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Welcome to the course on error control coding, an introduction to linear block codes.
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Today we are going to give a brief introduction to low density parity check codes.
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Lecture ##8: Low density parity check codes
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Cutline of the lecture

@ [ntroduction

So we will start off with very basic definition of what do we mean by a low density parity check

matrix. What do we mean by low density?
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Outline of the lecture

# |ntraduction

@ Tanner graphs

And then we will show how we can write the parity check matrix using a bipartite graph which is

known as tanner graph.
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Outline of the lecture

# Introduction
@ Tanner graphs
w Construction of regular LDPC oodes

Then we will talk about what is a regular LDPC code.
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QOutline of the lecture

& [ntroduction
@ lapnsr praphs
@ Construction of regular LDPC codes

# Lallages & CONSIFUCTOn
a Masc Kay's construction

And we will give some few simple constructions of regular LDPC code.
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Qutline of the lecture

Introduction

Larnner praphs
@ Construction of regular LDPC codes

2 Lallages & Consteuction
a MacHKay's canstruction

@ Irregular LDPC codes

Then we will talk about irregular LDPC code.
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Introduction

Lanner graphs
@ Lonstruction of regular LDPC codes

# Lallages s conslrucLion
a MarEay's construction

Irregular LDPC codes

@ Random construrtion of wregular | DPC codes

Then again we will give some very simple construction of irregular LDPC codes.
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@ The density of 3 source of random hits 15 the expected fraction of 1

bits.

So what do we mean by low density? So we will first define what do we mean by density. So a

density of a source is basically the expected number of ones in the source.
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@ The denslty of a sowrce of random bits is the expectad fraction of 1
bits,

@ A source iy sparse it its density is less than 0.5.

Now when is it a low density, now a source is low density or sparse if the density of 1 is less
than 0.5.
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@ The density of a source of random hits s the expscted fraction of 1
bils.

@ A source is sparse it its density is less than OL5.

@ & verlur v is wery Sparse il ils densily waniskes a5 s lenglh
increases.

And we say the vector is very low density or it is low density if the density vanishes as the length
of the vector increases. In other words number of ones are fixed even if we increase the length of

the vector, in that case the density will vanish as length increases.
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@ The density of a source of random bits is the expected fraction of 1
hits

@ & soprce 5 sparse o 105 depsily 15 less than 05
@ A vortor W is wery sparse if its density vanishes as its length
InCreases,
@ [The overlap betwesn two vectors is the number of L'y in coremon
hetween them. T We= toelya)
vi=1 o D_. 1 &

We will also define a term which is called an overlap, so if you have two n tuples we call an
overlap between two vectors as the number of positions in which the ones are common. So for
example if you have a vector let us call it vo which is 1001101 and you have a vector vi which is
1010110, then we can see there is an overlap here in one location, two location, so there is an

overlap of two.



(Refer Slide Time: 02:45)

d ABo . EEELEY
o 7Th=&and o F-sEEEEE0UEELL N e

Low-density parity check codes

@ Low density parity check (LOPC) codes are codes specified by a
parity chock matrie H containing mostly 0's and anly 2 small
number of 1's

So what is a low density parity check code, as the name suggest a low density parity check code
are specified by a parity check matrix which is of low density. And what do we mean by low
density, so the number of ones in this parity check matrix is very small, it is less than 4. So an
LDPC codes are specified by a parity check matrix which consist of mostly zeros and very few

ones.
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@ Low density parity check (LDPC) codes are codes specified by a
parity chock matrie H - containing mastly ('s and anly a small
furmleEr ol 1's

@ A& remular [n:_'\:ml;w,_j | NP code s a code of hlocklengih a aath a
m = n parity check matrix where each column contains a small fixed
numhber, w, =3, of 1's and rach row contains a small fized number

wr = owe, of 1's

Now what is a regular LDPC code? A regular LDPC code is defined by these three parameters,
this is the code length, this is number of ones in the columns of the parity check matrix. So a

regular LDPC code has same number of ones in each of the columns of the parity check matrix.
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| ow-density parity check codes

@ Low density parity check (LDPC) codes are codes specified by a
parity check matric H containing mostly (s and anly a small
e af 1's

@ & remular {_”'_""';_' w,_J' | PC codde is a code of hlocklengrh o with a
m » n parity check matrix where each column contains a small fixed
number, w, > 3, of 1's and each row contains 2 small fived nirmber,

we = o, of 1's

And that number is given by w subscript C. Similarly w subscript R gives us the number of ones

in each of the row of this parity check matrix.
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@ Low density parity check (LDPC) codes are codes specified by a
parity check matric H containing mostly 's and only a small
mirmler al 1's

@ A repalar [, w, n‘,l-:_‘] | P coxle is a cnde of blocklength o with a

e
m = n parity check matrix where each column contains a small fixed
number, w, =3, af 1's and each rmw contzing 2 small fived nimber

- T P
W = W, Of 15

Again for a regular LDPC code the number of ones in each row is same. So a regular LDPC code
is specified by this block length n and number of ones in each of the columns and number of
ones in each of the rows. So we can describe it by a low density parity check matrix of m x n
where each column has a fixed number of ones and that is wcs and that as we greater than 3, this
has to do with distance properties of LDPC codes. And each row has w odd number of ones

where wr is greater than equal to we.
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2 Low-density parity-chock (LDPC) codes are codes specified by a
panky check matnz H conlammg sty 05 and anly a small
number of 1's.

@ A repolar {rr. we. W) LDPL code is & code ol blockiength mowilh a
m = a parity check matrix where cach eolumn cantains 2 small fixed
number, we = 3, ol 15 and each row cenlams a small heed momber,
wr = we, of L's.

@ |n other words,

#» Each panty chock constraint involves w, codobuts, and cach codoler
s involved in w; constraints.

In other words, now what do the rows in the parity check matrix specify? Now if there are wr
ones in rows of the parity check matrix it specifies that wr bits are participating in a parity check

equation. And in all the parity check equations the same number of bits are participating.



(Refer Slide Time: 05:20)

d 50 . a8 xan a3
O 7770 =@éando@E-~saEIEEEEEE 00N awmm w

Low-density parity check codes

@ Low-density parity-check (LDPC) codes are codes specified by a
panly chech matnxe H Sontamng mgstly 0's and anly a small
number of 1's.

@ A regalar {rr. Wz, w.-:I LLMPL code = a code o blocklength mowith a
m » n parity check matrix where each column contains 3 small fised
number, we = 3, ol 1's and sach row contains a small lxed number,
we o we, of 1's.

@ In other words,

# kach parity chock constraint inwolves w, codebts, and cach codeba
iz involved in we constraints.

And what is the implication of wc ones in each column, it means that each bit appears in w sub ¢
parity check equations. So each bit participates in we parity check equations. So that is what [ am
saying here, so each parity check constraint in an regular LDPC code will have wr code bits. And

each code bit appears in wc parity check constraints.
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Low-density parity check codes

@ Low-density parity-check (LDPC) codes are codes specified by a
parity check matriz H  comtaimmg mostly 0% and anly 3 small
number of L's.

@ A regolar (mowe, we) LUPC code is o code of blocklength aowith a
m i parity check matrix where each column cantaing 3 small fixed
number, we = 3, of 1's and each row conlams a small lized number,
wr owe, of 1's.

@ In other words,

@ kach parity check constraint inwolves w, codobits, and each codebar

is involved in we constraints.
w Loss—densivy hnpliss that ey o= be and w02 5

Now typically the number of ones, because it is a low density parity check matrix, so numbers of

ones are much less than the dimension of these matrix and wr is also much less than n.
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L ow-density parity check codes

@ Low density parity check (LDPC) codes are codes specified by a
parity check matrie H containing mostly °s and anly a2 small
number of 1's

@ & remuilar (m, wi . v ) | DPC code is 4 code of blocklenath o with a
m = n parity check matrix where zach column contains a small fixed
number, w, = 3, af 1's and sach mow cantains a small fized numbor
Wy = W, Gl 1's.

@ i alher wards

» Each parity check constraint invelves w, codebits, and =ach cod=bit
e inwrsbersd 0w consEraints

3 Low density implies that we <~ mand we << 0.

# Murriler @l gies in Uhe garity check matriz H — w5 — w -

Number of ones we can count it column wise or n columns and there are we ones in each column,

that number should be equal to number of rows multiplied by number of ones in each row.
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| ow-density parity check codes

@ |ow density parity check (LDPC) codes are codes specified by a
parity check matrix H - containing mostly (°s and anly 2 small
number of 1's

@ A remiilar {m, g, nr,j | OPC code is a code of hlocklength n with a
m = n parity check matrix where =ach column contains a small fixed
numhber, w, > 3, of 1's and pach row contains a small fixed number
W = W, Gl 15

@ In aither words.

a Each parity check constraint inwvolves we codebits, and sach codebit
s inurshesd o v ek raints
3 Low density implies that we <2 moand Wy <~

@ Murmlmer @l ones in the parity chack matris H — wy -0 — w oo
am>*n -k — R=kin>1- (w:/w). and thus we = w;.
— | — e —

And number of parity check equations is atleast equal to n-k so the rate is atleast 1-wc/wr.

Sometimes we do have some redundant parity check equations in the LDPC parity check matrix.
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Regular low-density parity check code
= = 3
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Example of a regular low density code matrix; ﬂ. W 3,
Wi, 4 e .
= == 1_ = J-"‘r_

This is one example of a low density parity check code, you can see in this matrix most of the
entries are zeros, these are all zeros, these are zeros, these are zeros. You can see most of the
entries in this matrix are zero, very few are ones. And you can see that each row, let us look at
row number 1, row number 1 has four ones, row number 2 has four ones, you can check any row,

you can check let us say this row.

This has 1, 2, 3, 4, there are four, so each row of this low density parity check matrix has four
number of ones. So wr in this case is four, and each column let us take column 1, there is a 1
here, there is a 1 here, and there is a 1 here. So column weight is 3, you can check any column.
Look at this column 1 here, 1 here, and 1 here. So column weight is 3 you can take this column

there is a 1 here, there is a 1 here, and there is a 1 here, so the column weight is 3.

So we is 3, n is 20 you can see there is 1, 2, 3,4, 5,6, 7, 8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, so the block size is 20 and this is full rise, so the rate here is 1-3/4 which is a rate 1/4
code. So this is an example of a low density parity check code. You can see the fraction of ones

1s much smaller than number of zeros.
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@ A hipartite graph s one in which the nodes can be partitionee intn
Lww classes, and mo edgs can conmect nodes Trom the same class.
@ A Tanner graph for an LDPC code is an bipartite graph such that:

Now we can represent these parity check matrix using a bipartite graph and these — this bipartite
graph representation of parity check matrix of a linear block code is known as tanner graph

named after Michael Tanner.
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@ A hipartite graph is ane in which the nodes can be partitiened inte

Lvw clasees, and no edpe Gan connect nodes from the same class.
@ A Tanner graph for an LDPC code is an bipartite graph such that:

So what is a bipartite graph, in a bipartite graph the nodes can be partitioned into two classes?
Now what are those two classes, what is the property that no edge can connect nodes from the
same class, so when we partition the nodes of this graph into two classes, there is no connection
between nodes within a class. So if you want to reach another node within a class you at least

have to have a travel twice okay.
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@ & hipartite graph is one in which the nodes can be partitinned info
b Classes, and no edpe can connect nodes from e same class

@ N Tanner graph for an LOP'C code is an bipartite graph such that:

So a bipartite graph is one where I can separate out the nodes into two classes such that there is
no edge connecting nodes in the same class. Now we can draw a bipartite graph for an LDPC

code parity check matrix, so a tanner graph and that is basically known as tanner graph.
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@ & hipartite graph is one in which the rodes can be partitioneed into
Lews classes, and no edes Can connsct nodes from Lhe same class

@ A Tanner graph for an LOPC code is an bipartite graph such that:

o Ooe class of nodes s tha "wariabia nokis” corraapandiog Lo i bits m

the codewsnd

So tanner graph for an LDPC code is a bipartite graph which has the property that there are two

sets of class of nodes, one class of nodes which we call variable nodes, they represent the n bits

of the code word.
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@ M bipartite graph is one in which the nodes can be partitionzd into
twnn classes, and no edEe can connact nodes from the same class

@ & Tanner praph for an LDPC code 5 an bipariite graph such that
a One class of nodes is the “vanable nodes" corresponding to o bits in
thw tcaclsenored .
a Second class of nodes s “rheck node=s" corressponding to m parity

vheek srpuatizn

And the other class is what is known as check nodes, they represent these m parity check

equations.
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a A hipartite graph is one in which the nodes can be partitioned into
twarr rlasses, and no edpe can connect nodes from the same class
@ & Tanner praph for an LDPC code s an biparbite graph suck that
a One class of nodes is the “vanable nodes" corresponding to n bits in
Lhe icaclsomnsed
a Second class of nodes is "check nodes” corresponding to m parity
check sruatisans
s An edge connects a variable node to the check node if and only if
that particular it is included in the party check cquaton.

And how do we connect an edge, an edge connects a variable node to the check node if and only

if that particular bit participates in that parity check equation.
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@ Example of a regular low density code matrix; n = 12, w,. = 3,
LS

y1 1 1 8 B8 1 1 © & o 1 0
I T I \I
s ® o ¢ & 1 1 1 ® 1 1 1 |
" $* &= 0 * O O ® @ t * o I |
® ot o 2 1 2 1 1 1t o 0 o]

@ & 1 © 1 1 ® © 1 1 1 ©

So let us take an example to illustrate how we can draw the tanner graph of an LDPC code, so

this is an LDPC code block
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@ Example of a regular low density code matrix; p = 12, w, = 3,

W,

L
DeaE=-y
O oSy
R
BrE=Ee)
B
e
e §

n is 12 number of ones in each column you can see 1, 2, 3, that W¢ is 3 and number of ones in
each row is 6 you can check 1,2,3,4,5,6, each row has 6 ones each column has 3 ones, now how

do we draw the tanner graph of this so I as I said there are two class of nodes, one class of nodes

for the variable nodes
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@ Example of a regular low density code matrig; n = 12, w, = 3,
W, e —

ys
-
I
I
i
o
o
L

And how may variable nodes we have we have 12 variable nodes, so let us just draw 12 variables
node 1, this 2, 3,4, 5, 6,7, 8,9, 10, 11, 12, let us just label them, let us just label them as 0, 1, 2,
3,4,5,6,7,8,9, 10, and 11 and then you have how many parity check equations 1, 2, 3, 4, 5, 6,
so we will have the next set of nodes will be for parity check equations and they are 6 of them 4,
5, 6, okay let us just label these bits that will be easier for a, so let us this 0, 1, 2, 3,4, 5, 6, 7, 8,
9, 10, 11, okay now let us similarly label these parity check equations this let us say a zero parity
check equation 1, 2, 3, 4, 5, so let us look at this one. This 0 at parity check equation. Now which

are the bits that are participating in the parity check constrain.

Bit number 0 so we will draw and edge from bit number O to this parity check constrain, bit
number 1 that is this, this bit number 2 that is this, bit number 5 that is this, bit number 6 that is
this, bit number 10 okay. So this is my first parity check constrain, let us look at now this one,
which are the bits participating bit number 0, bit number 0, bit number 1, bit number 1, bit
number 2, so there is an edge from bit number 2 to this parity check constrain, bit number three

that is this, bit number 4 that is this, and then you have bit number 11.



So you have this 1 okay now look at this parity check constrain, now which are the bits that are
participating, this is 5 so that is here, 6 that is this one, 7 that is this one, 9 that is this one, then
10 that is this one, and then 11 that is this one, okay. Similarly for this parity check constrain bit
number 0 is participating so you have edge from here to here, then bit number 3 is participating
so there is an edge from here to here, bit number 7 is participating so there is an edge from here
to here, bit number 8 is participating so there is an edge from here to here, bit number 9 is
participating so there is an edge from here to here, and bit numberl1 is participating so there is

an edge from here to here.

And similarly we can do for this I will just do it this is 1, 3, 4, 6, 7, 8, that is it and this finally
this parity check constrain bit number 2, bit number 4, bit number 5, bit number 8, bit number 9,

bit number 10 so this is the tanner graph representation of this low density parity check code.
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@ Example of a regular low density code matri;; n = 12, w, = 3,
Wy —

reesss)

I

-

A1

1
H

! P
o

o a

Okay
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@ A cycle of length [ in a Tanner graph is a path comprised of / edges
from a node back to the same node.

Now let us define what do we mean by cycle in this tanner graph so cycle is defined as
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@ A cycle of length | in a Tanner graph is a path comprised of | edges
from a node back to the same node. T
ol et A el b e

A path consisting of length 1 which will start from a node and come back to the same node, so
what is a cycle so it is a path cycle of length | is starts from particular node and comes back to
same node so let us look at this as I said this node, so if you start from this node this edge 1, 2, 3,
4,5, 6, so this is a cycle of length 6. Now note that it is a bipartite graph so it will only have even

length cycles because there is no connection between nodes of the same class.
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@ A cycle of length [ in a Tanner graph is a path comprised of / edges
from a node back to the same node.

@ Example: The bipartite graph has a cycle of length six.
A

As I said in this particular example this has cycle 6. 1, 2, 3, 4, 5, 6, and
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i1 1000000
[fp—o01100o0
u= | oflteelo
001001

000 1Le0 oL

This can be viewed from the parity check matrix

also
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fHlt1o0o00000
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1
0

DOoO0LOO ]

Soin 1,2, 3,4,5, 6, okay
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@ The length of smallest cycle in the graph is known as its girth.
———— —

Now we will define what is known as girth. Girth is the length of the smallest cycle in this graph
so girth is defined as the length of the smallest cycle in this graph
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DOoO0LOO ]

In this particular example the smallest cycle is 6 you can see there is no cycle of length 2 or 4
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@ The length of smallest cycle in the graph is known as its girth.
———— —
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@ The length of smallest cycle in the graph is known as its girth.

@ When decoding LDPC codes using sum-product algorithm, the

number of independent iterations of the algorithm is proportional to
the girth of its associated Tanner graph,

ni= = =

Now when we are decoding LDPC codes we would like the girth to be very large because

number of independent detritions that we can get is proportional to the girth of the corresponding
tanner graph
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@ The length of smallest cycle in the graph is known as its girth.

@ When decoding LDPC codes using sum-product algorithm, the
number of independent iterations of the algorithm is proportional to
the girth of its associated Tanner graph.

@ The girth of this Tanner graph is six.

Of the LDPC code
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Gallager's construction for regular (n, w,, w;) code

@ Let, n be the transmitted block-length of an information sequence of
length k. m is the number of parity check equations.

Now that we have defined what is a regular LDPC code let us talk about how we can construct
these LDPC codes, so we will first start with random construction of LDPC codes given by

Gallager.
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Gallager's construction for regular (n. w.. w,) code

@ Let, n be the transmitted block-length of an information sequence of
length k. m is the number of parity check equations.

So if n is the block length and m is the number of parity check equations
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ger's construction for regular (7, w.. w,) code

@ Let, n be the transmitted block-length of an information sequence of
length k. m is the number of parity check equations.

@ Construct a m = n matrix with w. 1's per column and w, 1's per
row. (An (n. w., w,) code)

And if you are asked to design a regular LDPC code with Wc 1’s per column and W: 1°s per row

you can follow this procedure.
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Gallager's construction for regular (n. w.,

@ Let, n be the transmitted block-length of an information sequence of
length &. m is the number of parity check equations.

@ Construct a m x n matrix with w, 1's per column and w, 1's per
row. (An (n, we, w. ) code)

@ Divide a n'linlrln:itrix into we ﬂv{c = n sub-matrices, each
containing a single 1 in each column.

So divide m x n matrix which is your parity check matrix, you divide them into We m/ Wcinto n

sub matrices, such that in each of these sub matrices your column will only have a single 1
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@ Let, n be the transmitted hlock-length of an information sequence of
length k. m is the number of parity check equations.

@ Construct a m = n matrix with w. 1's per column and w, 1's per
row. (An (n, w., w,) code)

@ Divide a m = n matrix into w. m/w. x n sub-matrices, each
containing a single 1 in each calumn

@ The first of th matrices contains all 1's in descending order,

i.e. the i'th row contains 1's in columns (f — 1) - w + 1 to 7 - w,.
et s

Next you start writing so in each of this sub matrices what you do is you write 1’s in the
descending order, so the i row will have 1’s from location i-1 W; + 1 to i x Wy, so what you do

is so I will just illustrate
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@ Let, n be the transmitted block-length of an information sequence of
length k. m is the number of parity check equations.

@ Construct a m x n matrix with w, 1's per column and w, 1's per
row. (An (n. we, w,) code)

@ Divide a m x n matrix into w. m/w. % n sub-matrices, each
containing a single 1 in each column

@ The first of these sub-matrices contains all 1's in descending order,
i.e. the i'th row contains 1's in columns (i — 1) - w;: + 1 to i - w;.

@ The other sub-matrices are merely column permutations of the first
sub-matrix.

Basically
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Gallager's construction for regular (n, w

1 1 1 L o [] a [] a o [ a [] a [] a o a []
@ 0 i i b i i i B0 @ a0 5 0 1 o0
[ [ i il [} ] 1] it i i i i i ] i L i o i [
o o a [ L o a o i n a [ I i I 1 I a 1 o
o o a o o a a a a o a a a o a a 1 I 1 1
1 [} o m 1 o a o . [ a a 1 o a [} a o a [}
[l 1 i I [} L 0 u u 1 v B u u o B 1 [} §on
0w 1 [ B 1 U WD y 0 i 1 o o 1 y 0
o o 4 1 o ] a o a o 1 ] a a 1 [} a o 1 o
o o o o a ] a 1 a o a 1 a a a 1 a o a 1
i i i [ L [ | T T i i @6 0 a (N n
o L a o o o 1 o a o 1 o a a a 1 a o a o
o o 1 ] o o o 1 a o o o 1 o ] o a o 1 o
[ [ n i L] il 1] il 1 i o [ n i ] 1] i ¢} i [
0 il il [ i i I i I i a [ i L] i ] a ] 1 i

Example of a regular low density code matrix; n = 20, w. =3,
w, =4

So what you would do is first you have an
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Example of a regular low density code matrix; n = 20, w,. = 3,
wy =4

Py g=L _— 15 %20
3 iS J’~'.=_I>L

m X n matrix now this was a rate half code remember rate ¥4 code, remember W¢ is 3 W: is 4 so
this is 15 x 20 matrix, now what you do is you divide this 15x 20 matrix into 3x 3 5x 20 matrix

sub matrices, right that was the first step
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Gallager's construction for regular (n. w.. w.) code

@ Let, o be the transmilted block-length of an information sequence of
length k. m is the number of parity check equations.

@ Construct a m = a matrix with w, 1°s per column and w, 1's per
raw. [An (mow,, w, ) code)

@ Divide 3 m = o matrix into w, _m/w, = 7 sub-matrices, cach
containing a single 1 in esch column,

# The first of these sub-matrices contains all 1's in descending arder,
i, the {'Lh row contains L's in columns (0 — 1) - we +— 1 Lo - w,

@ | he other sub-matrices are merely column permutations of the hrst
slib-miatris

Divide an m x n matrix into W¢ m/ W into n sub-matrices.
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Example of a regular low density code matrix: 2 — 20, we- — 3,

W, =4 | = =
pek fl= % — I5E%20
>

So once you divide them so these so this is 15 x 20 sub-matrices, this is another 5 x 20 sub-
matrix, this is another 5 x 20 sub matrix, and each of this sub matrix should have only ones and
what you do you start writing ones in the descending order, so you write start writing one here
from location 0 now wr in this case is 4 so in the 0 through you start writing from column 0 to 3

next row you start writing from 4 to 7 like that you start writing ones so that is what.
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nstruction for regular (7, w., w,) code

@ Let, mbe the transmitted block-length of an inlormation sequence ol
length k. m is the number of parity check equations

a Construct 3 m = f matrix with we 1's per column and w, 1's par
rowe. [An (mowe, w, ) code)

a Divide a m_*r:imnrrix into Wi vy n-:uh-rnatriLm. each
contaiming & single 1 in sach column.

@ The first of these sub-matrices contains all 1's in descending order,
i, the i'Lh row containg 1's in columns (5 — 1) - we + 1 o J - we

@ | he other sub-matrices are merely column permutations of the birst
siib-miatriz

I have written here that first of these sub-matrices contains all ones in the descending order such

that i row contains ones from location I — 1 x wr+ 1 to I times wr so once you have constructed.
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ruction

@ Let, pbe the transmitted block-length ol an imlormation sequence of
length k. m is the numher of parity check equations.

& Construct a m = # matrie with w, 1's per column and w, 1's por
row. [An (mowg, wg ) code)

a [Diwvide 3 1n_n.m:|rrix intq W omiwe ok n :uh-mafri_rn':, cach
containing o single 1 in sach column,

@ The first of these sub-matrices contains all 1's in descending order,
i, the i'th row contams 1's in columns (0 — 1) - we =1 o d - e

@ | he other sub-matrices are merely column permutations of the rst
stib-matrix




(Refer Slide Time: 22:15)

a iAm e s e e e =
FO fTOmE = A o #.-l-il.l:IIIL‘L'UII 11| El| S b | 12

Gallager's construction for regular (n. w.. w, )

T T T T [ 5 0 .0 T 1 i

[T I i 1 TR i i 0@ -
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Example of a regular low density code matrix; 0 — 20, we — 3,

W 4 _ =
prhr R?f]_&'- — IE%20
T

3 |5 r0fe

This sub-matrix this 5 x 20 sub matrix by putting one slide this in descending like this, once you

have constructed this rest all are zeros, now note that each of the columns here have 1 ones.
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construction for regular (n, w., w,)

4 L L
ey T 3 [i] (] i} [i] L] [i] s N
1] i & o 8 i 0
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T T (O i A A L e TR L m
R P Uh Fok P ol B
T TR # -0 [ W ol 0 W
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Example of a regular low density code matrix; 0 — 20, w — 3,

w, — 4 ) ——
P fl= ‘? — 5420

3 |5 rnfe

And what about you can check any column of these sub-matrix it has only 11 and note what is

the row weight, now each of the row here has wr which is just 4 number of ones, you can check

this is 4 ones, you can check here this has 4ones here, these are the 4 ones here, you can check

this, this is 4 ones, so what you have created is you have created a sub-matrix which has column

weight 1 and row weight wr, now next.
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Example of a regular low density code matrix: 0 — 20, w, — 3,
w, — 4 =

prin R:\#i = IEA20

To get we column weight what do I need, I need to design a similar sub matrix here which will
have 1, 1 in each of the column and w: ones in each row. Now how do I get this sub matrix and

this sub matrix, so what I can do is I can do column permutation so for example.
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Example of a regular low density code matrie; 0 — 20, we- — 3,

R : e m——

Pk R?# - I5%20
=

1

I can move this column here I can move this column here I can do column permutation, now
when I do column permutation I do not change the weight of the column it is still 1. And I do not

change the weight of the rows it is still 4.
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Example of a regular low density code matrix; 0 — 20, w, — 3,
Wy, - 4 - a

payin f=L — %20
s 3 |5 ramfe

So by doing call up and mutation I will get this sub matrix which will again have 11 in each

column and 4 ones in each row.
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Example of a regular low density code matrix; » — 20, w — 3,
W = 4 i
prilin gL —_— & % 20

% 3 E,ﬂlﬂd—

The same thing [ will do for this sub matrix, I will again do column permutation of this matrix
and I will get this sub matrix, so the subsequent sub matrices are obtained by doing column
permutation and by doing column permutation I am not disturbing the way the row weight or the
column weight, the column weight of this sub matrix is still one, the row weight is still 4, now
once I do this then I am able to design these 3, 5 x 20 sub matrices, each of them have column

weight one.
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Gallager's construction for regular (n, w.. w,) code
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Example of a regular low density code matrix; 7 — 20, w. — 3,
[ 4 =
ok g=l —_— 5420

' 3 |5 #mle

-

So overall column rate will be 3 and overall row weight is still 4 so I am able to design a low

density parity check matrix which has 3 ones in each column and 4 ones in each row.
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construction for regular (n, w,., w,.) code

@ Lel, mbe the transmitted block-length of an information sequence ol
length k. m is the numher of parity check equations.

@ Construct 3 m = » matrix with w, 1's per column and w, 1's per
row. [(An {m we, w, ) code}

@ Divide a m = n matrix into w, m/w, » @ sub-matrices, cach
containing a single 1 in sach column.

@ The first of these sub-matrices cantains all 1's in descending order,
Le the 'th row contains 1's in columns {§ — l:l B B L I

@ [he ather sub-matrices are merely column_permutations of the frst
sith-matrix

.

E

So that is what I said that other sub matrices are merely column permutation of the first sub

matrix so this is.
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Gallager’s construction of a regular LDPC code which has we ones in each column and wr ones

in each row.
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Mack ay INSTruction

@ An m by n matrix {m rows, @ columns) is created at random with
weight per column wi, and weight per row wi, and overlap betwesn
any twao coliimns no greater than 1

Reference:

@ ood Erci-Cosvecting Codes Based on Very Sparse Mariiggs” by David 1. C
Wy in {EEE Transections o Infirrna it Theory, pp. 390-431, Mar |':H:I'J_.

Now we will talk about simple constructions based on permutation matrix and these were given
by MacKay we can read this paper Good Error-correcting Codes on very sparse matrices by
David MacKay which appeared in IEEE Transactions on Information Theory in May 1999, so
one way of designing an m x n matrix which has we column weight and wr column weight is you
can randomly put ones ensuring these criteria is satisfied and also you want to ensure that

overlap between 2 rows.

Of this parity check matrix is not more than one, otherwise you will have cycles.
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MacKay nstruction

@ An m by n matri= {m rows, ocolumns) is created at random with
weight per column we, and weight per row we, and overlap betwesn
any two coliimng no greater than |

@ Another way of constructing regular LDPC codes s to build the
parity check matrix from non-overlapping randam permatation
miatrices. _ o

Relerence.

@ "Good Eror-Covecting Codes Based of Very Spaise Matiices” by David 1 T
MucHuy in {EEE Transactions oo infurrms tior Theory, pp. 300431, Mar. 1999,

For an in your LDPC code, now next what we are going to talk about is how we can use

permutation matrix to design our LDPC codes, so that is what I am going to show in the next few

slides.
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Construction of low density parity check

@ A permutabion matrix is just the identity matrix with its row
re-ordered, o.g

T
|
L= == =]
=
= = — = |
{me O
SO oD

So let us define what a permutation matrix, so a permutation matrix is an identity matrix which is

row reordered.
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Construction of low density parity check codes

@ A permutation matrix is just the identity matriz with its row

re-oedered, o g A
0001 o—
1 0 B 0 e
=l i R Ui A
g B TP
0 1900¢ & | *==ERS

So this is an example of a 5 x 5 permutation matrix, you can see each row has 11 and each
column so each row has only 11 and each column has a single 1 and this is just an identity matrix

with row reordered.
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Construction of low ¢

& A permatation matrix is just the identity matrix with its row
re-ordered, =g

[0 0 O 0
0 0 0
g 1 0
i |

=R =B

o

1

P o

00

g1 099

@ A circulant matrix is defined by the praperty that pach row is a
cychic shift of the previous row to the nght by one position.

- -,

Now we could also use a circular matrix to design our LDPC codes, now what is circular matrix?
So a circular matrix has a property that each row is just a circular shift of previous row, so for
example if we take this example, this first row is 01, 001 now this 0 comes here, this 1 comes
here, this 0 comes here, this Ocomes here, and this 1 comes here, so that is your second row. Now
in third row this 0 comes here, 1 comes here, this 0 comes here, 1 comes here, this 0 comes here,

and this 0 comes here.

Similarly here this 0 comes here, this 0 comes here, 1 comes here, 0 comes here, and 1 comes
here, and likewise this 1 comes here, this 0 comes here, 0 comes here, 1 here, 0 here, so you can
see each row has a circular shift of previous row, so we will now show how we, so we can
randomly construct these permutation matrix this is just an identity matrix which is row
reordered. Now we will show how we can construct our LDPC codes using these permutation

matrix.
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So the first example that we are going to consider is an example of a regular LDPC code, now
this regular LDPC code has column weight 3 so wcis 3 and row weight is 6 so wr is 6. You can
see if this a regular LDPC code because all the rows and columns have the same weight okay.
Now how can we use permutation matrix to design this so let us take this example so let us say
you have to design and so what is the rate here, rate here is 1 — we/wr so this is 1 — 3/6 that is the

rate 2 so m will be n/2.

So m here will be n/2 so what we did was so this is you can think of this as n/2 x n, so what we
did was we divided this n/2 x n matrices into sub matrices in this particular way so this is, so this
one that you see this is n/2 x n/2 matrix and there is another n/2 x n/2 matrix so these are 2 n/2 x
n/2 matrices which are further divided into sub matrices n/6 / n/6 so each of them are your n/6 /
n/6 matrix and what does this signifies, this signifies that this is the notation that we are using to

denote a permutation matrix.
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So this one random permutation matrix, there is another random permutation matrix by the
location of one is different from what was here in this particular matrix. So this is another
random permutation matrix so these ones that you see here these are all random permutation
matrices, okay. Now note that we need a column weight of three, now if we stack if we stack

three permutation matrices like this, now each of these permutation matrix has 1,1 in its column.
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So overall we will get we = 3 and if we stack six of them like this, then each row also has 1,1 so
we will get overall six ones in each row, so this way we can generate a LDPC code with these
parameters we = 3 and wr = 6, now the same thing can be generated using by overlapping of
random permutation matrices, now what do I mean by overlap of random permutation matrix so
let us say you have a permutation matrix and you add another permutation matrix, now please

note you ensure that there is no overlap between ones in this matrix and this matrix.
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If you add these two permutation matrix what will you get?
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You will get a matrix which will have two ones in each row and two ones in each column, now if
I add another permutation matrix and I ensure that this the one in this permutation matrix does
not overlap with ones in this permute, in this matrix which I got by adding two permutation
matrix then the resultant permutation matrix that I will get will have row weight three and
column weight also three, so another way of designing this LDPC code is by overlapping of

random permutation matrices.

Please note when I overlap them I have to ensure that there is no ones that are getting overlap
then only I will be able to retain the weight, so if I overlap three such random permutation
matrices and I ensure that there is no overlap between the ones in each of these three random
permutation matrix then what I will get is a matrix which will have three ones in each row and

three ones in each column, I can construct another n/2 x n/2 matrix this one.

Which is again by overlapping of three different random permutation matrices ensuring that
there is no overlap of ones I can get another matrix which will have three ones in each row and

three ones in each column and this will ensure that each column of this matrix will have we= 3



and each of the rows of this matrix will have wr = 6, so this is another way I can use the

permutation matrices to construct my regular LDPC code.
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Irregular low-density parity check codes

2 [For an irregular low-density parity-check code the degrees of each
sel of nodes are chosen according Lo some distnbution.

Now let us talk about what is an irregular LDPC code, so in irregular LDPC code as opposed to
regular LDPC code the number of ones in each column and number of ones in each row are

different.
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Irregular low-density parity check codes

@ [or an irregular low-density parity-check code the degrees of each
el of nodes are chosen according Lo some distribution.

So we will have to specify the degree the node distribution the column node distribution as well

as the row node distribution.
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Irregular low-density parity check codes

@ lor an irregular low-density parity-check code the degrees of each
sel of nodes are chosen according Lo some distribution.

S

So for an irregular LDPC code we define the distribution of column nodes as well as row nodes

according to some distribution.
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Irregular low-density parity check codes

@ For an irregular low-density parity-check code the degrees of each
set of nodes are chosen according to some distribution

@ A degree distribution 5{x) = 3, yx'~" is simply a polynomial with
nonnegative real coefficients satistying (1) = L.

So what is a degree distribution? We define the degree distribution by this polynomial.
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Irregular low-density parity check codes

@ For an irregular low-density parity-check code the degrees of each
set of nodes are chosen according to some distribution

o o
@ A degree distribution y(x] = '}_'__l.j..x" s simply a polynomial with
nonnegative real coefficients satistying (1) = L.

Which has a property that ¥ is basically 1 so these are the fraction of nodes with degree i.
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a For an irregular low-density parity-check code the degrees of each
set of nodes are chosen according to some distrbution

@ A degree distribution <{x) =%, %x' " is simply a polynomial with

nonnegative real coefficients satisfying (1) = 1.

@ An irregular low-density code is 3 code of black-length N with 3
sparse parity check matrix where column distribution A{x) and row
distribution p{x) is respectively given by

where A; and p; denote the fraction of edges incident to variabla and
check nodes with degres i, respectively.
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Irregular low-density parity check codes

@ For an irregular low-density parity-check code the degrees of each

set of nodes are chosen according to some distribution
@ A degres distribution y(x) = ¥, yx' " is simply a polynomial with

nonnegative real coetficients satisfying ~(1) = 1.

@ An jrregular low-density code is a code of block-length N with a
sparse parity check matrx where calumn distribution A(x) and row
distribution {x) is respectively given by

Mx) = Z Xext=?

P4

plx) =3 pix™"

=1

where A; and p; denote the fraction of edges incident to variable and
check nodes with degree |, respactively.

Now an irregular LDPC code we have to specify two degree distribution one is the column

degree distribution, other is the row degree distribution.
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@ For an irregular low-density parity-check code the degrees of each
set of nodes are chosen according to some distribution

@ A degree distribution 5(x) = ¥, 7ix'"" is simply a palynomial with

nonnegative real coefficients satisfying v(1) = L.

@ An jrregular low-density code is a3 code of block-length N with a
sparse panty check matnx where column distribution A{x) and row
distribution p{x) is respectively given by

|'_.__hgx] —_Z_,\,-.\;_I |

ial |

g

WhE‘FE‘JI[aﬂdIfaIdE‘HNE‘ the fraction of edges incident to variable and
check fiodes Wath degree |, respectively.

So the column degree distribution we are denoting by A(x) and the row degree distribution we are
denoting by p(x) so this is my column degree distribution, this is my row degree distribution
where Ai is the fraction of edges incident on the variable node which has degree i and pi is
fraction of edges incident to the check node with degree i. So let us take an example to illustrate

this let us just see.
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Irregular low-density parity check codes

@ For an irregular low-density parity-check code the degrees of sach
set of nodes are chosen according to some distribution

R —_—
@ A degree distribution ~{x) = Ed""l- s simply a polynamial with
nonnegative real coefficients satistying (1) = 1.

If we use this same degree.



(Refer Slide Time: 37:03)

Irregular low-density parity ¢

2 [or an irregular low-density parity-check code the degrees of each

sel of nodes are chosen according Lo some distribution.
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Notation to represent this, so the column row distribution is defined by A(x).
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@ For an irregular low-density parity-check code the degrees of each
set of nodes are chosen according to some distribution

@ A degree distribution 5(x) = 37, vx'"" is simply a polynomial with
nonnegative real coefficients satisfying (1) = 1.

@ An irregular low-density code is a code of bleck-length N with a
sparse parity check matnx where column distribution A(x) and row
distribution p{x) is respectively given by

e ik —]

l _u;;=_§ Axit
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WhFFEJI[EIHdIfI.' denote the fraction of edges incident to variable and
check fodes fath degres | respectively, -

Now here all the columns for the regular LDPC code all the columns have weight 1.
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So then A here is 1 and we will define x""! and i degree here is three so degree distribution for the
column for this regular LPDC code will be x> similarly the row distribution here is because all
the nodes have row weight six so this will be x5, x° so that is how we are writing the degree

distribution so again.
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Irregular low-density parity check codes

& For an irregular low-density parity-check code the degrees of each
set of nodes are chosen according to some distribution

@ A degree distribution 5(x) =3, ix'"" is simply a polynomial with
nonnegative real coefficients satisfying (1) = 1

@ An irrogular low-density codr is & code of block-length N with a
sparse parity check matnx whers column distribution A(x) and row
distribution ,u{ ]| is respectively gwen kw

(Am 3 aat! |

ial

ER%

whrrvjﬂandlp. denate the fraction of r*dans incident to variable and
check Tiodes, fath degres |, respectively.

Have a look at the degree distribution this is the fraction of nodes with degree i and these are
fraction of nodes with degree i, this is the row degree distribution; this is the column degree

distribution.
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Let us take this example, so we have 1, 2, 3,4,5,6,7,8,9, 10, 11, 12, son is 12, okay.
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Irregular Low-density parity check code

n is 12, now what is column degree distribution? So this is basically each node participating in

how many parity check equations.
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Irregular Low-density parity check code

Let us look at this node, how many parity check equation it is participating in 1, 2, 3?
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So let us just so there is, this is participating in three parity check equations, what about this? It is
participating 1, 2, 3, so it is also participating in three, this is participating in 1, 2, 3, this is
participating in three, this is participating in 1, 2, 3, this is participating in two 1, 2, so there is
one node which is participating in two, what about this? It is participating in four 1, 2, 3, 4, so
this one node which is participating in four, this is participating in two 1, 2, this is participating

in three 1, 2, 3.

So this is participating in three 1, 2, 3, it is participating in three 1, 2, 3, it is participating in two
1, 2, and this is participating in 1, 2, 3, 4, 5, okay, so then how many nodes are participating in
two parity check constrain that is three so what is the fraction, that is 3/12, they are participating
in two parity check constrain, there are seven of them which are participating in three parity

check constrain.

So fraction of them is 7/12 then this is 1/ 12 and this which participate in four and then 1/ 12
which participate in 5, so then what is the column distribution? So this fraction is 1/4x>! that is x

plus 7/12x*! that is x* plus 1/12x*! that is three, plus 1/12x* so this is the column degree



distribution for an LDPC code which is described by this tanner graph, similarly we can find the

row distribution.

Let us look parity digit constraints. So let us look at this parity digit constraint. So here, 1, 2, 3,
4, 5, so there are five nodes which are participating in this. What about this one 1,2,3,4,5,6,7 so
there are seven bits which are participating in this. This one 1,2,3,4,5 so there is five of them.

Then here 1,2,3,4,5,6 so there is six.

This one is 1,2,3,4,5,6,7 and this one is 1,2,3,4,5,6 so you can see out of these and what is the
total number of parity check equations these are six 1,2,3,4,5 and 6. So then fraction of parity
check equations where five bits are participating is 2/6 and same is the ratio for 6 and 7. So then
we can write the row distribution as 1/3 x>! that is 4 + 1/3 x®! that is 5+ 1/3 x”"! that is 6 and that

is precisely what I have written here okay.

So to describe an irregular LDPC code we need to describe these two degree distribution namely

the column degree distribution and the row degree distribution.
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Construction of irregular LOPC code

Step 1 @ Selecling a prohile Lhal desdribes Lhe desired number ol
columns of sach weight and the desired number of rows of
each weight

Sep 2 @ Construction method, ie. algorithm tor putting edges
hetwean the vertices in a way that satisfies the constraints




So we can use a random algorithm to construct an LDPC code so we first select a profile that
describes the number of rows of each weight and desired number of columns of each weight and
then we need to put out mechanism of putting edges between the vertices in such a way that this
constraint is satisfy that. So many number of rows should have so many weight and so many

number of columns should have so many weight.
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Random construction of lrregular LOPC Codes

The edpes are plated] "completely at random” subject to the prohile
constraints. One way of implementing it is shown below.

& Make 3 Il of all columps in the matnx, with sach colump appearing

in the list aFﬂnh:: of times enual to ity weight.

So we can place edges at random subject to the profile constraint and one way of constructing it
is as follows. So make a list of all columns in a matrix with each column appearing in the list
number of times which is equal to the its weight. So if let say there are five columns which have

weight three. So then you will repeat each of these five columns three times.
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Random construction of lrregular LDPC Codes

The sdpes are placed "completely at random” subject Lo the pralile
constraints. One way of implementing it is shown below.

& Make 3 lsl ol all calumms in the malnz, with sach column appearng
in the list a number of times equal to its weight.

& Make a similar list of all rows in the matrix, with ach row appearing
in the list & number of times eqgual o its weigh_t.

In this matrix. Similarly you make a list of all rows in the matrix such that in each row is

repeated equal to the its weight. And then what you do is.
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The sdges are placed “completely at random™ subject to the profile
canstraints. Cine way of implementing it is shown bolow

@ Make a list of all columns in the matrx. with each column appearing
in the list a number of times egual to its weight

@ Make a similar list of all raws in the matrix, with each row appearing
in the list a number of fimes equal to its weight

@ Map one list onto the other. by a random permutation, taking care
not to create duplicate entries

You map one list which is a list of columns into the other list which is the list of rows by random
permutation making sure that there is no duplication. So you, you just create a link from the list
of columns to the list of rows. And this way you can construct an irregular LDPC code which
will satisfy the degree distribution profile. We can also use random permutation matrices to

generate our irregular LDPC code; again we are going for very simple constructions so.
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Notation: integers "3" and "9" represent the column weights

Column Weight | Fraction of columns | Row weight . Fracticn
2 B P L ;
[g] 1/12 =

We will go with this micas construction so let us say we would like to design an LDPC code
which has column weight such that 11/12% of the columns have column weight three and 1/12%
of column has column weight nine. So we are interested in and we are interested in row, row
weight of seven. So we want each of these row to have weight seven each of these row should
have weight seven and we want that 11/12%" of the column should have weight three and 1/12% of

the column should have weight nine. So how can we construct this?
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Notation: An integer repgresents 2 number of permutation matrices
superposed on the surrounding square. Horizontal and vertical lines
indicats the boundarniss of the permutation Blocks.

| Calumn Weight | Fraction of columns | Row weight | Fraction |
3 11/12 i 1
g 1/12

Using the construction using random permutation matrices that we have studied so again I am
splitting up this into so these are by so this is my rate half code so this n/2 x n each of them are
n/6/n/6 matrices these are n/6/n/6 matrices. Now note that up to this I am ensuring that each

column has weight three and each row has weight five. Now I need column weight of.
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Motabon: An integer represents o nermber of permatation matrioes
superposed o the surrounding square. Horizonta! and vertical lines
indicate the boundarics of the permutation blocks

| Calumn Weight | Fraction of columns | Row weight | Fraction
3 11/12 7 1
q 1712

11/12 matrices to be three. So this is already I have got 5/6 columns I have got column weight as
three. So then what I can do for the remaining 1/6 fraction of columns I split them into two and
what I do is I have column weight here and then I further split them into so these are all zero
matrices. So this you can see this row will have weight three so this will ensure that 11/12

fraction of columns have weight three.

And here you can see this has weight nine I have added this is weight two, weight two, weight
two that is 6+3, 9 so this column this set of columns will have weight nine. And you can check I
already had each row weight up to five. And now I have this row has weight two so this will be
overall weight will be seven. This has weight 0+2 the overall weight is seven. Here the overall

row weight is seven.

So I am ensuring that the way I split up this matrices I am ensuring that each row will have
weight seven whereas 11/12 fraction of the columns have column weight three whereas 1/12

fraction of the column has weight nine.
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Colurnm ¥Weight
3
9

Fraction of columns | How weight | Fraction
11/12 K 2ol 1
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Now same thing can be done in multiple ways, this is another construction. You can see here
again I am ensuring that each of the columns have weight three so up to this point you have 5/6
of the column have weight three. Now I need another 1/12" column which have weight three. So
I can do that by placing ones like this. Now I also have to ensure that row weight is seven, so

how do I ensure so I have three here so I need a weight four here.

So I do it by one and three. So this is column weight of the row weight seven. Here it is three this
was zero so this has to have weight of four. Now again this what are these three, four these are
again obtain by overlapping of random permutation matrices. And when we are over lapping

make sure that there is no overlap of ones.
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Okay. So you can verify that each row here so 1,2,3,4,5,6 so this is seven, this is weight zero
again here this is weight seven each row will have weight seven. So it is the same profile,

different construction.
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There is another construction, same column weight distribution that 11/12 fraction of the bits
should have column weight three and 1/12 should have column weight nine. And row weight
should be seven, and you can check it each of the row here has weight seven and all of these
rows from here to here have column weight three and this has column weight nine four, four and
this will have weight one. So we can use random permutation matrix to construct irregular LDPC

codes as well. Thank you.
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