = R\{i}
® Gy =G\(j}

® o (i) = k™ bit in the j™ parity check invelving the code bit ¢. (Se
Jl'-.‘: Crand k £ RI' }

@ Yi ;i) = (=1)™4 4 g (i), received signal carresponding to . (i)

So the received sequence corresponding
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o Ryi=R\li}
s Gy=G\{j}

2 o (i) = kM bit in the j™ parity check involving the code bit . (So
JECrand k € R}

@ Yo (i) = (1) + my (i), received signal corresponding to e ;(1).
el it R " L

To this transmitted sequence would be then is the modulated version and this is the noise added.

So this is the received signal corresponding to this code bit.
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e Ry = Ri\{i}
@ Gy = G\iJ}
@ ali) = k™ bit in the ™ parity check involving the code bit ¢, (So
JEG and k € R'J- }
@ ¥, (i) = (=100 4y (7). received signal carresponding ta ¢, (/).
8 g = P{t:, =1ll¥i=pl= F[X,- =-ll¥,=u}=
1/(1 + exp( 2y /02)).

Now for an AWIJN channel we can compute this probability
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Notation

@ Ry = R\i}
& Gy =Gil
@ o gl(i) k™ bit in thi:j"" parity check invalving the code bit . (50
JjeCand k € R.)
‘l.
@ Yi (i) = (— 1) + m 4 (i), received signal carresponding to ¢y (7).
apm=Plg=1lY=w)=FlXi=-1Yi=n)=

That P(Ci =1 | Yi), this can be given by this expression
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Notation

H,l"-.f' = HI“"{‘:}

Gy = G\J)

cuili) kth Bit in the j"‘ parity check involving the code bit . (S0
JjECand k RI' )

Yia(i) = (—1)74 + a4 (7). received signal carresponding to ey (i),
pr=Ple=1Yi=n)=PX =—1]¥, = y) =

1/{1 + exp(2y:/c7))

(i) = Pleei(i) = Uy ).

And we denote by
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Ry = R}
Gy = GAUYL

ai (i) = k™ bit in the j* parity check involving the code bit ¢;. (So
JEC and k € R,.)

Yi (i) = (=171 + g (i), received signal corresponding to ¢ ().
p=PFla=1Yi=n)=PX =-1Y,=pn)=

1/(1 + exp(2y:/o?))

Prili) = Plewli) = 1yei(i)).

=——

Pxj the probability that Ckjis 1 given a received sequence Yk;
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Iheorem

@ The a pasteriori probability (APP) ratio for ¢ given the received
word ¥ = [My. ¥1.-. .. ¥ 1] and given the event 5 = { the hits in c
satisfy the parity check constraints involving o}, is given by

Pla=0ly.5) _ (1—p) liec (1 + Moen, (0 —20050))
Pla=19.5) & [lq (1-Den, (t —2005())

So then we can write down the expression for a posteriori
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@ The a posteron probability (APP) ratio for o given the received
word y = [_v. Vi...., ¥a1] and given the event 5 = { the bils in e

satisfy the parity rhrrl-c constraints involving <}, is given by

— !

g

||J’fr.,=-{}|y_5,:| {l—p,]“..-: {1‘“ =R, {1 —2g .li'l.ﬂ/

E—uy.ﬁ.] P [hhee (1= e, (1 =200 (i)

Probability of our code bit Ci given our received sequence is y and given that the parity check
constraints containing Ci has been satisfied. So what is the probability of Ci being 0 given a
received sequence Y and given that the parity check constrain containing involving Ci has been
satisfied. This is given by divided by probability of Cibeing 1 given Y and Si, this expression is
given by this expression, and we are going to use the theorem that we have proved in the
beginning of the lecture to derive this expression, namely if you have m independent random
variables what is the probability that some of them has even parity and some of them, some of

them have odd parity, we are going to make use of that result.
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@ The a posteron probability (APP) ratio for o given the received
word ¥ = [w.pa. . o] ard given the event b,_ 1 ihe bits i &

satisfy the parity rhrrl-c constraints involving <}, is given by

Tm, =0ly.5) _ (1—p) Liee (1 1Lecw, (2 - éw;mi]
E*”!’-E-J P [hee (1= T, 0 =200 H}J

To derive this expression.
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@ [rom Bayes' rule:

1—m

Plo =0y, 5) _ Plo =0w) Pl5lc =01y
Flo =1y 5) |F‘Ic,. = 0 (e I )
——— r

|| '___.|

So let us see, so from base rule we can write this probability as probability of Ci being 0 given
Yi, multiplied by probability that the parity check constraints are satisfied given Ciis 0 and the
received sequence is Y, and similarly a denominator we can write, that is probability of Ci being
1 given receive sequence Y and multiplied by the probability that parity check constraints are,

involving Ciis satisfied when Ciis 1 so this, this probability is nothing but our Pi.
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@ The a posteron probability (APP) ratio for o given the received
word ¥ = [w.pa. . o] ard given the event b,_ 1 ihe bits i &

satisfy the parity rhrrl-c canstraints invalving |, is given by

T;th, =0ly.5) _ (1—p) Liee (1+1lecn, 1 -éw;mJ]
E*”!’-E-J P [hee (1= Tien, 0 - zp..:m

To go back.
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* Ry — R\ i

e Gy = G\l

@ i lih=&" bit in the /™ parity check imvalving the code bit & (5o
fE G and k £ Ry

e Y li)— (-1 A o g L), received signal correspanding to o ;{1).

e g =[Plc = 1|V = )= P[X = - L[V = )
L1 T epl B /)]

& i) — Pl 1) — L fd0))

What was Pj, Piis probability of Ci given Viso that is Pi.
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@ The a posterion probability (APP) ratio for o given the received
word y = Lm Wieo-io ¥a—1] @md given the event 5,_: 1 Lhe bils in e

satisfy the parity check canstraints invalving &}, is given by

Tl“fr.. = 0|y, 5) _ {1—m) “.-—4’ {1_“ "M (1 —dl‘lgm,:l]
E*“?-E-J P [hee (1- e, (1 — 20w (i)
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# From Bayes' rule:

|"__'|T-]
e

Plei = Qly.5) | Pler = 0y )jP(5i|s = 0.y)
Pl = 1lv, 5} =1k iP5l =1.¥)
Ly co=D e

So then this with, this upper term would be 1 — Pi okay now let us pay close attention to these
terms then.
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@ From Bayes' rule:

1-p,
."_A_"\.
Ple; = 0ly.5) _ Pl - 0lw) P(Sile — by)
o =15}  Pla =1 Pli5c=1.5)
'\_\_\___’
i
& Let's cansider the term P{5[e; — 0. y) Given ¢, =0, 5 holds if

each ot w. parity checks involving c; has the property that the
wy — 1 bits in the check ather than c; hawve even parity

So what is this given that my code bits Ci is 0, when will parity check constrain involving Ci will
be satistied? It is when sum of other parity bits involved in the parity check constraints they add

up to have even parity right.
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@ From Bayes' rule:

T—p
Ple; =0y, 5) _ Ple —0lw) P(Si|e = 0.¥)
Fle=1u'%) Plac=1[k)PlSlc=1.¥%)
-\_\v_f
i

a Lat's consider the temm ﬂE,-h', - I}.,g] Givin r,_;_(l, 5 holels if
each ot w, parity checks involving c;_has the property that the
w, — 1 bits in the check ather than ¢ have even parity

So this even Ciwill be satisfied if each of these parity check equations where Ciis involved other
than this Ci bit if all other bits involved in the parity check equation in case of us regularity Pc
code that number is wr — 1, if those all those bits have even parity because Ci has Ci is 0 so the
other bits should have even parity then only the parity check equation involving Ci will be
satisfied, so we need to find the condition that sum of other parity check bits involved in the

parity check equations where Ci is participating they should have even parity.
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@ From Bapes' rule

b= in
Ple=0ly.5%) _ Ple=00k) P{5]a =10.¥)
Fle =1y.5)  Pla=1Up)P(Sc=1%)
e, e

I

@ Let's consider the term P(5]c, = 0. y). Given ¢, =0, 5 holds if
cach of w, parity checks involving o has the property that the
wr — L bits in the check ather than ¢, have even parity

@ For panty check j & G, the probability that the w, — 1 fils other
than c; have even parity is given by the lemma to be:

Bee .
E 3 11 02
— ke’ —

Now from the theorem that we have proved we know what is that probability, probability that
other than Ci wr — bits they have even parity, that probability is given by this expression, if you

go back.
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Consider the function [T, {1 - A{Ae) —O

The coefticient of t' is the probability of t i's.

The function [T (1 — £ = Pt} is idenlical except for the fact that
all odd powers of t am negative,

Adding these two functions, all even powers of t double up and odd
powers cancel each other,  —

@ |etting + — 1, and dividing by ? we get the probahility of getting
cven onas

& & &

|
(1—2m) |

—

B3l =

PA has even parity) —J

m
1

i
2&

& Similarly we can prowe
1 14
PiA ] Id parity) — 1-—2
{ 1E Deld ] :| 3 g l_[ﬂ p.,]

)
®

Probability that they have probability that m random variables have even parity is 2 + 2 product
1 — 2pk, so probability that wr — 1 bit.
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@ From Bayes' rule

1
Plei=0ly.5) _ Plo=0p) PS5 =0.¥)
Pl =1ly.5)  Plo=1w)P5lc =1y
— —

M

@ Let's consider the term PS5 e, = 0. y). Given o =0, 5 holds il
cach of w, parity checks involving o has the property that the
wr — 1 bits in the check otfer than ¢ have even party,

@ For panty check j & , the probability that the w. — 1 bitg other
than o have even parity is given by the lemma to be:

R

Iy 1 oy
J 5 t5 || (1= 2pp (i) |
= FeRn | /

So 2 +1/2 now pay close attention to this, this 1- 2pk now what are the bits that we are

considering, now what will Rj tell us, Rjwill tell us the Gr parity check equation.
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@ Fraom Bayes' rula

1=

e,
Oy, 5) _ Ple=0w) P(Si|c =0.¥)
Uy. %)~ Plo=1w)F{Sla=1y)
L

(L

Pl
Ple

@ Lut's consider the term {5 | = 0.y). Given o =0, 5 holds if
rach of w, parity checks involving «; has the property that the
wr — 1 bits in the check other than ¢ have even parity.

a For panty check j = G, the probability that the w. — 1 bits other
than o have cwen party is given by the lemma to be:

[1

J_;'z

o K
(1 - 2pr (i) |
: |

And Rj — I where I is, Ci bit is involved and this is —i, so the other bits other than Ci which are
participating in the parity check constrain product of this, I mean they should add up to have
even parity so this is a set where Ci is participating in a parity check constrain, so other than Ci,

other bits have even parity that is captured by this particular set.
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Probabilistic Decoding

@ The independence of the y;'s means that the probability that aifl w
parity checks involving o are satisfied (given o = 0) & just 2

= |
|

s T o —'.’u.-,lll']}j |'

PR [

= s

I

iy

=
Pl =

P

|
| Ptsile =09 =T] |
| 5

And this should hold for all parity check equations involving Ci so this should be hold for all we
parity checks sets where this particular bit Ci is participating, so that is why you assuming that
why 1° are independent I can then write the probability as product over all such parity checks
equations where this is involved, so I can write down then probability that my parity check set

constrain is satisfied given Ciis 0 is given by this expression.
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Probabilistic Decoding

@ The independence of the y's means that the probability that all w.-
parity checks involving o are satshied (gven ¢, = D) s just

Fisic=0y=]] (% +% I a- 'fu.-.bﬂ)
S e

JEG

@ Similar analysis assuming o — | yiclds

s ]
Puie]

Fisla=19=]] ( -z [T @ -m-.@]})

iy

And I can follow the same logic to find out the probability when Ci is 1, when Ci is 1 what I want
the other bits should add up to have an odd parity and that is.
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Probabilistic Decoding

@ The independence of the y's means that the probability that all w-
parity checks invelving ¢; are satistied (given ¢ = D) is just

A(sita =0 =] (% +3 T o -2ent 1})

JE
b

@ Similar analysis assuming o — | yiclds

P{S.-L.—l..'l'}_]-_[(

s
|\..|-—l
1
P
=
"—-._.-"

Given by this expression and this should hold for all parity check, we parity check equations so
this is assuming independence I can multiply by each of these probabilities, so this is the
probability of this parity check set, I mean parity check constrain getting satisfied when Ci is 1

and this is the expression when Ci is 0. So if I plug these values.
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Probabilistic Decoding

@ The |ndep=ndenc¢ of the W's 's means that the pr:lh:lhlllt\r that all Wy
parity Lher_'ka |nv-:r|\r|ng o; are satisfied (given o = Djl 3 Jl.lb'.

_ anmwjf

e Ry

]
Jmm—mhﬂ(

ar

r-».ll—'

ey (e =
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@ From Bayes' rile

L=

e e,
Pl =0y.5) _ Fle =0kl P(%|c =0.y)
Pl =1lv.5)  Ple =1 Pi5c=1.y)

"

@ Let's consider the term PS5 [c = 0. y). Given o =0, 5 holds if
cach of w, parity checks invalving «; has the property that the
wy — 1 bits in the check other than ¢ have even panty.

@ For panty check j = G, the probability that the w, — 1 bits other
than o have even parnty is given by the lemma to be:

EED e B3
L2t sl iepuiti

=W |

In my expression here this expression what I get is.
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Probabilistic De

@ ;1% Is the message passed from the ™ check node to the bit node

M=l
rd+1) — P{Parity chock § satistiedlo — 0, other bits |
in check § hove diszributions given by g)
| o | .
= ks 1;[ (1 — 2 (=10,
and =

rif—1) = P(Parity check j satisfiedle = Loother bits
in check § have distribotioos given by g)
F'tT"m".r}' cheek _1' not satisfiedfer Q, evther hirs

i eheck W Tiave it bintions Ee ]l_'. r'”
= I—rul+1).

The expression for.
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@ From Bayes' rula

[ Plei=0ly.5) | Plc="00k) PS5l =10.¥%)
{ Pl =1lv. 5) [ Pl =1n)P(5ic =1.¥)
{ e _'.I — —

Talf——s It

@ Let's consider the term P(5|c = 0. y). Given ¢, =0, 5 holds if
cach of w, parity checks involving & has the property that the
wr — 1 bits in the check otfer than o have even parity.

& For panty check j = G, the probability that the w, — 1 bits other
than o have even parity is given by the lemma to be:

|_ I 1

‘ 2 ta
=L

7
(1 - 2pu (7)) |
|

This, okay.
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Probabilistic De

@ ;1% Is the message passed from the ™ check node to the bit node

X — x.
rd+1) — P{Parity chock § satistiedlo — 0, other bits L
in check § hove diszributions given by g)
| S| ’
= ks H (1 — 2 (=10,
and =0
rif—1) = P(Parity check j satisfiedle = Loother bits

in check § have distribotioos given by g)
F'ﬂT'm':rj; cheek _1' not satisfiedfer Q, evther hirs

i eheck W Tiave it bintions Ee ]l_'. r'”

= E—r{1),

So as we have said before we are writing, we are representing this LDPC code using this
stenograph and there are 2 types of information which are getting propagated. One is one sort of
messages which is from the message notes going to the variable, going to the parity check notes

and this one set of message which from the parity check notes coming back to the message notes.



(Refer Slide Time: 23:49)

a . - |:i e ':f-\. '.1 ;*Iu. Illn '\||_.|
Fo »TOmwas g f-vemumle s m i m | W] e s

Probabilistic Decoding
afr

£ LA LA,

fy
M

[x¥ 5 the message passed from the [™ check node to the bit node

=1} = P{Parity check j sotisfedje = 0, other hits

in check § hove distribotions given by g)

IT (1 - 2q0.(-1)).
ER,

[

1
= -
2
and 50
raf—1) = P{Parity check | satisfiedle; = Loother bits
in check j have distribations given by g)
P{Parity check j not satisfied|e = 0, nther hits

[T Teerk o Illl'rl' |||-r.|:'|.-lg'.|<>|:h |_l|i'\.1'|| ||.'.' F?]

= I—rb+Ll

So we are denoting by Rji the message which is passed from j parity check note to the i bit, we
are denoting this by Rji so what is r, Rji is the probability that j' check note is satisfied given x is

+ 1, so this is a probability that j'" check note is satisfied given Ci is 0 and other bits are given by

distribution given by this q, now what is this q distribution?
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Probabilistic Decoding

a/g; ;\x ] is the message passed from the bit node X; = x to the ,l'”‘
rg

Theck node.

gi+1) = P(X =+1]y. information from check nodes
other than * check node).

qiy(+1) _ (1-p) ||J g ittt ]
Eh_u{—l]' Fi l ,f l:' /‘V“MF@

We will come to so that 2 type of messages, as I said there is one message so if [ draw any tanner
graph let us say just draw any tanner graph, let us say this some graph I am drawing, so there is
one set that matches it which is going from message to this check nodes okay this is one set of
messages which are going like this and there is another set of messages which is coming from
the check node to the message bits. So we are denoting by qi the message which is passed from

bit node i to the j™ check node.
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Probabilistic Decoding

ar .{xﬁis the message passed from the /™ check node to the bit node

| L
Ky
") P(Parity check j satisfied|c; — 0, other bits
i check § have distributions given by o)
S ;
2 f 9 ]___[ (1 ":I‘m"-f( 1}]
R
and so
.:...{ -1} = P{Parity check j satifiad{g = 1 other bits

in check | have distributions given by g)
P[I’m'i:}.' rheek j not satistiod|g < Q, other hits

i cheek § lave distrilntions given by g)

1=ri(+1)

And we are denoting by 1j,ithe message which is passed from the check node to the bit node, now

probability of this being.
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Probabilistic Decoding

——
afr (x)is the message passed from the [™ check node Lo the bil node

Xi=nx.
(;U_I] J-'[:I‘nrirjr check j satisfied|c; — 0, other bits
o= in check j have ll.:-\i.l'lhﬂhl.lllh given by o)
; | é IT (0 —2q0-1))
ERy
and 5o
ail=1) = P{Parity check j satisfied|g = 1, other bits

in check j have distributions given by q)
P{I‘nriu,' check § not satistied| g — 0, other hits

i clwek § Lave distributions given by g)

L= ri(+1)

X being +1 which is basically correspond to ci their code bit being zero, this is this probability is
defined as what is the probability that j parity check constrain is satisfied given that c; the i  bit
is zero and other bits are given by distribution given by qi. Now what is the probability that j*
parity check constrain will be satisfied given ci will be zero, that probability is given by the
condition that all other bits that are taking part in the parity check constrain other than ci bit they

should have even parity.
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Probabilistic Decoding

ﬂll[r {w}' s the message passed from the ™ check node to the bit node
X=x
{-r,-.,-[ 1) P(Parity choek j satisfied|q; — 0, ather bits
e _w check § have lli.irﬂmﬁuu: given by g)
| G2 | -
b H (1 - 2q0,(-1)).
'R
and so -
f0-1) = P{Parity check j satisliadle, = 1, other bits

in check § have distributions given by q)
.‘-'I[I‘u.ri:.l,' rheok § not satisted o~ 0, other bits

i chieck § lave distributions given by g)

1= ri(+1)

And that is given by this expression, similarly we can find out what is the probability that r ;i is -

1 this is 1 minus this probability.
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Probabilistic Decoding

n!q;,,-[xﬂis the message passed from the bit node X; = x to the j*

check node,

giy(+1) = PXi=-+1]y. lnformation from check nodes
other than j* check node),

ql,l':"'l]' {1—p) ||Jr|. -,|: L)

g -1 B Ipec, tra-1) //\@?Q

Now what is this gi j ? It is a message passed from the bit notation i to the j'" parity check node.
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Probabilistic Decoding

a q;,,-[xﬂis the message passed from the bit node X; = x to the j*
theck node.

gi+l) =PXi= —L|y. formation fom check nodes

: th

other than j* check node).

g {+1) _ (1-p) iee, wil+1)
ql;{—l]' Bi I._urE i f ]_:| /y/ xrﬁ{

And this is so qij here being +1 is given by what is the probability that xi is +1 given receive
sequence yiand information from parity check nodes other than the j™ parity check node so, what
is happening is when you are decoding because each bits are participating in multiple parity
check equations, so you are getting some independent information from other parity check nodes

and that information you want to pass it to and spread it around in this network.
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Probabilistic Decoding

nis the message passed from the bit node X; = x to the j*

check node

giji+l) = PXi = +1| . information from check nodes

e

other than j* check node).

ay+1) _ (1—pillree, 41

L= il i 1'Jx A
di(—1) o Iljee,, fral=1) /rg/\ﬁi‘g‘ﬁ‘g

And this probability is given by this expression.
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Probabilistic Decoding

nis the message passed from the bit node X; = x to the j™
theck node

g+ = Pf}lf l.| ¥ information from check nodes
other than j* check node)

e

ay+1) _ (1=p)lrec, 7. ‘ ” B R
o= & [iec, /fz%’/** ﬂ%{,&

C‘-r
oF

So there are two types of messages again I repeat which are being propagated in this graph, one
is a message from the message nodes to the check nodes and then check nodes are sending some
information saying okay whether these parity check constrain is satisfied or not, given input bit is
one or zero and they are passing that information, so these information gi's are passed from
message nodes to the check node and this message, these messages ris have been passed from

check nodes to the message node.
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Probabilistic Decoding

nis the message passed from the bit node X; = x to the j*
check node.

gisl+l) =PiX =+l y. lnforuation rom check nodes
other than /™ check node).

g

qigt+1) _ (1= p) [iecy, 5u+1) 1
g -1 A e, w1 {/‘@‘Iﬂt
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Probabilistic Decoding

For all i, j such that hy; = 1. (5o { indexes the bit nodes and j indexes
the parity checks. )

@ Step 0: Imbialize:

So then how does this whole process go? So first step is



(Refer Slide Time: 28:00)

Probabilistic Decoding

Farall i, f such that & ; = 1. (So / indexes the bit nodes and § indexes
the parity checks.)

@ Step 0: Initialize:
@ Sat pr = Ple = 1Y = w) = /(1 + exp(2w /e })

We initialize the probabilities that we are going to send from the message nodes to the check

node.
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Probabilistic Decoding

Forall i,j such that h;; = 1. (S0 i indexes the bit nodes and | indexes
Lhe parity checks.)
@ Step 0: Initialize:
eSS p=Ploc=1Yi=w)=1/{14 r-:-:pﬂi'y.,ﬁr')}
v gul+l)=1—p

So we calculate this pi.
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Probabilistic Decoding

For all i, such that & ; = 1. (50  indexes the bit nodes and j indexes
the parity checks.)

@ Step 0; Initialize:

@ 5at pr = Plg = ¥ = ») = /{14 axpl 2y /)
g gyi+l)=1—p.

And we calculate this gi's, these are messages we will send from the bit node to the parity check

node okay.
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Probabilistic Decoding

For all i, j such that h;; = 1. {50 / indexes the bit nodes and § indexes
the parity checks.)

@ Step 0: Initialize:
e Sat pr = Ple = 1Y = w) = 1/(1 + axp{2p [}
# g+l =1—-p:.
a -1y =n
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Probabilistic Decoding

Forall i.j such that b ; = 1. (So i indexes the bit nodes and | indexes

the parity checks. )
@ Step 0: Initialize:

@ Set g = Pla = 1| = p) = 1/(1 + axp{2p/a”)).
"4 sltii=1-p. = —
o gy(-1)=p

-

So that is the first step initialization step that we are calculating the initial messages that the bit

nodes will send to the check node and that is basically based on channel likelihood values, it is

given by this expression.



(Refer Slide Time: 28:42)

Probabilistic Decoding

For all i.j such that &y ; = 1. (So i indexes the bit nodes and f indexes
the parity checks.)
@ Step 0: Initialize:
s Set o = Plc; = 1|¥ = w) = 1/(1 + exp(2w /o))
@ giy(+1)=1-p
& gi(=1) = p.
@ Step 1: Pass infermation from check nodes to bit nodes:

Next is once these messages are sent to check nodes then check nodes will do local computation

and it will send this ri’s back to the bit node.
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Prababilistic Decoding

For all i.j such that iy, = 1. (5o f indexes the bit nodes and | indexes
the parity checks.)
@ Step 0: Initialize:
o S5et = Flg =1|Yi=n]=1/{1+ up(l_t-',.."#:,'l}.
g+l =1—p
@ g1 = p
@ Step 1: Pass information from check nodes to bit nodes.

So pass information from check nodes to the bit nodes so check nodes are going to pass these

information ri’s
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sbabilistic Decoding

Back to the bit nodes.

For all 7, j such that by = 1. (So 7 indexes the bit nodes and J indexes
the parity checks.)

@ Step 0: Initialize:
oS5 p=Plg=1¥=§]=1/{1+ :xp{ly.,.f.ﬂrz]}.
@ g (+1) =1-p.
o g{-1) - p
@ Step 1: Pass information from check nodes to bit nodes:
o i+ =3+ 3 [Ty, (- 2004(-1))

—



(Refer Slide Time: 29:02)

Probabilistic Decoding

For all 7. such that by, = 1. (So i indexes the bit nodes and j indexes
the parity checks.)

@ Step 0: lnitialize;
eSetp=Flo=1Y =x)=1/1+ Exp(ly,l."ﬁr:'}}.
@ L‘I.“.{-l-l]l =1-g
@ g(-1) - pi
@ Step 1: Pass information from check nodes Lo bit nodes.
o ni+1) =3 +311cq,, (1 - 290,(-1))
o gi(-1)=1-ni(+1)
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Probabilistic Decoding

Far all i, j such that & ; = 1. (S0 i indexes the bit nodes and j indexes
the parity chechks.)
2 Step 0: Initialize:
s Set o = Flo = 1Y = w) = 1/(1 + exp(2p /o))
L T-I'l,,ll:"'lj =1-p
o gl=1) = p.
@ Step 1: Pass information from check nodes Lo bit nodes:
[ﬂ nil+1) = § + § [Lrcp, (1 — 200 (-1)

s ni{=1) =1 g,(+1).

And this is given by this expression.
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Probabilistic Decoding

@ Step 2: Pass information from bit nodes to check nodes:

Now once you get this updated ri’s from various check nodes then this gi's are updated.
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Probabilistic Decoding

@ Step 2: Pass information from bit nodes to check nodes:
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Prababilistic Decoding

a Step 2: Pass information from bit nodes to check nodes:
- EI".":"']-:' = 'H-"I“- o F"}“_.-._rl ; |"|'.J|I,+1:|
@ |r.’|: 1) H'Jf"ll.'.,r,lfl'--[ ]J'I

So you are going to then send modified information, this qgi’s to the parity check nodes.
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Probabilistic Decoding

@ Step 2: Pass information from bit nodes to check nodes.
& gij{+1) = Kij(1— @) [ [ree, . fra{+1)
@ 'T'x": 1) H"J'F'].l."-,r .rJ"'[ 1)

And this is basically given by this.
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Probabilistic Decoding

@ Step 2: Pass information from bit nodes to chack nodes:
o au( 1) = Kl P e, il 1)
e gyf-1) = Kip | Jl""-'. o e |
@ Here, the constants K, are chosen 5o 33 to guarantes that
gi j(+1) + giy(-1) = 1.

You can do some normalization, these are kis are just some constant, you can do some

normalization.
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Probabilistic Decoding

@ Step 2: Pass information from hit nodes to check nodes:
o aul1) = Kilt - ) [Tee, el 1)
o g (-1) = Kpi | IJ'rr.--, i i{—1)
@ Here, the constants K are chosen so a3 to guarantee that
gi{+1) + gii(-1) =1
@ Step 3: Compute the APP ratios for sach bit pasition

And finally we will compute the A pository probability.
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Probabilistic Decoding

@ Stop 2: Pass information from bit nodes to check nodes:
o a(1) = Kyl pdlTecce, w11
@ gf-1) = Kupi [[ e, mral-1)
@ Here, the constants K are chosen 5o as to guarantee that
g(+1) +g(-1) =1
@ Step 3: Compute the APP ratios for sach bit position &
2 Qi+1) =Kl - p.-}l'[_, . [ +1)
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Probabilistic Decoding

@ Step 2: Pass information from bit nodes to check nodes:
o @(+1) = Kij(1 = o) [ e, il +1)
w giy(-1) = K .fl-[l,-,..-.lf,--..[ 1)
@ Here, the constants K, ; are chosen so as to guarantee that
gigitl) +ai-1) =1
@ Step 3: Compute the APP ratios for each bit position i
& 1y =Kl - mh[[ec il 1)
o Q(-1)=Kipi [T,ce mil=1)

And that is given by this expression.
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Probabilistic Decoding

@ Step 2: Pass information from bit nodes to check nodes:
» gi(+1) = K1 = )L, oral+1)
@ @(-1) = Kiipi D pee, tral-1)
@ Here, the constants K ; are chosen so as to guarantee that
gultl) +aui-1)=1
@ 5Stap 3: Compute the AFP ratios for each bit position i

"o Q1) = K1 - p) [T mal H1)
ﬂ-{ﬂ QI:_ 1‘-' o H,P. |-.|.‘-.'|_ rl-'ll _l]

And this we have derived earlier in the lecture okay. So to repeat basically how this whole
process is going, you have this received values from the channel, based on that you compute
your initial pis and gis, now this information are sent to a check nodes, now check nodes do local
computation that what is the probability that the check node will be satisfied given a particular

bit ciis zero or one and then they pass that information to along the edges back to the bit nodes.

Now these bit nodes are getting information from other check nodes as well because each bit
node is connected to multiple parity check equations. So it takes those input into a count to
updates its gi's and this process is continued in an iterative fashion until all the parity check

constraints are satisfied.
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Probabilistic Decoding

@ Step 4: Compute the hard decisions and decide if it's time to stop.

. ={ L if Q=1) = 0.5;

0 otherwise

So finally basically once you compute the a pository probability then if qi being -1 is more than 1

you decide in favor of 1 otherwise you decide in favor of zero.
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@ Consider the code with panty check matrix, H:

1S e e (S N A
H_DGEIJJ.J.EIE'
1 001040140
01 00140G01

So let us take an example to illustrate the decoding algorithm, so we have a low density parity

check matrix given by this we have eight coded bits.
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e ey b
[ &

53 1515

€, | &

@ Consider the code with panty check matrix, H:

B =
L= T = R
== B A R
(= e~
ol = B g = ]
= e Bl ]
o T e B o]
[l = = =]

—

en—8 m—n—Fk—4 dus
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Example

This is the tanner graph corresponding to the parity check matrix, we can just quickly check it.
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Example

@ Consider the code with panty check matrix,

LN

=B - B
it =

a0 O O -

ol

2o

[l == B = ]

[ B BT ]

H:

N — T =1
L= B == =]



(Refer Slide Time: 31:17)

Gy

Lﬁ|(.?

@ Consider the code with panty check matriz, H:

1 &£ 4 0 000D
H = 1R ) 1S A S | 1
LB =g @ % 18
g1 0014001

ad

enp—8 m—n—k—4, duy

So the first parity check equation involves these three bits first three bits.
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Example

So you can see the first parity check equation involves this, this, and this.
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Example
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0 I 2z
l'..= L4 Lﬁ
Lﬁ {.?

@ Consider the code with panty check matrx, H:

3 e uuna‘r—
H - 1 1 S S R

1 0 0-FE Q9 ¢ F 0

@ 1 08 1 '¢G 0 1

e p—H m=n—k=4, dun

wa

Second parity check involves fourth, fifth, and sixth bit.
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Example

That is second parity check involves fourth, fifth, and sixth bit.
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Example
¢ile Le
il -
Yo |

@ Consider the code with panty check matnix, H:

Lt 320 09 00
H— g 0 8-X T -1I' B0
1 001009010
gL cesE I8 0

e =8 m=n—K=4 g

il

This involves first, fourth, seventh.
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And that is first, fourth, and seventh, and similarly we can verify for this also okay, so this is a

tanner graph corresponding to the parity check matrix that we have drawn.
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1 i I =k R
mkiulation
0 I | = I -1 |
| I == |
ransmission
o =05
|
+02[+0.2 |09 |
HLG | WS | 1.0 |
04112

So these are the bits, eight bits which were transmitted now after modulation because we were

mapping them as (-1)°.
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Lransmnisaion

I
a =05

|
ks | -1.1 |

|
+02 09 | 1

]

So one is getting mapped to -1 and zero is getting mapped to +1, so that is, these are the

modulated bits and noise variance was 0.5 so what we get is these are the received value so these

are my yi's okay. Now what is the first step? I will take this yiand I will compute my pi>s and qi’s
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Example

Initialization.
@ g (%) = 1/{1 + exp(~2xy; /7)) for each 1, such that by ; = 1

Initial piso I am going to first compute my initial gi’s
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Initialization.

@ g;;(x) ~ 1/(1 + exp(—2xy;/7?)) for each i, such that k;; 1

——=
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Initialization:

@ g (x) =1/(1 +exp(—2xp/a?)) lor each 1, j such that by, =1.
@ go.o(~1) = goa(-1) = 0.310 and o +1) = goa(~1) = 0.690

And that is basically given by this expression.
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Example

Initialization:
®gylx)=1/(1 + exp(—2xy /a?)) Tor each 1, such that b, =1
e goo{-1) = guz{-1) = 0.310 and goof +1) = qoz{-1) = 0.690
@ qof 1) qua(-1) ~ 0.310 and quo{+1) = qua(+1) - 0.690
@ gop(—1) =0.973 and g p{+1) = 0.027.

So I am just stating this, so I compute this gi's, now again just pay little attention to what ;s are.
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Probabilistic Decoding

a[_a.,..(x ;is the message passed from the bit node X; = x to the j*
theck node. s §

g (+1) = P(X, =-+1|y. information from check nodes
other than j”' check ]||||||"]-

a6 _-mlec,r0 | g g
%.(~1) P n."n--e'.,"."-"{ 1) f}‘/i“:;;é%

qi’s are message passed from i bit to the j™ parity check constraint. So if you label your nodes
from 0,1,2,3,4 as similarly label parity check constraints, so what you are going to notice is so

you need to compute your qi’s for, for in this example.
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Example

Sothisis 0, 1, 2, 3,4, 5,6, 7, similarly itis a 0, 1, 2, 3, so you will compute qo,o.
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E L) D. | '\l:':'i'i."'\'."\ ||_-'
ForTometd g @fsremBERBEERE T B wewm

Prabahilistic

n-!.q. ilx }15 the message passed from the bit node X; = x to :he_.a
theck node i

o .i,-l-f.:l = P[X_- = +1 ¥ information fom check nodes
ot lher than J:”I check |||||||'}

ai(+1) (0= p) jee, maltl) R
@ l-1) 7 rec, #A-1) //‘j #_

So qi, j is the message passed from i node to the j check node right. So gis you need to

compute for in this particular example.
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d -~ d : e
I'J £ T "'}-'F"...i-ﬂl:l.’._l_l. A T 2

So let us look at 0" node, so you need to compute qoo because your message you are sending
from 0™ node to 0™ parity check. You need to compute qo2 because you are sending message
from O bit to the second this thing. You need to compute this qi0, you need to compute qi3 right.
You need to compute q20 and how are these initially computed, these are initially computed
based on what are the received values yis that we have received. And that is precisely what I

have shown here.
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=! ~ 0O iy -

G+ TomEEd g BrenmllEEEEE T s i

® ahi(~1) = qus(-1) = 0.119 and qs1(+1) = qua(+1) = D.8H1.
@ gs.q(—1) =0.988 and gs,,(+1) = 0.012.
@ g af 1) = 0.832 and gs2(-+1) - 0.168.

So I have, you can see here these are the computed values of gi’s and pay close attention to these

instances, these denote that i" bit is sending information to the j parity check constraint okay.



(Refer Slide Time: 35:24)

3 | - o Pl '\J e tha'

FosTomutdc deaMEREEEENE W o =

L]

ga1{—1) = qua(—1) = 0119 and qa1{-+1) = qa.3(-+1) = 08B
gs.1(—1) =0.988 and g5 (+1] = 0.012.
gaal 1) ~ 0.832 and gg2(-1 1) ~ 0,168,
gral—1) = 0.992 and g7 4(+1) = 0.008.

-
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@ Now compute r ;'s from g; ;'s:

A
Fc:-:;[‘.-l] = 54—6 H {L—Eqr ||(—l]l:|
T e R
B
= 5+5(1—2g (1)1 —2g:0(-1))
= g %;1 — 3(0.31)){1 — 2(0.973))
— 0.320.

So once we have computed this qij the next thing that we need to do is these parity check
constraints are now going to check okay given that the bit is zero. What is the probability that
parity checks constraint is satisfied, given the bit is one what is the probability that parity check

constrain is satisfied?
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E = o i i '\.".';\ @, = '.51. i|-_-
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@ Now compute ;s from g;;'s

lIrﬂ...j_] - _].-1-% H{L—?ﬂ'.-uf—l}:'

I Py

+ (1 — 2 p(—1) )1 — 2q2,0(—1))

+ {1 — 2{0.31))1 — 2({0.973))

=R Iy AT

L
(%]
P

And those are given by these r’s, rij’s right. What is the probability that 0" parity check
constraint is satisfied given the 0™ bit is +1. Now what is that probability, that probability is
given by, so we are looking at first parity check constraint. Now given that first bits Ci is zero
what we want is the other bits which are involved in the parity check constraints they should

have even parity. So let us look at the H matrix for the first row.
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@ Consider the code with parity check matrix, H: i

: _
11100000 \ Ro- o0
hie | © 0011100
1 0010010
01 001001

So this is Ro, Ro is 0, 1, and 2. So given that this bit is zero what we want to find out it is what is

the probability that sum of these two add up to even parity. And that is what we are doing here.
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@ Now compute r;;'s from g;;'s: P Q'.J 1 3%
i e L

LT 1 oty Sl
t(_;":[-i_l] = 3 i 21 {1 —2g;a(—1}) Foa ihZ
: "€ fig g

+ 5(1 2, 0(—1))(1 — 2450(~1))
:
2

+
320.

{1 —2(0.31))(1 — 2(0.973))

=T ST

Note here, i belongs to Ro minus this zero term. So here you will have two terms, one is
corresponding to i being one and other i being two. Why because your Ro was 0, 1, 2, so Ro
minus this element zero is nothing but 1 and 2. So here in this product you will have two terms,
one corresponding to qi,0 other corresponding to q2,0. Because in that 0™ parity check equation

other than the first bit, the bits that are participating is that other than
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a = [*] Alis |_"\ e Q& ‘l__’

FosToo#t g @-eemmAEEEOREC N H s o

P
?-'Tl,l.

%117 NI AL

={1 - zf,h n{—1))(1 —Eq” al—1})

b5
|

@ MNow compute r_r-_,'.-. from g5 g ]{‘__I_ N

Pl o=t

rc:.,c;ii- 1 :I

+ =1 —2(0.31) }{1 — 2(0.973))

32

F?r;lll—nr-.ll.—-
F‘Mln—r

The 0 bit other bits which are participating is bit number one and bit number two. So this is the

probability that parity check constraint is satisfied given Ciis zero.
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@ Now compute ¢ ;'s from g; ;'s

1
2

fal+1)

+% IT (1 —2400(-1))
'.'LF\I.'\'.

- ,3, + %_u — S a(—= 1)KL — 203.0(—1))
= % + %;1 — 2(0.31)){1 — 2(0.973))
= 0320,

@ In a similar way:
& ma(+1) =0.5 +0.5(1 — 2{0.31)){1 — 2(0.973)) = 0.32
a ma(+1) =05 +0.5(1 — 20.31))(1 — 2{0.31)) = 0.57
@ aal+1) =05+ 051 - 20.119))(1 — X20.968)) = 0.128
e ro(+1) =0.5 + 0.5(1 — 2(0.083))(1 — 2(0.832)) = D.223.

@ (-1}=1 = i[+1)-

And similarly we can calculate the other ri’s. [ am not going into detail of that it is just the same

procedure repeated. So once we calculate this gi’s, ri’s and initial gi’s.
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Meow compute a; ;s from q 5

(L — ) ]] rra{+1)
_|”" L

(0.69)m0( +1)

(0.69)(0.223) = 0.154.

ol

and

m [] el-1)

FECma
G.BLI;,J:.{—L:I
0.31{0.777) = 0,241

ﬁ‘lln_{—l_J

Then we are going to update our gi’s. And again we follow, so we find the product over all those
check equations other than that particular bit and we repeat this for qgij being +1 and -1. And we

can normalize these probabilities so that they sum up to.
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@ This means

11.154
gnaf+L1) 0,154 | 0,241 _—
and
0241
ool 1)

=061

= 0154 + 0241

One, so if we normalize it these are the probabilities that we are getting right.
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@ This means

0.154
gnaf+1) = 0.154 1 0.241 059
and
0.241
qoa(-1) = 0154 + o241 — o

@ Finally, compute the APP's:

And next thing finally after we have computed one round of iteration, what is one round of
iteration, you send these gi’s to a check node then check node gives you backs ri’s you update

your gi’s.
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@ This means

1.154

l}j= ———— =0.19
o+ = 595a T oam
and
0.241
Qal =1 = Goea oaar — 08!

@ Finally, compute the APP’s;

And once you do that.
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@ This means

0.154 .
®altl) = Gisaroom 0¥
d
: ()= 02
e T D1S4+DIL

@ Finally, compute the AFF's;
a Mote: Qi(+1) = di,;(+1) - r;;(+1), which means

—

Gal+1) = Guol+1)- mol +1) = 0154 0.32 = 0.0403

and

Go{—1) = Gon(—1}- raal—1) = 0.241 -0.68 = 0.164,

You can then find out the A posteriori probability which we have done here. So probability of

wit being one, probability of this being zero, and then based on again you can normalize.
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@ This yields the APP

; 0.0493
“ol+1) = 55403+ 0.164 G_”:

o
i 0.164

(1) = 5023+ 0.164

= .77,

These probabilities so that comes out to be this. Now based on whichever is more likely you
decide in favor of that. In this case q being -1 is more likely so a bit which was transmitted was
one okay. So to recap how this probabilistic decoding algorithm works, you have your receive
six sequence. You compute this probabilities gi’s message bits, send it to the check bits, check
bits then do some compute local computation sends the information back. Now this process goes

on and on until basically all the parity check constraints are satisfied.
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@ This yields the APP

: 0.0493

Gl 1) Goas3+ 0168 E'_ﬂ:
and 0.164

hi—1) = —————— =0.77.

~ 0.0493 -+ D.164

Or the maximum number iterations have reached.
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@ This yields the APP

0.0493

gl 41 i
Ga(+1) (10493 + 0.164 0.23

and 0.164
1) = soamar o6~ 7

@ The other (i's can be computed similarly

Now this we have done for the first bit you can do the same thing for other bits as well. In fact,

the beauty of this algorithm is you can do this whole operation parallely.
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Probabilistic Decoding

@ The most significant feature of this decoding scheme s that the
computation per digit per iteration is independent of black length.

So one of the nicest feature of this is, this algorithm is computation per bit per digit

independent of block size.

1s
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Probabilistic Decoding

@ The most sigmbeant feature of this decoding scheme & that the
computation per digit per iteration is independent of block length.

@ Average number of iterations required to decode is boundad by a
guantity proportional to the log of the log of the black length.

And average number of iterations required basically your decode is typically bounded by log, log
of n. After that you started getting code related information back. So with this we will conclude

our discussion on probabilistic decoding of LDPC codes. Thank you.
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