Indian Institute of Technology Kanpur
National Programme on Technology Enhanced Learning (NPTEL)
Course Title
Error Control Coding: An Introduction to Linear Block Codes

Lecture — 9A
Decoding of low density parity check codes-I

by

Prof. Adrish Banerjee
Department of Electrical Engineering, IIT Kanpur

Welcome to the course on error control coding, an introduction to linear block codes.

(Refer Slide Time: 00:20)

Al S RS O
G /Tom% e Jor . o MEENNNENEC ] B e o

| -

Error control coding: An introduction to linear

block codes

Adrish Banerjee

Department of Electrical Engineering
Indian Institute of Technology Kanpur
Kanpur, Uttar Pradash
Inelia

Apr. 4, 2016



(Refer Slide Time: 00:22)

=1 a%EQ fealsa n e e Al
| . ¥

@ »TOHmEwn e fs - HEE D EDEE I M| s 2

Lecture #9A: Decading of low density parity check codes-1

Today we are going to discuss decoding of LDPC codes.



(Refer Slide Time: 00:28)

o s e aeacaanfs

d
7 S T T et i

8 7T®

@ Decoding on BSC: Bit Flipping Algorithm

So to start with, let us first take a simple example of transmission over a binary symmetric
channel and we are going to talk about a bit flipping algorithm to decode LDPC codes. And then

in the next lecture we will talk about probabilistic decoding algorithm based on belief

propagation.



(Refer Slide Time: 00:48)

R[HE D & &) Sf3

e g R EEEERE O B e =

@ Decoding on BSC: Bit Flipping Algorithm



(Refer Slide Time: 00:49)

7o s To= @ 6 o [ REEEEIOEECO0 B S| o

Qutline of the talk

@ Decoding on BSC: Bit Flipping Algorithm
@ Example 1. One transmission error case.

So we will consider two cases today, first where there is only error has happened.



(Refer Slide Time: 00:56)

Led e e glelle aq e
@ To=uEa ok

@ Decoding on BSC: Bit Flipping Algoarithm
s Example 1: One transmission error case.
@ Example 22 Two transmission errors case.

And second where there are two errors have happened. And we will show how we can correct

these errors using LDPC codes.



(Refer Slide Time: 01:04)

OO0 ][] W s dormai 02

Pa »7TommadciZlreem

sity parity che

=
1
=
]
4

oo

L= =]

oo

oo

oo

oo

oo

= o

(==

oo

oo

oo

o -

= o

e 00 0O0OOT ODODO

i A

1

0o 00000 O

0

Q

0 0 00 00O OO0CO0CO0O0COCO0OO0OO0OTO0

Tk
(0]

1

o 0

0 o0 0

1

1]

1

0 0 0

(=1 =]

(= =]

(= ]

L B |

oo

(=R =]

(=B ]

= o

(=18

(=R =]

- o

(=R

oo

(=2

L B ]

oo

oo

[~

—Q

(= =]

(=

-~

oo

oo

[

-0

{= =]

L= =]

=

—~ o

oo

(=R}

(=

(==}

oo

oo

o

oo

(==

(==

(= =N

co -

o a

coa

(= =]

oo o

ocoo

==

—~oQ

oc—Q

coo

oo

oo«

O =-QO

o Bl = B e ]

coo

L=2 =R |

o~ Q

0

0

0

1

0 00 01 0 00 01 00D D
@ Example of a low density code matrix; |1=EDEB %:41

1

0 0 0 0

So recall this is an example of a low-density parity-check code, a flock length 20, the column

weight is 3, and row weight is 4.



(Refer Slide Time: 01:24)

Fo / Tohowad | o@-o0 mmEmmmmmmi) || W s o

@ The set of bits contained in a parity-check equation constitutes a
parity check set.

@ Parity check set tree is a representation of parity check set in a
Lree structure,

We will first define few terms and then we will come to the decoding of that.



(Refer Slide Time: 01:35)

ELUE =0 Flle s me Sl R S
g 7TOmwadgErommEREEEEE| ||| W

@ The set of bits contained in a parity-check equation constitutes a
= alfin, Mad 2o gt
By e

@ Parity check set tree is a representation of parity check set in a
Lree structure

So first thing we will define is what is a parity-check set, so what is a parity-check set? It is the
set of bits that are participating in the parity-check equation. So set of bits that participate in a

parity-check equation, they constitute a parity-check set.



(Refer Slide Time: 01:54)

=] ~ a0 AR . e N R Y
8 /TDo WMo Ererin B () (] [ | e a1

@ The set of bits contained in a parity-check equation constitutes a
parity check set.

So for example



(Refer Slide Time: 01:56)

EOElawgs eesrdaaans

P o »TOmm e A< - e o MM mmoE W oo

Low-density parity check codes

—31 ¥ 12 1 0 0'C 0 0 0 000 ¢ 0 0 00 ¢
g 0 o686 1 ¥ 1 600989 600000 &I
& a 0 0o &6:@e'ec 6 1 1 36 e b 00 kp ot
B 0 0 & 0 9 0 O 9 0t E OE OO 0B O
¢ 6 0D 00000 0 00D 0O0CD0DO0OI1TITIT T I
1 0 0 0 1 0 0 0 1 © 0O O 1 0 0 0 0 0 0 ¢
g 1 086 01T e o @ I 6900 0 0 1 ¢ '@ (
g ¢ 1060 Y o a 4009010 6061 01
¢ 0 0 1600 g 0 01 90 601 000 T
g § 6.0 60 ¥ a8 @ Y'ae s 0 1081
I 0 000 86 I @ 0 0@ 6 01T 0@ 0 o9 3 40
g 1 9006 '@¢ 1 0 6 0 19086 0 0 1 00 0 I
—3f0 0 1.0 00O @ 1L 0 ¢ 0 8 1.8 0 0 00 ¥ (
E 8 0 8% ¢ a 1 8 901 8 8 E & W
g 0 9 01 € @ 0 0@ I 000 OCT1 0O0O00O)
@ Example of a low density code m:ltrix;ﬁ'lzz-d“;-a k=4

If you look at this particular parity-check equation, now these are the bits that are participating in
this parity-check equation. So these bits will form a parity check set, if we look for example at
this particular row, now this bit, this bit, this bit, and this bit, these are the four bits that are
participating in the parity-check equation. So these bits will form a parity check set.



(Refer Slide Time: 02:32)

BEOez=o e aaasd

g £ TH=wmA {,ﬂ!,.lToI- OO ]| W seabommal 02

@ The set of bits contained in a parity-check equation constitutes a
e !

@ Parity check set tree is a representation of parity check set in a
Lree structure.

So what is a parity check set tree, it is a graphical representation of the parity-check set in a tree

like structure. How? We will explain.



(Refer Slide Time: 02:46)

o »THhom s A Bl e o o (o mmmmmm || W e 2

@ The set of bits contained in a parity-check equation constitutes a
parity check set.

@ Parity check set tree is a representation of parity check set in a
tree structure,

@ An arbitrary bit d is represented by the node of the base of the tree.

So in any arbitrary bit is represented as node of the base of the tree.



(Refer Slide Time: 02:57)

dDEEenE ke aaa fn o

Fo»TOhommedoLf+em O [ | 13

@ The set of bits contained in a parity-check equation constitutes a
parity check set.

@ Parity check set tree is a representation of parity check set in a
tree structure.

@ An arbitrary bit d is represented by the node of the base of the tree
@ Each line rising from this node represents one of the parity-check
sets containing d.

There is a line arising from this node and each of these line represent one parity-check equation

where this particular bit is participating.



(Refer Slide Time: 03:12)

RPN EEE aaaass

G7TDmM A A @ roIREEEEEEE ||| W s 2

@ The set of bits contained in a parity-check equation constitutes a
parity check set.

@ Parity check set tree is a representation of panty check set in a
tree structure.

a An arbitrary bit d is represented by the node of the base of the tree
@ Each line rising from this node represents one of the parity-check
sets containing d.

So each line arises from the node and it represents one of the parity-check equations or one of the

parity-check sets where this particular node is participating.



(Refer Slide Time: 03:25)

H O E=%0d i e esaaaasfT
P o/ 7Too@m A o @[~ mm[mmeEmmm | oo

@ The set of bits contained in a parity-check equation constitutes a
parity check set.

@ Parity check set tree is a representation of parity check set in a
tree structure.
@ An arbitrary hit d is represented by the node of the base of the tree
a Each line rising fram this node represents one of the parity-check
sets containing d.
@ The other nodes bits in these parity-check sets are represented by the
nades on the first tier of the tree -

Now other nodes in these parity-check constraints are represented as nodes in the first tier of the

tree.



(Refer Slide Time: 03:36)

= | o

a Al e e e T \l_'i

Lres

-
-

o *Toomeadcd-commEEmpnmmi[| @ o o

@ The set of bits contained in a parity-check equation constitutes a
parity check set.
@ Parity check set tree is a representation of parity check set in a

structure

An .'srhilr.'iry bit d is n-_'r_ni'_‘-.lerlled Lwy the node of the base of the tree
Each line nsing from this node represents one of the panty-check
sets containing d

The other nodes bits in these parity-check sets are represented by the
nodes on the first tier of the tree.

The lines ri:ing from tier 1 to tier 2 of the tree represent the other
parity-check sets containing the hits on tier 1

The nodes on tier 2 represent the other bits in those parity-check
sets.

Now what do I mean by this,

so let us just look at.



(Refer Slide Time: 03:39)
ARl

o o O[] s 1

=] LEdy elee:
FarTo=m=asdcl|

Parity-check set tree
~ Yo %R d2 o g 12,

0 1?15:‘1. o1, 30, ] .If’ |'
£ 1 ,.1m|14|11 |,5 q
110”[ Imr'J”ﬁT 17 || ) oliy OO

|
Jﬁ m {178 l‘ 9'
\ R "
-\\ I.l'l I \
\
2

So let us say I have this node, first node calling it node 1. Now this node participates in three

parity-check equations, you can see 1, 2, 3, go back to our



(Refer Slide Time: 04:00)

corloccarloocoaH
DOoOm~DODOoOODD=~OoOC--Oao
corloo~rocloocoo
5 coHMoMoDOocloo -
m cHoloooca~la~oOO
o-olcoo oo~
L ] =
u 010001000001”1
= |
m ODHOHoOoDOOCOo~OQl
[ ]
Em ~ocolcooaor|lHocoa|q
- =
+| @ ~oolooorol@rooo|
o | B b=
=1m ~—ooodocoocoooco AR
ol | E
~|m ~ooclH~oooolcooc-aly
.\. (1] m
Sl coolococo~loo—oa
% Y oy
2 b coolcoroolorococal g
= 4]
L= (=] UODDIUDDIDUQUM
e ] B
w S cogoglHoooooooo |
o I = m
m -
| ol cooocoo~Nolooe~o| 0
a
[ B 3
D: o coojco~oocloo~oa W
un m
ol £ coocojlorcoclorcoal j
£ -
= hal = IDUOiWGOGUIDOOUu
e i k.
N 3 ¥ i3
[Tl =

So we are looking at first bit, it participates in this parity-check equation, this parity-check

equation, and this parity-check equation.



(Refer Slide Time: 04:14)

U.’T'?_‘Jﬂ'-!’lh{"u.‘blT"- [CWCREE JC EEWE

So there is one line corresponding to each of these parity-check equation okay.



(Refer Slide Time: 04:24)

dlEien: ¢egsaaan o
O 7TDmwHAacEf-«em T TR

Saca oAl | 12

Parity-check set

# | parity-check set
1 1.2.34

2 5.6.7.8
3 {9,10,11,13}
a4 | {1314,15,16)
5 | [17.1819.20}
6

7

a

{1.5.9.13}

2.6.10,17}
{3,7.14,18}
] 4,11,1519}
10 8,12,16,20}
11 {1,6.13 18}
12 {2.7.11,16}
13 13.8.13,19}
14 {4,9.14,17}
15 [5.10,1520}

Now in this parity-check equation you can see which are the other bits participating.



(Refer Slide Time: 04:27)

4

(I || B o i

=

=

o 000 0CO0O0OOCOODOOCTOCOOC O

1

0O 00 O0O0O0 O O

0 00 0 O0OD0 OO0

= O
(=B =
(=R =]
(— k]
oa
QQ
2
oo
(==}
- F ]
(= =]
(= =]

o of

L=l =]

[== =]

[=Rl=]

=R

L= R

oo

(=T ]

b B

(==

[=Rl==]

=28

L B =]

L=l =]

L

(=T

— O

1
g 0 0

1

(1]

00 0 1
1

1

0
00 0 0 0

0

00 a0 0 a1

0 0 0 1
0o 0 0 0

0 0

1 0 0 0 0 0
1 0 0 0 a 0
0 0

0 0 0

1]
(1]

(==

a
0

Lol = B = |

1

oo oo
oo -9
L B = B e B e
oo~
oco-a

o =00

1
0

o oo

- oo

cooo -~

(=R =]

— o Qg

~oDoo

ocooaQ

cood

co~0

o ~0o0

~ooa

A= == R =

ADO T 00

@ Example of a low density code matrix; n=20, =3, k=4

So bit number two, bit number three, bit number four, so how did we write that?



(Refer Slide Time: 04:34)

= e =] Al i e \E
Fo »Tommsd o@[-o mmmeeemE [ B oo o

Parity-check set tree

N 17 .
017180 18 18 7, 8,20 14

_ anglf X3 i
I | | w_|151|11 |15|11€|I1I16L'1g ?l

010 -Hﬂ 114 L \1

s T 7 O -

| ||”| ||?'|14*I.n.:f|'||'|“JI'I 7

Loag b 1gl, |10 4|l 17,

||5 T‘w !'17 ar 11191 6 .' \ .I. h b )08 2l | HJ',—..I. __1’|_
N

I 1 '1."
3, = Py

So the other bits that are participating in the parity-check constraints they are written like this. So

one, so this is one parity-check constraint and two, three, four bits are participating.



(Refer Slide Time: 04:50)

= | - o T N el [
i B R e d

O | BN S a2

Fos7Tommna|g e

Low-density parit

o 00 000 0 0 0 00 a0 0 0 0 0

o oH
cCoQo ™
cooH
cocoH
oo HGa
OO0~ O
[ e B e TR I e |
coHO
oo o

o= 0O

6 090 1 0 G 00 00
0 0o 00O0O0CT1IOCO0COCO0O
0 0 0

1
0

0

0

0 0 0

0
O 0 0
0

1]
0

o= B |

0
0

Lo = L=

1

o oo

(=2 o B =]

L == =

(=Rl B

OO -0

0 0 0 0 0
0

o—oaQ

1
4]

(== B =

o B o B I o

oo -

o - a

Ll = =]

0 0 0 ¢ O

=D oo

i
0

o oo

ol B = R

o ~a

S-S

o000

® Example of a low density code matrix; n—20, |—3, k=4

Similarly if you look at here this bit number 5, 9 and 13 are participating in this particular parity-

check equation.



(Refer Slide Time: 04:56)

= e =20 = I O "E

FarToomnaclf«em T T

Parity-check set tree

20 32 'ra 17 20 20

17 [ 8] H-

( 15]! .J‘Iﬁ 19 ] [B ] ,.

““”r 14"|1 wr 50 “11 , lTE’ b7 "Jl 15[ 4o
m 79 )

| | | 13 5|l?|| 141‘] al | |1|'1u

AT | [10
)\5 T'r’ ‘” 3"‘{119" 6 i l

7k

So that is represented by this.



(Refer Slide Time: 05:03)

[Eoelisgls ekessiaaaasa

8 s THmmmA ",E,FO-II NI ]| B e ol

@ The set of bits contained in a parity-check equation constitutes a
parity check set.

@ Parity check set tree is 3 representation of parity check set in a
tree structure.

2 An arbitrary bit d is represented by the node of the base of the tree.

@ Each line nsing from this node represents one of the panty-check
sets containing d.

a The other nodes bits in these parity-check sets are represented by the
nodes on the first tier of the tree.

o AL

# The lines lising from tier 1 to tier 2 of the tree represent the ather
parity-check sets centaining the bits on tier 1.

@ The nodes on tier 2 represent the other bits in those parity-check
sets.

So that is what I mean, when I said other nodes are represented as nodes in the first tier. Now

line arises from tier 1 to tier 2 represent the other parity constraints containing bits on tier 1.



(Refer Slide Time: 05:25)

H = | = a ¢ [r_-} wll | L G B0 ;l.:."
g »Themad e Bl I--.Ii-.wu..l_ll_l- Sarw Sinrral | L3

r

817 4717 14 8
g '14-. |31 15 | | | L Jﬂa

TY 3 7

g ll |u:-M]| I] Eqr| II l 1u il
) -'.-Tq. i Jj‘ |
16 [\ 4';‘

1 2 :
q o 0o 00 B2 . e By B0 14

So this is my tier 0, this is tier 1. Now what is that — what are the connections coming here?
These are the parity-check constraints involving these bits, involving 2, involving 3 is here,

involving 4, these are the parity constraints okay.



(Refer Slide Time: 05:48)

HOEiena ek EEEEEN =
P o »Toommsa o afpeereimmimmmmmmi || B o

@ The set of bits contained in a parity-check equation constitutes a
parity check set.

@ Parity check set tree is a representation of parity check set in a
tree structure,

@ An arbitrary bit d is represented by the node of the base of the tree.

@ Each line rising from this node represents one of the parity-check
sets containing d.

@ The other nodes bits in these parity-check sets are represented by the
nodes on the first tier of the tree.

@ The lines rising from tier 1 to tier 2 of the tree represent the ather
parity-check sets containing the bits on tier 1.

@ The nodes on tier 2 represent the other bits in those parity-check
sets.

So this is how I am drawing my parity-check set tree.



(Refer Slide Time: 05:52)

|E -~ a b wp el |SL SO GL O '\E
Pa rTommadolf-em
| pe =

——,<'1'_1 0 000 0 0 0 "u_____ w
2|0 0088 1 T T T OO00D0O0G 000 0 O
2|0 0 0O OO O OOTI1 1110 ©0O0OTUO0OUO0OTOG0CTUO
4/0 0 0 0O 0O 00O O O OOCUO 11111 000D 0O
< _g__ 6 0 0 60 o OO O OCOOTU®® OOODTI1 1 1 1

=&A1J0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 O O
Z|/0 1 0 0 0 1 0 0 O 1 0 0 0 0 0O TI1O0OC0 0
%|l0 o 1 0o 0 0 I 0 O GO D QO 1 O 0O GO 1 @ O
910 0.6 10 ¢ 0 O O B 100 0 I 0 00 L O
wlB 0 69 o6'e 0 4 0 b0 600D 3
4-&-?‘2) 0 0 00 1 00 0 0 O0C 1 0 O0CO@OTO0OCT1ITO0CTGO0
nl® 1 60 0 0 1 0 0 O 0 0 00 L 000 0
30 0 1 0 0 0 0 1 0 0O O OGC1O0CODOUOUDO0UO0OTI OO
0 0 0 1 0 0 0 0 1 O 0 ¢ 0 1 D O 1 0O 0 O
l0 O 0 0 1 0 0 0O 0 1 0 0O 0O 0 1 © 0 0 0 1

@ Example of a low density code matrix; n=20, =3, k=4

So again pay attention to this parity-check matrix. Let us label each of them like this, let us say 1,
2,3,4,5,6,7, let us just label these columns, so that way it will be easier for us to refer to them.
Similarly I am labeling these rows. So you can see there will be 15 parity check sets, each

corresponding to each of the rows okay. So let us look at the parity check set.



(Refer Slide Time: 06:50)

# | parity-check set
—51 1,234
2 5,6.7.8
3 {9.10,11,12}
4 {13,14,15,16}
5 | {17.1819.20}
[ {1.5,9.13}
7 {2.6,10,17}
"B | {3.7.14.18}
9 {4,11,15,19}
10 {8,12,16,20}
11 {1,6,12.18}
12 {2.7.11,16}
13 {3.8.13.19}
14 {4.9.14,17}
15 | (5.10,1520}

So let us first look at this first parity-check set.



(Refer Slide Time: 06:58)

TN =

P o 7 7TDmwme o reNENEmEEEE ||| W s o

b s

sl A

¥

00 0

1 T o0 0 0 0 a 0 0 0 0 0 0 0

1

[§]

L=l =]

oo

(= =]

(==

(=1 |

(=2 o]

(=2

o~

= a

Qo

L =]

L =

(==

— N}

oo

(==

(=1 =]

oo

1

0 00 0 O0 0 O

1 00 0100 01

0 0 0

g 0 o

1

1 0 0 0 0 0 0O

0 0 0
1
60 0 00 0 0

1

1

1]

1 0 0 0 1 0 0
6 001 0 O0O0 1]
1 1
0 0 0 0 0

1

G 0 0 0 0 0

0 0 0

1

1

1

1
0

0 0 0 1 0 0 0 00
0 0 0 0 O

0

0 0

0

0

1

1

1 00 0O0C1O0O0O0O0OO0 10
o o001 00001001000
1 0 0 0 01 0 0 0 0 1

a 0 0 0

0
0
1

[ ==

(== =

o oo

Low-density parity

| —H{ 1y 1v 1w 17 0

- |0 @ o0

|0 0 0 0 0 0 00 O0O0O0CO0CO0O0 0O 0

5

(0 0

9|0 0 0

]

40 0 00

[ |

@ Example of a low density code matrix; n=20, =3, k=4

Which corresponds to this first row. So note here book number 1, 2, 3, and 4, these are

participating in the parity-check equation.



(Refer Slide Time: 07:11)

Boszsnl: sisessaaaas

o Toomed c@-comENmMENENE]|| W s

# | parity-check set_

—ly 1 1234
22 5.6.7.8
E] {9.10,11,13}
& {1314,15,16}
5 | {17.1819.20}
6 {15913}
P

a

[26.1017]
{3,7.14,18}

9 {4.11,15,19
10 | {8,12,16,20
11 [1,6.12,18}
12 [2,7.11.16)
13 {3.8,13,19}
14 14,9,1417}
15 {5.10,15,20}

So that is why this first parity-check consists of 1, 2, 3, and 4. Similarly parity-check set 2.



(Refer Slide Time: 07:23)

Al S 6, G W TS

Fo s Tomms o 0@ mEmmmEEuE | |0 s

Low-density

W
fih]
o
o

.
8]
@

S
]

-

_U.ﬁ_.l.

Lo e T e B B Ol e B e
o0 =Moo -=Q0
oo —~aQcl-HooDoo
oM oDoDQ oD oo ~Sa
[ R B e B B T e B B o e B ]
[ I I TR I o [ Y o o e R
OO0~ 0OC|O0D O -0
o0 Qoo ~00
Lo T e T e T B T P B e B o o B e
oD =-Dc=-Daa
O - OO0 C0C|0O0C OO~
-0 00000 -O
o0 Q0o 00
oOoO~oDOC~DOoO
Lo T s B = B o e o R o B e e I o
L == B e B e T | o e T o B B
oo oo oco—~a
Do~ oDoco~00
OH oD ~+~0Oa
l_ﬂ_ﬂ.ﬂ_nu@nuﬂnuﬂ_
Mo RAREY

@ Example of a low density code matrix; n=—=20, [=3, k=4

If you look at second parity check equation this bit number 5, bit number 6, bit number 7, bit

number 8 are participating.



(Refer Slide Time: 07:34)

HOEZS@|: ¢llkessdaan o
Py »rommm Ao @[~ o mEmmmmmmm ||| W oo

Parity-ch

4 | parity-check set

—b 1 1234

—a 2 5678

—+ 3 | {9,10.11.13}
4 | {13,1415,16}
§ | [17.1819.20}
6 {15,913}
7 | {26.1017)
] 3.7.1a,18}

] 4111519
10 | (8.12,16,20
11 16,1218}
12 27,1116}
13 381319}
14 | {4.5.1a,17}
15 | {5.10,1520}

So then parity-check set will have 5, 6, 7 and 8. Similarly parity-check set third has 9, 10, 11, 12.



(Refer Slide Time: 07:47)

aaarafs

Fao  Thowsdci-comEmmmeEmmm ||| W o 2

Low-density parity check codes

cocorlconadoocad
COoOQO=I0O00C =~ 0o =~Qaq
e L
coorHlocrooojooe-a
coroboco~lorooo
SCO-0OI000 - 0Q 000 =~
UDLUDU.IM.UUUUnU.lu
corol~oocooloo~aa
oceMoolcooo~-Hoooao
o0 Do ~0o0ao
o000~ 0DacoooDbo A
b~coltoaccoooo~a
gﬂﬂﬂﬂﬂﬂﬂlﬂﬂlﬂﬂ
doocclocodoaloroco
i l\ccooclorocoolmoooo
oFococo|l~oocaococoocoo~
...kDﬂGDGDI___D_U.UD]GD
VUDDGOIDDDGIUOD
uﬂﬂﬂﬂlﬂﬂﬂﬂyﬂﬂﬂﬂ
Taavugrgns 31ey

o Example of a low density code matrix; n—=20, j—3, k=4

So we can take any example, let us just take this one, 8" one, bit number 3, 7, 14 and 18, 3, 7, 14

and 18 these are participating in the parity-check equation.



(Refer Slide Time: 08:04)

EOE % '=a

o TDomedcf-somEmEEEEEE ||| W o o

Ity-check set

i | parity-check set

—%1 1234
—2 5678
—+3 | {810.1113}
4 |13.'[4.15,'[tif
5 | {17.18,19.20}
B {1.59.13}]
7 [2.6.10.17)
—+4 8 | {37.04.18}

] 411.1519
10 | {8,12,1620
11 | {16.12.18}
12| (27.11.16)
13 | {3.8,13.19}
14 | {4.914,17}
15 | {5101520]

So bit number 3, 7, 14 and 18. So this is how for each of the parity-check equations we create

this parity-check set, so there are 15 such parity-check set for this particular example.



(Refer Slide Time: 08:24)

HOsZ90: ekesssAaana
P o 7 Tm o M o S e o o[ W] W e 2

Parity-check set tree

And how do we draw the parity-check set tree, as I said we pick one bit, let us say, I picked bit

number 1.



(Refer Slide Time: 08:36)

E == 2 0 | [ _TJ"’ G i

F o TR me oo B[~ e o M mmmmmmm ||| W e———.

Parity-c
J# | parity-check set_
— 1 1234] <—
—2 2 56708
— 3 19.10.11.12}
& {'li-i,I-t,lEv,I[sb
5 {17,18,19.20}
6 {15913} s—
7 | (261017}
—=+ 8 {3.7.14.18}
] [#11,1519]}
10 {8,12,16,20}
11 [16.12 18} a4—
12 {2.7.11,16}
13 13.8.13,19}
14 {4,0.14,17}
15 | _J5.101520}

Now bit number 1 appears in which parity check set, how many parity-check equations, look
here, bit number 1 appears 3 bits, bit number 1 appears here, bit number 1 appears here, that is it.
It appears in these 3 parity-check sets. So we are going to draw three lines corresponding to each

of these parity-check sets.



(Refer Slide Time: 09:07)

dheaens eeessraaaanafl
Fa »Toommmac@[-co EEEEEEEEE ||| W oo

Parity-check set tree

So that is what we have done, this is 1 line, this is another line, this is another line. Now next

what we have done is we have written all the nodes that participate in the parity-check set.



(Refer Slide Time: 09:21)

HoM =1 a1 —n
L Dihce T SR TR S ) W

g El="0 ¢
Fog 7 7TDo=mA

B e LL Ll IR

Parity-check set

" parity-check set |
1233} <
56708 |
{9.10.1).12}
{13.14-.15.16}
{17,18,19.20}
{15913} <5—
126.10.17}
{3.7.14.18}
9 {4.11,1519
10 {8,12,16,20
11 {16,1218} a+—
12 {2,7.11,16}
13 [3.8.13.19]
14 {4,9,14,17}
15 {5,10,15,20}

=<l T R= TR o R e )

So if you look at this one, in addition to 1, the other bits are 2, 3, and 4.



(Refer Slide Time: 09:28)

= = | wn d Al S |-\~.\'\'\|E

Fo rThomma u@,l_--IEIIIm:l--lm- PR—

?r 20 20 14
4 17‘] 1‘51 by JL 9 I
RIS TR (oI
m“rr AT
17
oﬂgr; 8547 o
i\ { A F
| '.\ /
\/
12 18

So that we are writing like this, 2, 3, and 4.



(Refer Slide Time: 09:31)

E Els20 y jl;_;:_-l_"l-{. aaesE

o »TOo®AAc Ao v o W] B e o

Parity-c

# | panity-check set
—a 1 1234) =
—p 2 58.7.8
-t 3 {9.10.11,12}

4 {13,14,15,16})

5 | {17.1819.20}

6 {15913} H—

7 2,6,10,17}
—+ 8 | {37.14.1B}

9 {4.11,15,19}

10 | {8,12,16,20}

11 {1,612 18} a+—

12 12.7.11.16}

13 {3.8.13.19}

14 {4,9.14,17}

15 | {5,10,15.20}

Similarly here bit 5, 9 and 13 are participating in addition to bit number 1.



(Refer Slide Time: 09:41)

d_Bs=Q ¢ e Haaan
o7 TOmmm A o @ oo MR mEsmm || W o o

Parity-check set tree

So these are 5, 9, and, 13.



(Refer Slide Time: 09:46)

= == =0 -E-:i'{.::k"\”ﬂ."E

Fo - Tohomedco@-ve mENEEEEEE ||| W e

Parity-check set

b 1 1234} 99—
56.2.8
= 3 {9.10.11,12}
4 {13,1415.16}

5 {17.18.19.20}

6 {15913} s—
7 | {26.1017)

13.7.14.18}
4,11,15,19}
10 8,12,16,20}
11 {16.12,18} g4—
12 {2.7.11,16}
13 13,8,13,19}
14 {4.9.14,17}
15 | {5.10,15,20}

L4

And here 1, 6, 12, and 18 are participating.



(Refer Slide Time: 09:51)

E = ¢ e o om oall G W B R 'uE

Po »Toommmaclf-vem [ [ | B i

So then we have 6, 12, and 18. So this is how a tier 1. Now how do we draw a tier 2, now you

can think of this, look at this.



(Refer Slide Time: 10:04)

adllElaSd e e w sl @’ a0
Fo srToomuadcidrempERmEmmE| ||| W oo

Parity-ch

# | parity-check set |

1 {1233} <r—
2 {5.6.2.8}
E] {9,10.11,12}
2 | {13.18,15.16}
5 | {17.18,10,20}
6

T

a

9

{15913} +—
[261017] e3—
{37.14.18}
{4.11,1519}
10 {8,12,16,20}
31 11,612 18} a}—
12 {2,7.11.16] =—
13 13.8,13.19}
14 14,9.14,17}
15 | {5.10,15.20}

Now 2 appears in which, 2 appears in parity-check set 1, 2 appears in parity-check set 7, 2
appears in parity-check set 12 right.



(Refer Slide Time: 10:22)

HOE2SE e msaaanaE
g »Tho=ma" L.M—--IIIF'IE:UIIHH- sl 13

Parity-check set tree

Now this 2 appears in parity-check set 1 that is already captured here, this is already captured
here that 2 appears in parity-check set 1.



(Refer Slide Time: 10:35)

Fo »Tomws o arssse m m(o m e ()W e 2

Parity-check set

3 p_afity-check set ]

i
—h 1 1238} S
— 2 56.7.8
—p 3 {9,10.11.12}
[ {13,14,15,16}
5 | {17.18,19.20}
6 {1.59.13} sh—
7 10, —-_—
—+ 8 | i
9
10 | (8,12,16,20}
11 ]161218} a—
12 {2.7.11,16} =<f—
13 {3,8,13.19}
14 {4,9.14,17}
15 | [5.10,15,20}

So what are the other two parity-check set, this is 1 is this other is this. So 2 appears with 6, 10,
and 17.



(Refer Slide Time: 10:45)

o, o e e [

o » 7o o e w [0 ] s s

How do we show that, so we are showing this by this particular edge.



(Refer Slide Time: 10:53)

= LW ERE Y |
F o »1Tomesd g ffvemmmlomomEC D B s

# | parmy-chack set
—pd {4234) <Sg—
Pl {5678
-3 | {8.40.1512}

4 [13,14,1% 16]

5 ris1e Ml

& (15313} =H—

7 12610177 =—
— 8 {37. 14,18}

T 4 [4,11,15,10}

10 | (8,12,16,20}

11 [1.6.12,18} a+—

12| {27.1L16} <a—

i3 | (341314

| {A814.17)

| 1k [6,10,15, 241}

How do we flow this parity check set 2, 2 appears with 7, 11, and 16, how do we show that?



(Refer Slide Time: 11:00)

l__

EHEECO N sanms

0 1. va,
lLu«. L& 1[_{ r ”5]1.|-|H Tl
) 1y Iﬁ'm L)L

. 2020 14

We show that moving this. Similarly we do the same thing for other bits, so for example bit

number 3.



(Refer Slide Time: 11:15)

L0 s o i e o [

O AT m@ésd gfFre mmENEEDRECDD B suwm o

7t parity-chiack set
—p.L Ladg} Se—
— 2 L6 78]
—+3 [ P11
| & [13,14,15,16]
[ 5 {ivas19.20}
6 [1.5.8,13] H—
7 {26.1017F o—
— 8 {17.14,1B} <p—
L [#.11,15149}
10| (8121620}
11 [1.6,12,18] a+—
12 | {27.1L16} <—
13 [ABIF10] =—
4 | {8.9.14,17}
15 | |5, 10,1520}

Now look at bit number 3, bit number 3 appears in parity-check set 1, it appears in parity-check

set 8, it appears in parity-check set 13. Now this parity-check set 1 that is already captured.



(Refer Slide Time: 11:36)

o - -
ke a g 3 e = 5 O OUELE T

e rrmmlewd o @F lll...Iﬂlﬂl_ILl_l- w1

7
S 40
1 0 - I

{ 17llec|ous, ¢ fHoBge 15 Ty o0 14
| Tl Al e ]

13 |11 ]
R T l L‘ﬁ | & { uJ‘_ |
‘I |"I 1“||E"r| o 77
l"” 14 Jik i )

L 1 & 21 b g
‘l\ 8 4Py a9 ‘.'5 e _."J-‘. y

Because that is this one, it is already captured.



(Refer Slide Time: 11:43)

...Eﬁlﬂli.l:l'_] B | sunamsi

parity-check set |

[L50,13] =——
1261017} a—
{1.7.14. 1B} <—

dr
i

2

3

4 3,

5 | {171819.30]
[

7

]

L]

[4.11,15,14}
10 | (8,12,16.20}
11 (161218} <H—
12| {2.7.1L16} =—
13| (381310} ~a—

14 14.9.14,17}
16 | [5,10,1520}

So what are the other two parity-check sets, the one involving 3, 7, 14, and 18.



(Refer Slide Time: 11:50)

So this is 3, 7, 14, and 18, that is this one.



(Refer Slide Time: 12:00)

= Ang = &y o e
e b
Fag srromandolfs O e

panity-chack et |

{L234] Hr—
{560 8]
[3.10.1.17]
[13.14,15.16]
[AEAERCER
[L5513) F—
126.1017) ea—
{17.14. 18} s——
[&,11,15,18}
10| {8,12,16,20}
11 [1.61218) H—
1z {27.1L16} <—
1i (381319} 2 —
14 [4.9.14.17}
[15 [ [5,10,15.20]

I
TYTETH

& 0| | | | 4| o] ] =T

i
A

And the other one is 3, 8, 13, and 19.



(Refer Slide Time: 12:05)

= ' ¥ ¢ s A e |

g T msad @@ o NEEEEONECD B susms o

F-II'II'—T|'III-' et tree
ﬂ’”‘
20 E
[ 17ihac je A8 _ . 17 20 20 14
8 77 T 14 |8 1 9
|| W | s ||| g be
| { Ml 4 L '7 fals 18, ',rl_
| fﬂr"“”ﬂ
! 17
14 | -8}
II\ ? L I [0k i'\:-”l-g. ¥ '] 3'_!'_.
1 I " h
| L /

So this is this one 3, 8, 13, and 19 okay. So we are basically connecting by edges all these parity-

check sets. So that is how we are representing parity-check set tree. Now we can do this with
other bits as well.



(Refer Slide Time: 12:27)

Hoiwsma s sleessdcagaaa
Fa rTOmasd o n?‘.-F-ll.llli!iGﬁlDJl s |

Parity-check set tree

We can for example instead of making 1, if I can make this as 2 and construct a tree around this

node 2, same procedure.



(Refer Slide Time: 12:35)

LS R IR O R ™

= By |
e T (I e

Decoding on BSC: Bit-Flipping Algorithm

Example 1. Single transmission errar case

Transmitted bits= §0.0,0,0.00,1,1,1,1,1,1.1,0,1,0,1,1,0,0}
Received bits={1,00,00011,1,11,11,01,0.1,1,0,0}

@ The first bit is received in error.,

Now let us look at how we can correct error.



(Refer Slide Time: 12:42)

Lo e

Forromesss g @ venmEREEERE0D B wunm u

' Ot®
ay Er-_"‘n

Example 1: Single transmission error case

Tranmsmatied l'.'!ltf]l_= {0.000001131.1110101100}
Received bits={{110,0,0,0,0,1,1,1,1.1,1.1,0.1,0.1,1,0,0}

@ The first bit is received in error.

So we are considering a binary symmetric channel, again recall what is a binary symmetric
channel. So there are two inputs 0 and 1, 0 and 1 with probability 1-P you receive the bits
correctly and there is a crossover probability of bits getting flipped. So let us consider that we
have transmitted this information, this we have transmitted this coded sequence and what we

received is this.

So there is an error in the first bit location. Now how do we correct this error, so to decode this
what we are going to do is, we are going to construct a parity-check set tree around each of these

bits and use that for our decoding purpose.



(Refer Slide Time: 13:37)

Example 1: Single transmission error case

Transmitted bits= {0,0,0.0,0.0,1.1,1,1,1,1,1,0,1,0.1,1.0,0}
Received bits={1,0,0,0,00,1,1,1,1.1,1.1,0.1,0.1,1,0,0}

@ The first bit is received in arror,

@ Decoder will try to correct the error

So let us see how we do that.



(Refer Slide Time: 13:40)

e T mEa e

@ Step L: Represent the code using parity check set tree.
117 160 Cha, T "o Ba2 06 o WM 20
J 1:||'|1Q | 81T 1F | 5 '|E e i 'i'
10 .l. it o - e | s | LG | 18 |.1u
L 110 & 14 15 I Ty 'T [ oo iy ||_ o 7 )
| | 1] 'ulmull 8l | |

; : ot I : 47
18 7ip g7 age, AP 00" b 8 Lo B, e 4
] o [ ol | | LS Y i

So the first step is we construct a — we represent the code using parity-check set tree and we have

explained in the previous slide, how this parity check set tree is constructed. So this is a parity

check set tree for the bit number 1.



(Refer Slide Time: 13:59)

= LT T =
e »TomEw S @ -TII'EL.EHIEIEJ-HD:I o

Parity-check set

| # parity-chach et
1
]
E]

-

5 | {i7.1819.20}
[ (15,813}
T {2.6.10.17}

& 13,7.14,18}
|4 (4111514}
10 {0,12,16.20}
11 (16,1218}
12| {Z7.10L16}
[ (381315}
| 14 [9.9,14,17}
| 15 | {5 10,1530)

And remember this is the parity check set, corresponding to this we have drawn this parity check

set tree.



(Refer Slide Time: 14:08)

= £SO a0

Forromess c@fremmEREEERECD MW e o

Decoding on BSC: Bit-Flipping Algorithm

@ Step 2: First Iteration: Check the parity-check sets containing bit
# 1 to sea if they are satisfied -

Now what we are going to see first check is, whether all the parity-check sets containing bit
number 1 if they are satisfied. If they are satisfied it is likely that bit number 1 is received

correctly. If majority of them are not satisfied it is likely that bit number 1 is an error.



(Refer Slide Time: 14:32)

- (=] P _-\A CL 0L CL ;l_-.
Fa r17hmem s g 7T

AR EOEE T W s

Decading on B5C: Bit-Flipping Algorithm

@ Step 2: Fust lteration: Check the party-check sets containing bit
# 1 o ses if they are satrsied

@ All the three parity check set ##1, 6, 11 are violated

So let us see, now which are the parity-check sets in which bit number 1 is participating?



(Refer Slide Time: 14:39)

_ AT ; e e e =
G rTomEn s gffremBEREEDREC D W s o

parity-chieck et
>34} 4
[5.6.T8]
[3,10,1L13} —
[13.14,15,16]
[17.18.19.20} —
[i5.9,13) 31—
(261017} —
13.7.14,18} —
[#.11,1519)
{8,12.16,20} T
ez 18] -d—
{2711 16}~
(381519} o
{4.9.14,17} ~
15 [5,10, 1520} -]

]

b

G- =1 e I =1 R P BN R B

=
=]

el
Ll b3

-
=

That is this, this one, and this one. Now note in our example there was single error in bit number
one location so all other bits were received correctly only bit number 1 was an error, then what is
going to happen? This parity-check set would not be satisfied, because this bit is an error. This

will be satisfied, this will be satisfied, this will not be satisfied, because this particular bit was an

€rror.

These are all satisfied, this will not be satisfied, again these are all satisfied. So you can see all

the three parity-check sets involving bit 1 are not satisfied in this particular example.



(Refer Slide Time: 15:32)

5 A o0 = (i Y e |

Fos»1T0mess g@ffi-snm BEOEEC0 N e o

Decoding on B5C: Bit-Flipping A

& Step 2@ First Iteration: Check the parity-check sets containing bit
# 1 to ses if they are satished.
@ All the three parity check set #1, 6, 11 are wiclated

So all the parity-check sets containing 1, 6 and 11 are violated, now what does that mean, it

means that there is a very large likelihood of this particular bit being received in error.



(Refer Slide Time: 15:49)

LA80 el QO EE o
Fogs10meas oo anE0EEEEECT B wwm o

veling on BSC: Bit-Flipping Algorithm

a Step 2: First Iteration: Check the parity-check sets containing bit
# 1 to see il they are satisfied

@ All the three parity check set 1, 6. 11 are violated

@ Since all thres of the parnty check-set containing brt & 1 are
violated, there is a strong possibility that bit #1 is in error.

@ Flip the first received bit # 1 from L to 0 and recompute the
syndrome(check whether the parity constraints sre satished ).

Hence what do we do, then we are going to flip this bit 1, whatever this bit was, we are going to

flip it and then again check the parity check constraints.



(Refer Slide Time: 16:11)

. im0 F e R G TR
e s TmEaas ofifrennl BEDERECO N s

Decoding on BSC: Bit-Flipping Algorithm

Example 1: Single transmission error case

Transmutted bits= {0.0,0.0,0.0,1,1,2,1,1,1,1,0,1,0,1,1.0,0}
Received bils-'—l_:LEU.U.ﬂ.Ll.U.]..I..l.l.l.l.L.U.l.U.l.l.U.U]

@ The first bit is recaived in error,

@ Decoder will try to correct the error

So earlier this bit was received as 1, we are going to flip it to 0 and again try to check the parity-

check equations.



(Refer Slide Time: 16:18)

= ' ¥ = o0 e, B
B g srmmes s o es mmimmEmEC 0 W e o

* parity-rhieck =8
1 {LE34] wp=—
2 {5,6,TH]
3| 19101012}
|4 [13,14,15.16] -~
5 AN
[ |l...'4.!-.|.1.3;l 'qcr""
T {26.10.17} v
A [37.18.18) —
4 [#,11,15,18) -
10| {B121620}
11 [1,6.12, 18] ==
12| {271L16}~
13 (3,813,109} o
| (451417} -
[ 15 [6,10,15.20]

Now note that when we flip this bit, this bit is now no longer in error, these bits are no longer in
error, so then these parity-check constraints will also be satisfied. Hence we are able to correct

single error.



(Refer Slide Time: 16:38)

a “ G ! e =]
Ffosrromes s c@evommANEENE 0N s o

Decading on BSC: Bit-Flipping

a Step 2: First lteration. Check the parity-check sets containing bit
# 1 o ses il they are satished

@ All the three parity check set 1, 6, 11 are viclated

@ Since all three of the parity check-set containing bit # 1 are
violated, there is 3 strong possibility that bit #1 = in errar

@ Flip the first received bit # 1 from 1 to 0 and EI’.‘IJITIEIJLEi_hE
syndromef check whether the parity constraints are satfed ).

So when we recompute the syndrome we will see that all the parity-check constraints are

satisfied, because there was only single error.



(Refer Slide Time: 16:47)

- 200 il s wad GO0 G .F

o »1Tomesd g@flrsnENEEONECD N s o

Decoding on B5C: Bit-Flipping Algorithm

@ Stop 2: First teration: Check the parity-check sets containing bit
1 toses if they are satisfied

@ All the three parity check set 41, 6, 11 are violated

@ Since all three of the parity check-set containing bit # 1 are
violated, there is a strong possibility that bit #1 is in error.

@ Flip the first received bit # 1 from 1 to 0 and recompute the
syndrome(check whether the parity constraints are satisfied)

@ All the parity equations containing bit 1 are satistied, hence the first
bit i= decoded as n_'._

Which we are able to detect and we were able to correct it. So hence the first bit will be decoded
as 0 and same procedure we will follow for other bits as well and since there was no error in
other bits, so all the parity-check sets involving those bits will already be satisfied. So we will be

able to successfully decode it okay.



(Refer Slide Time: 17:10)

Decoding on B5C: Bit-Flipping Al;

Example 2: Twa transmission errors case

Transmitted bits— {0.0.0.0.0.0.1.1.1,1.1,1,1,0,1.01.10.0]
Recaived bits— (100,00, 1.0 11T, 1.1.0.1,0.1,1.0,0)

@ First two hits are received in error

Now let us look at the case when there are two errors. So the same transmitted code word we
have considered. In this case now we have considered the two errors, in bit location 1 and bit

location 2. Now let us see how our LCPC decoder will be able to decode this.



(Refer Slide Time: 17:32)

E “mg At {
Fa »Trmmesd @@

J=

Decoding on

Example 2: Two transmission arrors case

Transmitted bits— {0.0.0.00.0. 1.0 L1101 0,0.0,0.0,1.0.0]
Received bits—|1,1,0,0,00,0,0,1,1.1,1.1,0.1,0.1,1,0,0]

@ First twao hits aro roceived in orror

@ Decoder will try to correct bit #1 and 2.




(Refer Slide Time: 17:34)

= 8 W SRR = Mol oW

g »TmMmmsE S o _.I_-z':—ﬁ. N DN W ssesme

Decading on B5C: Bit-Flipping Algorithm

@ Step 1: Construct parity check-set tres.

LT P T S b
.wi & 1 | 1,‘-|" ‘-j| o4, [
LR | s b | 1%“_?9 2

|
al

20 .20 14
s

47180 j--lew:'[l

| [
P44 o, TR 8.
' il i o af | [
L L o ¥ S ID 2 | sl hy
i H,:"f'-f"‘.' 8% a9 apfe P Py
/X

Sk o IS R v, T / ! '\._. Y
A S o & M
z g, 4§ & Mg 93 18
|
“ry
1

So again we follow the same procedure, we draw the parity-check set tree with each node at its

space.



(Refer Slide Time: 17:44)

= A ER, T L Ca i =
Fosrromesd c@ff-onnENNEIEECD B e o

Decoding on BSC: Bit-Flipping Algorithm

& Step 1: Construct parity check-set tres

TAT 180 -'
g e \ ag‘ R('lq o
|_| i l'lj 11 [ ,. | 1':”1 %.l"‘-' ?[

1“ 11 : a # Y Th
| || “Jll |1“|is"|rrr|1‘:'|| 1
! o0 15 Lol (v 14 Wy

W oTR AT f".--'.;11g" "'J; 0 i |1 l:_sz.J b faa Al
P f \ oA 8 R L1 i

‘. i \ ' ool i

o .

z i

So we start with node number 1, we construct the parity-check set tree.



(Refer Slide Time: 17:50)

= P = & s N G
o rroomess & IO REREE ¥ Iwiul (e

| # | parity-check set
it s
2 158,78}
3 [9.10,11,12}
3 | {13.141536]
5 | {17.18,19.20}
) {15813}
7 (3.6.10,17]
] 3.7.14.18}
9 {4,11,15,19}
10 | [8.12,16,20)
11 16,1218
12 27.11.16
13 3,8.13.19
14 491417

1h [5:10.15.200

And these are the parity-check set, 15 parity-check sets corresponding to the parity-check matrix

given to us.



(Refer Slide Time: 18:03)

= ima 5 & =M R s

Fosrrtmand g@fF-s REREEORECO N oo o

Decoding on BSC: Bit-Flipping Algorithm

@ Step 2: First [teration: Check the parity-check set containing bit
41 to see if they are satistied. R

Now in the first step what we do is we check the parity-check sets containing bit number 1, and

we see if all the parity check constraints are satisfied.



(Refer Slide Time: 18:18)

= XWQs e ER N I ]

F g s Tmesd gf e RN S EDEEC D B s o

| # | parity-check sst
[ Esa)
2 15.6.7.8
3 [9,10,11,12}
4 | {13.1815.16]
| = {117.18,18.20}
L {15013} =—
7 [26.10,17]
4 [3.7.14.18)
El {4,11,15,19;
10 [8,12,16.20}
11 1561213 = %%
12 27,1116}
3 (38i09]
14 29,1417}
15 [5,10,1530}

So what are we going to do, we are going to look at all these parity-check sets which have one in
them. So this is our parity-check set 1, 6, and 11. How will this be satisfied? Yes, it will be
satisfied, why? Because this was also in error and this was also in error and this was also an

error. So this parity-check equation will be satisfied, because two bits are in error okay.

What about this? This parity-check set will not be satisfied, why? Because 5, 9, and 13 were
received correctly, but 1 was not received correctly, so this parity-check set will not be satisfied.
Similarly here 6, 12, and 18 are received correctly, but 1 is not. So then this parity-check set will
not be satisfied. So what we have seen here in the case of double error is, 2 of the parity-check

set involving 1 is not satisfied whereas 1 is satisfied.



(Refer Slide Time: 19:28)

e = e 4 = xS

Fag s T0messd gfiffrennl

5, .l_'

D EC O B a1

Parity-check set

# | parity-check s=t
o GBiar o
2 15.6.7.8

3 [9,10,11,12}

4 | {13.1815.16]

5 {117.18,18.20}

fi {15913} +—+—HK

7 [26.10,17]

4 [3.7.14.18)

El {4,11,15,19;

10 [8,12,16.20}

11 1561213 = %%
12 27,1116

13 EERERT

14 49,1417

15 [5,10,1530}

Now what does that tell us? It tell us since majority of them are not satisfied it is likely that bit 1

was in error so we are going to flip it.



(Refer Slide Time: 19:39)

= i BQg saMana ey

PO rT0m@ad g@Fee mm[lmSEEmEc00 N o o

Decoding on BSC: Bit-Flipping Algorithm

@ S5tep 2: First lteration: Check the parity-check set containing bit
#1 to see it they are satistied 2 =

And try to do the same thing again.



(Refer Slide Time: 19:41)

Decoding on BSC: Bit-Flipping Algorithm

@ Step 2: First lteration: Check the paribp-check sst containing bit
#1 Lo see i they are salisfied.

@ Two of the three parity check set #6 and 11 are viclated . Parity
check set 41 is satisfied '

So since two of the parity-check sets are violated.



(Refer Slide Time: 19:50)

@ Step 2: First lteration: Check the parity-check set containing bit
#1 Lo see i they ars satisled.

@ Twno of the three parity check set #6 and 11 are viclated, Parity
check set #1 is satisfied

@ Since rn;lj_nrif_\i of tha E:lril:r-rhnrh ;,r'r_r.nnfaininﬁ hit 4#1 are violated,

there is a strong possibility that first bit is in crror

Is likely that bit 1 is in error, because majority of the parity-check set containing 1 are not

satisfied.



(Refer Slide Time: 20:00)

= Y- =& ged DO BE A
T o O OB s

@ Step 2: First lteration: Check the parity-check sst containing bit
#1 1o see il they are satisfied

@ Twao of the three parity check set #6 and 11 are viclated . Parity
check set #1 is satisfied

@ Since majority of the parity-check sat containing bit 1 are violated
thera is & strong possibility that first bit is in orror

@ Flip the hirst received bit from 1 to 0 and recompute the
syndrome(check whether the parity constraints are satished.

So what do we do if majority of them are saying they are not satisfied, we are going to flip that

bit.



(Refer Slide Time: 20:09)

= Lo O e e SR A

g sTmasd @@ eenmimBDEmEC 0 B s o

@ Step 2: First lteration: Check the parity-check sst containing bit
#1 1o see il they are salished.

@ Twn of the three parity check set 46 and 11 are violated . Parity
check set #1 is satisfied

@ Sinco majority of the parity-check set cantaining bit 41 aro violated
there is a strong passibility that first hit is in crror

- Iﬂp the fimst received bit from 1 to D and recompute the
syndrome(check whether the panty constraints are sotished.

So we are going to flip the first bit from 1 to 0 and again recompute our parity-check constraints.

So let us do that.



(Refer Slide Time: 20:16)

Decoding on B5C: Bit-Flipping /

@ Step 2: First [teration: Check the parity-check sst containing it
#1 1o see il Lhey are salisfed.

@ Two of the three parity check set #6 and 11 are viclated Parity
check sat 41 is satisfied

& Sinco rna_j_nrif of the E:ri!_'r-rhr:r,k st containing hit 41 aro violated
there is a strong possibility that fiesst bit is in crror




(Refer Slide Time: 20:17)

E AT S A
P rThmasd g @fireiBiNEEDEEC D W s

Farit j.r—-:'.} eck set

# | parity-chech set
1 | [13a] = A
7 {5.6.7.8}

| 2 [9.10,11,12}

[ & | {131%1516F
5 {17,18, 19,20} o
6 15313} af— o
¥ | [26.10.17)

a {3.7.14,18)

[8 | [#.1115.19)

[ 10 [8,12.16.20} ¥
T TE 1218 =1 v
12 271116
13 3.8.13.19
1a 49.14,17
15 | [5101520}

So this bit has been flipped, now if this bit is being flipped what is going to happen? If this bit is
flipped now this bit has been corrected, but 2 was in error. So this parity-check set which was
earlier getting satisfied is now not getting satisfied, what about this? It is getting satisfied, what
about this? It is getting satisfied. So two of them are getting satisfied while one of them is not

getting satisfied, so then the first iteration is not enough to decode this bit.



(Refer Slide Time: 20:52)

- an Q@ > - L Crag s ..IT
e »Tohmawd @ @Rl E-HEIU-HDH. T E

@ Step 2: First keration: Check the parity-check set containing hit

41 to see it they are satistied —




(Refer Slide Time: 20:53)

= Y BQg . E R
FThmm e g e e mBEEEEERECDE e

@ Step 2: First leeration: Check the parity-check set containing bit
#1 Lo ses il they are sabisfied.

check sat #1 is satisfied




(Refer Slide Time: 20:54)

DN N s

@ Step 2: First lteration: Check the parity-check set containing bit
#1 1o ses il they are satished.

@ Two of the three parity check set 46 and 11 are viclated  Parity
check set #1 is satisfied

& Sinco r_na_j_nri? of the E:rit_‘f-rhn’kﬂ containing hit 41 arn violatod
there is A strong possibility that first hit is in error




(Refer Slide Time: 20:55)

= LBE e e A
Fag srTmadsd gfgregmlREEORED D W sunm

Bit-Flipping

@ Step 2: First (teration: Check the parity-check set containing it
#1 Lo see i Lthey are sabisfied.

@ Twn of the three parity check set 6 and 11 are viclated Parity
check set ¢ 1 is satisfied

@ Since majority of the parity-check set containing hit 1 are viclated,
thore is A strong, possibility that first bit is in orror

- I'LE- the first received bit from 1 to O and recompute the
syndrome check whether the parity constraints are satisfied.




(Refer Slide Time: 20:57)

FremmEEEEEEED T W

Bla T hemsad g

= "] 7] T ’}. oL M e .F

@ Step 2: First lteration: Check the parity-check set containing hit
41 ta see it they are satistied

@ Two ol the three parity check set #6 and 11 are wiolated. Pariy
check sal #1 is salisfied.

@ Since majority of the parity-check set containing bit #1 are violated,
there is a strong possibility that first bit is in error.

@ Flip the first received hit from 1 to 0 and recompute the
syndrome( check whether the parity constraints are satisfied .

@ Parity check-set 46 and 11 are satished, but 41 failed.

Because parity-check set first fail, there were two single error.



(Refer Slide Time: 21:04)

@ Step 2: First teration: Check the parity-check set containing hit
#1 ta see it they are satistied

Two of the three parity check set 6 apd 11 are violoted . Panty
check sel #1 i salisfied.

@ Since majority of the parity-check set contaiming bit #1 are violated,
thera is 3 strong possibility that first bit is in efror.

@ Flip the first received bit from 1 to 0 and recompute the
syndromel(check whether the parity constraints are satisfied .

@ Parity check-set 46 and 11 are satishied, but 41 failed.

@ Hence the firsl iteration s not sullicient (o correct the errors.

Two errors, so first iteration is not sufficient to correct the errors.



(Refer Slide Time: 21:11)

Fog rromesd g@ffre BBlNEEDRED D B e o

Decoding on BSC: Bit-Flipping Algarithm

@ Step 3: Second lteration: Check the parity-check set containing bits
in the tirst tier of the parity check-set tree to see it they are satishied

So then we will go to the next tier. So next iteration we will check parity-check set containing

bits in the first tier of the parity-check constraints of the tree. And we will see if they are

satisfied, so what we are going to do is we are going to go into the first tier.



(Refer Slide Time: 21:30)

Pa +ThmEm 5 g0 -llIIIIEDIIL_I ] | s i

Decoding an BSC: Bit-Flipping Algorithm

@ Step 1: Construct parity chech-set tree.

47 1680 EL} 12 _'.-.1 20 a0 14

48 .-.IH ’ _] , 4
1“ 1H|| |-| |”1r [ flﬁ 4 11| | |
\.14 } O y
114 %la. I11 fa] b J‘

I 14] [ Fﬂ e

| [ | r;\L 2 [ | iy |
L L 17
U8 7o 07 .H"‘l‘ IE"- i .' e | z.l. LB
: i".l. | 187N 4 -__. 3:? 15 7 : I L
Wi L REy L WY AR L NV
e ¥ —He— X 4
E 9 13
2 14 5 2 s wow |

So we are now going to look at these bits, and we are going to see if the parity-check sets
involving these bits 2, 3, 4, 5, if the parity-check sets involving these bits, are they getting
satisfied. If they are getting satisfied fine, if they are not getting satisfied then we will again have
to flip the bit to make them satisfy. So this is how we are going to proceed, so let us look at

second iteration.



(Refer Slide Time: 21:59)

e »Thmew S g0

= Lm0 = |F_ (i R T

BER N 1 10 NUSREY ¥ Twinl JE=re

Decoding on BSC.: Bit-Flipping Algarithm

e 3tep 3: Second lteration: Check the parity-check set containing bits
in the first tier of the parity check-set tree to see if they are satisfied




(Refer Slide Time: 22:00)

= AmO e ool OO0 & A N
PO »TOhma S g .LF-II BEEORECO N sumsmi o

: Bit-Flipping Al

@ Step 3: Second lteration: Check the parity-check set containing bits
in Lhe first tler of the parity check-set tree to ses if they are satished

@ Parity check set containing bits 3(#8 and 13),_4(#0 and 14), G4 2
and 15). 9(# 3 and 14), 1307 4 and 13), 12(# 3 and 10), 18(# 5
and 8) aro satisfied  Cne of the parity check set containing bit 6{ 4
2] s alsw satisfied.

Now what we are going to notice it is that, since bit 3 was not in error, bit 3, 4, 5, 9, 13, 12, and

18 these are — these will get satisfied.



(Refer Slide Time: 22:17)

A5D0

FosTitmans ggreeillBECEREO0 N simm i

Parity-check set

| # | party-check st

I3 {1d34) = 4
2 156.7.8)
] [910,11,12}
3 [13,14,15,16}
5 117,18 19,20} 3
] 115813} == "
7 [2.6.10,17}
! [3.7.14,18}
g9 {4,11,15,19}

10 | (81216.20)
11 TG 1218} -t w
12 27,1116
13 3.8.13.19
14 49,1417

15 [ (51015301

So if you go back to the parity-check set diagram.



(Refer Slide Time: 22:22)

r}r.".r.'.['n:'iil'lLL on BSC: F.-'-l[—Fi|'|:lF:-|1'+f.'_'_, .-':'N|E;r.'3rlli'1r"|'|

o 17 '| 2 Az
1HI|'”1' | | 1 |
Lo b 78 Lﬁ " |

| li

s | '? R
;.I?HI_I‘ B b r|_ 15 | 13 .f.
el '-,EI.-' 47 % 37is

This was not in error and this involves 18, 14, 7, none of these were in error, similarly this
involves 8, 13, 19, these were not in error, so all the parity-check set containing 3 will be
satisfied. What about 4? 4, 11, 15, 19 they were not received in error, similarly 4, 9, 14, 17 were
not received in error. So this parity-check sets will be satisfied 5, 6, 7, 8, this will be satisfied, 5,

10, 15, 20, again these will be satisfied.

Similarly 9, 10, 11, 12, no error in any of the bits so this parity-check equation will be satisfied,
similarly 17, 14, 4, so this will be satisfied. 13 this has 16, 15, 14, and 13, none of the bits are in
error, so this will be satisfied, then 3, 8, 19, 13, again this will be satisfied. What about this, 6, 5,
7, and 8, none of those bits are in error, so this will be satisfied, this will be satisfied, but what

about this? 6, 2, 10, and 17, now this bit is in error, this bit is in error.

So this particular parity-check equation will not get satisfied. What about this? 12, 9, 10, 11 this
will be satisfied, 12, 8, 16, 20, this will be satisfied. Similarly 18, 17, 19, 20, this will be
satisfied, 18, 3, 7, 14, this is also satisfied. What about 2? This will be not satisfied, and similarly
this will be not satisfied. So what we can see is, the parity-check sets involving 2 is not getting

satisfied.



(Refer Slide Time: 24:23)

= iGDg 5 ol GO e T

Fa sTOmEad @ E.r'liiﬁlIEUIIqu S| 1

Decoding on BSC: Bit-Flipping Algorithm

XY Tk

Y TRHA O

1HI|1HJ r-'
I4 L"'fl |1 |
n AL T ||.7

% s | I"' 1 14| [
? H' l‘ :-". | I'"UI .'r Lo

Because here there was 2, here there was 2, here there was 2, this is not getting satisfied, 2 of
them are not getting satisfied. And the third one is this one, which involves 1, 1, 2, 3, 4, this is
getting satisfied. This is also not getting satisfied, because 1 was corrected, 3 and 4 are correct,
so this is also not getting satisfied. So what we notice is parity-check sets containing 2 are not

getting satisfied.



(Refer Slide Time: 24:54)

= AA0 s ples s Qe ey
g srr0muasd g@feeimENEEEOEECDD N suwm o

ing on B5C: Bit-Flipping Algorithm

@ Step 3: Second lteration: Check the parity-check set containing bits
in the first tier of the parity check-set tree to see if they are satishied.

@ Parity check set containing bits 3(#48 and 13), 4(+#9 and 14). 5( 2
and L5), 907+ 3 and 14), 13(7 4 and 13), 12( 3 and 10}, 18{+ 5
and F_I]n are satisfied One of the parity check set containing hit Ij{ i
2] is also satisfied.

@ Both the parity chock set (4 7 and 12} containing bit 2 and ane of
the parity check ':rrcnnraining {# T} containing hit 6 are violated

Then in that case what do we do, we are going to flip the bit, so parity-check sets containing bit 2

are not getting satisfied, again one of the constraints containing bit 6 has bit number 2 and it was

not getting satisfied.



(Refer Slide Time: 25:11)

@ Step 3: Second lteration: Check the parity-check set containing bits
in the first Uer of the parity check-sst tree o ses 0§ they are satisfed.

@ Parity check set containing hits 3(#8 and 13), 4(+#9 and 14]), 5(+ 2
and 15). 9(# 3 and 14), 13{# 4 and 13), 12{# 3 and 10}, 18(+ 5
and 8) are satisfied One of the parity check set containing hit 6{ 4
2] is also satisfied.

@ Baoth the parity check ser (i 7 and 12} containing bit 2 and one of
the parity check set containing {4 7) containing hit 6 are viclated

- 'r. commaon in all of these three parity check set as well as the
parily check #1 which was violated after first steration.

So bit 2 was common in all the parity-check sets which were not getting satisfied.



(Refer Slide Time: 25:22)

= ™R E- ¢l o % nl G0 G e v [
P »T 0o E;F-ill BEDOEECC N ks o

@ 5tep 3: Second Reration: Check the parity-check set containing bits
in the first tier of the parity check-set tree to see it they are sarisfied

@ Parity check set containing bits 3(#8 and 13}, 4(#Y and 14), 5{# 2
and 15), 9(# 3 and 14), 13(# 4 and 13), 12{# 3 and 10), 18{# 5
and 8) are satisfied. One of the parity check set contaimng it 6f#
2} is alwo satistied.

@ Both the parity check set (# 7 and 12) containing bit 2 and one of
the parity check set containing {# 7} containing bit & are viclated

@ Bit 2 5 common in all of these three parity check sat as wall as the
parity check 41 which was vialated after tirst iteration.

@ Hence, there is a strong possibility that second bit is in error.

So what we do is we think that second bit is in error.



(Refer Slide Time: 25:27)

= - . —
|4 - r| e T

Fa T Theli

LR ABER N T 1T ¥ feisy ¥ Ymfuy |

Decoding on BSC: Bit-Flipping Algorithm

@ Flip the second received bit 42 trom 1 to () and recompute the
syndrome| check whether the parity constraints are satished!

And we are going to flip the second bit, so we flip the second bit was 1, we flip it to zero and we
are going to recompute all the syndrome. And now we notice that the parity-check constraints are
satisfied, because the 2 bit was in error, after we have flipped it we will see that all the bits

involving 2.



(Refer Slide Time: 25:52)

- r| - = by M Mg B

0w e e MW OO W e

Decoding on BSC: Bit-Flipping A

@ Flip the second received bit 42 trom 1 to () and recompute the
syndrome| check whether the parity constraints are satished!

All the parity-check sets involving bit 2 are now getting satisfied.



(Refer Slide Time: 25:55)

T = |

0 B e e

»ding on BSC: Bit-Flipping A

2 Flip the second received bit 22 trom 1 to O and recompute the
syndrome(check whether Lthe parity constraints are satisfied.

@ All the parity check sets at first tier are satisfied.

And hence we are able to correct all errors. So if there are two errors you can see that fun

iteration was not enough.



(Refer Slide Time: 26:05)

& F"llp the second receved bit #2 from 1 to 0 and recompute the
syndromel check whether the parity constraints are satisfied

@ All the parity chack sets at first tier are satisfied

@ Mow we check the parity-check sets at zero tier(containing hrst bit)
and they are also satished.

We had to go for two iterations okay. Now we go back and check at zero tier and we see that at

zero tier also all the parity-check sets are satisfied.



(Refer Slide Time: 26:18)

@ Flip the second recelved bit 22 from 1 to O and recompute the
syndrome(check whether the parity constraints are satisfied

@ All the parity check sets at first tier are satisfied

@ MNow we check the parity-check sets at zero ter{containing brst bit)
and they are also satished.

@ Hence the first and second bits are decoded as ('s.

So hence we have successfully decoded the first and the second bit to be zeros.



(Refer Slide Time: 26:25)

=3 [P i n, -
o B ld T W e B h L T,

F o rrTomaad o@fee RmmEDDEEC0 N swwm o

Decoding on B5C: Bit Flipping Algorithm

@ The decoder computes all the parity checks and then changes any

bit that is contained in more than some tiked number ot wnsatistied
parity-check eguations

And all other bits were received incorrectly so there is no error. So then what the decoder does it,
it basically computes all the parity-check sets and then changes any bit that are contained in more
than a fixed number of unsatisfied parity-check equations. And then we recompute the
syndrome, recompute the parity-check constraints and hopefully by flipping the bits which are

common in most of the parity-check constraints that are getting violated.



(Refer Slide Time: 26:58)

= iBn P W o N Y e
Fa »7Them s m d c_-n?.Frll EEHDOEECO N s o

Decoding on BSC: Bit Flipping Algorithm

@ The decoder computes all the parity checks and then changes any
bit that is contained in more than some fixed number of unsatisfied
parity-check egquations.

a Llsing these new values, the parity checks are recomputed, and the
process s repeated until the parity checks are all satisfied

w [f the parity check sots are small, this decoding procedure is
reassnable, since most of the parity-check sets will contain either
one trAnsmIssion orror or No transmission errors

We will be able to finally correct those errors. And each time after we flip the bits we recompute
the syndrome, check whether the syndromes are satisfied, when all the syndromes are getting

satisfied we have successfully decoded the LDPC code.



(Refer Slide Time: 27:17)

= N Rl Rt o=
Fosrmemsnd o @i mmmSmEmEC0 N e o

Decoding on BSC: Bit Flipping Al

@ The decoder computes all the parity checks and then changes any
hit that is contained in more than some fixed number of unsatisfied
parity-check sguations.

@ LIsing these new values, the parity checks are recomputed, and the
process is repeated until the parity checks are all satisfied

# |f the parity check sets are small, this decoding procedure is
reasonable, since most of the parity-check sets will contain either
one transmission error or No transmission crrors

And since the size of the parity-check set is small this decoding is reasonable it does not — it is
not very hard and we can also do this process parallelly, we can have a — for each parity-check

set tree for each of these bits.



(Refer Slide Time: 27:31)

= ABGrlessdaaas
Fag ri0messasd g@ffce ENENEEEEEDD N sunm e

ithm

@ The decoder computes all the parity checks and then changes any
bit that is contained in more than some fized number of unsatisfied
parity-check sguations.

@ lsing these new values, the parity checks are recomputed, and the
process is repeated until the parity checks are all satisfied

@ [f the parity check sets are small, this decoding procedure is

reasonable, since most of the parity-check sets will contain either
ane transmission error or No transmission creors

And we can try to do this decoding in a parallel fashion.



(Refer Slide Time: 27:34)

£ i g = el SO .l_-.'
Fo srropmes s o gflEEaala 00 B0 B e o

ing on BSC: Bit Flipping A

@ The decoder computes all the parity checks and then changes any
bit that is contained in more than some tived number of unsatistied
parity-check equationg

@ Using these new values, the parity checks are recomputed, and the
process is repeated until the parity checks are all satished

@ |F the parity check sets are small, this decoding procedure is
reasonahle, since most of the parity-check sets will contain either
are Lramsmission error or No Lransmission errors.

@ Thus whan most of the parity-check equation checking on a digit are
unsatisfied, thare is a strong indication that that digit is in error

And again this relies on the logic that a bit that is appearing in most of the unsatisfied parity-
check equation that is most likely culprit that is the one which is appearing most likely to be in

€rror.



(Refer Slide Time: 27:55)

= o [P + o S i R ‘l_'.

@ The decoder computes all the parity checks and then changes any
bit that is contained in more than some tived number of unsatistied
parity-check equations

@ llsing these new values, the parity checks are recomputed, and the
process is repeated until the parity checks are all satished

& |F the parity check sets are small, this decoding procedure s
reasonable, since most of the parity-check sets will contain either
GME LRINSIMISSION BFPOF OF 0o LFINSIMISSIon errors,

@ Thus when maost of the parity-check equation checking on a digit are
unsatisfied. there s a strong indication that that digit is in errop

And we are flipping that bit to correct it okay. So with this I am going to conclude our discussion
on decoding of LDPC codes over a binary symmetric channel, we will continue the discussion on
decoding of LDPC codes in the next lecture by discussing the probabilistic decoding algorithm,
thank you.

Acknowledgment
Ministry of Human Resource & Development

Prof. Satyaki Roy
Co-ordinator, NPTEL IIT Kanpur

NPTEL Team
Sanjay Pal
Ashish Singh
Badal Pradhan
Tapobrata Das
Ram Chandra
Dilip Tripathi
Manoj Shrivastava
Padam Shukla
Sanjay Mishra
Shubham Rawat
Shikha Gupta



K. K. Mishra
Aradhana Gairola
Dilip Katiyar
Sharwan
Hari Ram
Bhadra Rao
Puneet Kumar Bajpai
Lalty Dutta
Ajay Kanaujia
Shivendra Kumar Tiwari

an IIT Kanpur Production

©Ocopyright reserved



