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Welcome to the course on error control coding, an introduction to linear block codes. 
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Today we are going to give a brief introduction to low density parity check codes.  
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So we will start off with very basic definition of what do we mean by a low density parity check 

matrix. What do we mean by low density? 
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And then we will show how we can write the parity check matrix using a bipartite graph which is 

known as tanner graph. 
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Then we will talk about what is a regular LDPC code. 
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And we will give some few simple constructions of regular LDPC code.  
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Then we will talk about irregular LDPC code.  
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Then again we will give some very simple construction of irregular LDPC codes. 
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So what do we mean by low density? So we will first define what do we mean by density. So a 

density of a source is basically the expected number of ones in the source.  
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Now when is it a low density, now a source is low density or sparse if the density of 1 is less 

than 0.5.  
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And we say the vector is very low density or it is low density if the density vanishes as the length 

of the vector increases. In other words number of ones are fixed even if we increase the length of 

the vector, in that case the density will vanish as length increases. 
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We will also define a term which is called an overlap, so if you have two n tuples we call an 

overlap between two vectors as the number of positions in which the ones are common. So for 

example if you have a vector let us call it v0 which is 1001101 and you have a vector v1 which is 

1010110, then we can see there is an overlap here in one location, two location, so there is an 

overlap of two. 
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So what is a low density parity check code, as the name suggest a low density parity check code 

are specified by a parity check matrix which is of low density. And what do we mean by low 

density, so the number of ones in this parity check matrix is very small, it is less than ½. So an 

LDPC codes are specified by a parity check matrix which consist of mostly zeros and very few 

ones. 
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Now what is a regular LDPC code? A regular LDPC code is defined by these three parameters, 

this is the code length, this is number of ones in the columns of the parity check matrix. So a 

regular LDPC code has same number of ones in each of the columns of the parity check matrix. 
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And that number is given by w subscript C. Similarly w subscript R gives us the number of ones 

in each of the row of this parity check matrix.  
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Again for a regular LDPC code the number of ones in each row is same. So a regular LDPC code 

is specified by this block length n and number of ones in each of the columns and number of 

ones in each of the rows. So we can describe it by a low density parity check matrix of m x n 

where each column has a fixed number of ones and that is wc3 and that as we greater than 3, this 

has to do with distance properties of LDPC codes. And each row has w odd number of ones 

where wr is greater than equal to wc. 
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In other words, now what do the rows in the parity check matrix specify? Now if there are wr 

ones in rows of the parity check matrix it specifies that wr bits are participating in a parity check 

equation. And in all the parity check equations the same number of bits are participating.  
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And what is the implication of wc ones in each column, it means that each bit appears in w sub c 

parity check equations. So each bit participates in wc parity check equations. So that is what I am 

saying here, so each parity check constraint in an regular LDPC code will have wr code bits. And 

each code bit appears in wc parity check constraints. 

 

 

 

 

 

 

 

 

 

 

 

 

 



(Refer Slide Time: 05:57) 

 

 

 

Now typically the number of ones, because it is a low density parity check matrix, so numbers of 

ones are much less than the dimension of these matrix and wr is also much less than n.     
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Number of ones we can count it column wise or n columns and there are wc ones in each column, 

that number should be equal to number of rows multiplied by number of ones in each row. 
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And number of parity check equations is atleast equal to n-k so the rate is atleast 1-wc/wr. 

Sometimes we do have some redundant parity check equations in the LDPC parity check matrix. 
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This is one example of a low density parity check code, you can see in this matrix most of the 

entries are zeros, these are all zeros, these are zeros, these are zeros. You can see most of the 

entries in this matrix are zero, very few are ones. And you can see that each row, let us look at 

row number 1, row number 1 has four ones, row number 2 has four ones, you can check any row, 

you can check let us say this row. 

 

This has 1, 2, 3, 4, there are four, so each row of this low density parity check matrix has four 

number of ones. So wr in this case is four, and each column let us take column 1, there is a 1 

here, there is a 1 here, and there is a 1 here. So column weight is 3, you can check any column. 

Look at this column 1 here, 1 here, and 1 here. So column weight is 3 you can take this column 

there is a 1 here, there is a 1 here, and there is a 1 here, so the column weight is 3. 

 

So wc is 3, n is 20 you can see there is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 

19, 20, so the block size is 20 and this is full rise, so the rate here is 1-3/4 which is a rate 1/4 

code. So this is an example of a low density parity check code. You can see the fraction of ones 

is much smaller than number of zeros.  
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Now we can represent these parity check matrix using a bipartite graph and these – this bipartite 

graph representation of parity check matrix of a linear block code is known as tanner graph 

named after Michael Tanner.  
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So what is a bipartite graph, in a bipartite graph the nodes can be partitioned into two classes? 

Now what are those two classes, what is the property that no edge can connect nodes from the 

same class, so when we partition the nodes of this graph into two classes, there is no connection 

between nodes within a class. So if you want to reach another node within a class you at least 

have to have a travel twice okay. 
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So a bipartite graph is one where I can separate out the nodes into two classes such that there is 

no edge connecting nodes in the same class. Now we can draw a bipartite graph for an LDPC 

code parity check matrix, so a tanner graph and that is basically known as tanner graph.  
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So tanner graph for an LDPC code is a bipartite graph which has the property that there are two 

sets of class of nodes, one class of nodes which we call variable nodes, they represent the n bits 

of the code word. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



(Refer Slide Time: 10:44) 

 

 

 

And the other class is what is known as check nodes, they represent these m parity check 

equations.  
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And how do we connect an edge, an edge connects a variable node to the check node if and only 

if that particular bit participates in that parity check equation.    
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So let us take an example to illustrate how we can draw the tanner graph of an LDPC code, so 

this is an LDPC code block  
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n is 12 number of ones in each column you can see 1, 2, 3, that Wc  is 3 and number of ones in 

each row is 6 you can check 1,2,3,4,5,6,  each row has 6 ones each column has 3 ones,  now how 

do we draw the tanner graph of this so I as I said there are two class of nodes, one class of nodes 

for the variable nodes  
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And how may variable nodes we have we have 12 variable nodes, so let us just draw 12 variables 

node 1, this 2, 3, 4, 5, 6, 7, 8,9, 10, 11, 12, let us just label them, let us just label them as 0, 1, 2, 

3, 4, 5, 6, 7, 8, 9, 10, and 11 and then you have how many parity check equations 1, 2, 3, 4, 5, 6, 

so we will have the next set of nodes will be for parity check equations and they are 6 of them 4, 

5, 6, okay let us just label these bits that will be easier for a, so let us this 0, 1, 2, 3, 4, 5, 6, 7, 8, 

9, 10, 11, okay now let us similarly label these parity check equations this let us say a zero parity 

check equation 1, 2, 3, 4, 5, so let us look at this one. This 0 at parity check equation. Now which 

are the bits that are participating in the parity check constrain.  

 

Bit number 0 so we will draw and edge from bit number 0 to this parity check constrain, bit 

number 1 that is this, this bit number 2 that is this, bit number 5 that is this, bit number 6 that is 

this, bit number 10 okay. So this is my first parity check constrain, let us look at now this one, 

which are the bits participating bit number 0, bit number 0, bit number 1, bit number 1, bit 

number 2, so there is an edge from bit number 2 to this parity check constrain, bit number three 

that is this, bit number 4 that is this, and then you have bit number 11.  

 



So you have this 1 okay now look at this parity check constrain, now which are the bits that are 

participating, this is 5 so that is here, 6 that is this one, 7 that is this one, 9 that is this one, then 

10 that is this one, and then 11 that is this one, okay. Similarly for this parity check constrain bit 

number 0 is participating so you have edge from here to here, then bit number 3 is participating 

so there is an edge from here to here, bit number 7 is participating so there is an edge from here 

to here, bit number 8 is participating so there is an edge from here to here, bit number 9 is 

participating so there is an edge from here to here, and bit number11 is participating so there is 

an edge from here to here.  

 

And similarly we can do for this I will just do it this is 1, 3, 4, 6, 7, 8, that is it and this finally 

this parity check constrain bit number 2, bit number 4, bit number 5, bit number 8, bit number 9, 

bit number 10 so this is the tanner graph representation of this low density parity check code.                                
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Okay  
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Now let us define what do we mean by cycle in this tanner graph so cycle is defined as  
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A path consisting of length l which will start from a node and come back to the same node, so 

what is a cycle so it is a path cycle of length l is starts from particular node and comes back to 

same node so let us look at this as I said this node, so if you start from this node this edge 1, 2, 3, 

4, 5, 6, so this is a cycle of length 6. Now note that it is a bipartite graph so it will only have even 

length cycles because there is no connection between nodes of the same class. 
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As I said in this particular example this has cycle 6. 1, 2, 3, 4, 5, 6, and 
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 This can be viewed from the parity check matrix also  
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So in 1, 2, 3, 4, 5, 6, okay   
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 Now we will define what is known as girth. Girth is the length of the smallest cycle in this graph 

so girth is defined as the length of the smallest cycle in this graph  
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In this particular example the smallest cycle is 6 you can see there is no cycle of length 2 or 4     
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Now when we are decoding LDPC codes we would like the girth to be very large because 

number of independent detritions that we can get is proportional to the girth of the corresponding 

tanner graph  
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Of the LDPC code    
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Now that we have defined what is a regular LDPC code let us talk about how we can construct 

these LDPC codes, so we will first start with random construction of LDPC codes given by 

Gallager. 
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So if n is the block length and m is the number of parity check equations    
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And if you are asked to design a regular LDPC code with Wc 1’s per column and Wr 1’s per row 

you can follow this procedure. 
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So divide m x n matrix which is your parity check matrix, you divide them into Wc  m/ Wc into n 

sub matrices, such that in each of these sub matrices your column will only have a single 1  
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Next you start writing so in each of this sub matrices what you do is you write 1’s in the 

descending order, so the ith  row will have 1’s from location i-1 Wr  + 1 to i x Wr, so what you do 

is so I will just illustrate  
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Basically  
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So what you would do is first you have an  
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m x n matrix now this was a rate half code remember rate ¼ code, remember Wc   is 3 Wr   is 4  so 

this is 15 x 20 matrix, now what you do is you divide this 15x 20 matrix into 3x 3 5x 20 matrix 

sub matrices, right that was the first step  
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Divide an m x n matrix into Wc m/ Wc into n sub-matrices. 
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So once you divide them so these so this is 15 x 20 sub-matrices, this is another 5 x 20 sub-

matrix, this is another 5 x 20 sub matrix, and each of this sub matrix should have only ones and 

what you do you start writing ones in the descending order, so you write start writing one here 

from location 0 now wr in this case is 4 so in the 0 through you start writing from column 0 to 3 

next row you start writing from 4 to 7 like that you start writing ones so that is what. 
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I have written here that first of these sub-matrices contains all ones in the descending order such 

that ith row contains ones from location I – 1 x wr + 1 to I times wr so once you have constructed. 
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This sub-matrix this 5 x 20 sub matrix by putting one slide this in descending like this, once you 

have constructed this rest all are zeros, now note that each of the columns here have 1 ones. 
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And what about you can check any column of these sub-matrix it has only 11 and note what is 

the row weight, now each of the row here has wr which is just 4 number of ones, you can check 

this is 4 ones, you can check here this has 4ones here, these are the 4 ones here, you can check 

this, this is 4 ones, so what you have created is you have created a sub-matrix which has column 

weight 1 and row weight wr, now next. 
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To get wc column weight what do I need, I need to design a similar sub matrix here which will 

have 1, 1 in each of the column and wr ones in each row. Now how do I get this sub matrix and 

this sub matrix, so what I can do is I can do column permutation so for example. 
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I can move this column here I can move this column here I can do column permutation, now 

when I do column permutation I do not change the weight of the column it is still 1. And I do not 

change the weight of the rows it is still 4. 
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So by doing call up and mutation I will get this sub matrix which will again have 11 in each 

column and 4 ones in each row. 
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The same thing I will do for this sub matrix,  I will again do column permutation of this matrix 

and I will get this sub matrix, so the subsequent sub matrices are obtained by doing column 

permutation and by doing column permutation I am not disturbing the way the row weight or the 

column weight, the column weight of this sub matrix is still one, the row weight is still 4, now 

once I do this then I am able to design these 3, 5 x 20 sub matrices, each of them have column 

weight one. 
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So overall column rate will be 3 and overall row weight is still 4 so I am able to design a low 

density parity check matrix which has 3 ones in each column and 4 ones in each row. 
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So that is what I said that other sub matrices are merely column permutation of the first sub 

matrix so this is.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



(Refer Slide Time: 25:26) 

 

 

 

Gallager’s construction of a regular LDPC code which has wc ones in each column and wr ones 

in each row. 
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Now we will talk about simple constructions based on permutation matrix and these were given 

by MacKay we can read this paper Good Error-correcting Codes on very sparse matrices by 

David MacKay which appeared in IEEE Transactions on Information Theory in May 1999, so 

one way of designing an m x n matrix which has wc column weight and wr column weight is you 

can randomly put ones ensuring these criteria is satisfied and also you want to ensure that 

overlap between 2 rows. 

 

Of this parity check matrix is not more than one, otherwise you will have cycles. 
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For an in your LDPC code, now next what we are going to talk about is how we can use 

permutation matrix to design our LDPC codes, so that is what I am going to show in the next few 

slides. 
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So let us define what a permutation matrix, so a permutation matrix is an identity matrix which is 

row reordered. 
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So this is an example of a 5 x 5 permutation matrix, you can see each row has 11 and each 

column so each row has only 11 and each column has a single 1 and this is just an identity matrix 

with row reordered. 
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Now we could also use a circular matrix to design our LDPC codes, now what is circular matrix? 

So a circular matrix has a property that each row is just a circular shift of previous row, so for 

example if we take this example, this first row is 01, 001 now this 0 comes here, this 1 comes 

here, this 0 comes here, this 0comes here, and this 1 comes here, so that is your second row. Now 

in third row this 0 comes here, 1 comes here, this 0 comes here, 1 comes here, this 0 comes here, 

and this 0 comes here. 

 

Similarly here this 0 comes here, this 0 comes here, 1 comes here, 0 comes here, and 1 comes 

here, and likewise this 1 comes here, this 0 comes here, 0 comes here, 1 here, 0 here, so you can 

see each row has a circular shift of previous row, so we will now show how we, so we can 

randomly construct these permutation matrix this is just an identity matrix which is row 

reordered. Now we will show how we can construct our LDPC codes using these permutation 

matrix.    
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So the first example that we are going to consider is an example of a regular LDPC code, now 

this regular LDPC code has column weight 3 so wc is 3 and row weight is 6 so wr is 6. You can 

see if this a regular LDPC code because all the rows and columns have the same weight okay. 

Now how can we use permutation matrix to design this so let us take this example so let us say 

you have to design and so what is the rate here, rate here is 1 – wc/wr  so this is 1 – 3/6 that is the 

rate ½ so m will be n/2. 

 

So m here will be n/2 so what we did was so this is you can think of this as n/2 x n, so what we 

did was we divided this n/2 x n matrices into sub matrices in this particular way so this is, so this 

one that you see this is n/2 x n/2 matrix and there is another n/2 x n/2 matrix so these are 2 n/2 x  

n/2 matrices which are further divided into sub matrices n/6 / n/6 so each of them are your n/6 / 

n/6 matrix and what does this signifies, this signifies that this is the notation that we are using to 

denote a permutation matrix. 
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So this one random permutation matrix, there is another random permutation matrix by the 

location of one is different from what was here in this particular matrix. So this is another 

random permutation matrix so these ones that you see here these are all random permutation 

matrices, okay. Now note that we need a column weight of three, now if we stack if we stack 

three permutation matrices like this, now each of these permutation matrix has 1,1 in its column. 
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So overall we will get wc = 3 and if we stack six of them like this, then each row also has 1,1 so 

we will get overall six ones in each row, so this way we can generate a LDPC code with these 

parameters wc = 3 and wr = 6, now the same thing can be generated using by overlapping of 

random permutation matrices, now what do I mean by overlap of random permutation matrix so 

let us say you have a permutation matrix and you add another permutation matrix, now please 

note you ensure that there is no overlap between ones in this matrix and this matrix. 
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If you add these two permutation matrix what will you get?  
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You will get a matrix which will have two ones in each row and two ones in each column, now if 

I add another permutation matrix and I ensure that this the one in this permutation matrix does 

not overlap with ones in this permute, in this matrix which I got by adding two permutation 

matrix then the resultant permutation matrix that I will get will have row weight three and 

column weight also three, so another way of designing this LDPC code is by overlapping of 

random permutation matrices.  

 

Please note when I overlap them I have to ensure that there is no ones that are getting overlap 

then only I will be able to retain the weight, so if I overlap three such random permutation 

matrices and I ensure that there is no overlap between the ones in each of these three random 

permutation matrix then what I will get is a matrix which will have three ones in each row and 

three ones in each column, I can construct another n/2 x n/2 matrix this one.  

 

Which is again by overlapping of three different random permutation matrices ensuring that 

there is no overlap of ones I can get another matrix which will have three ones in each row and 

three ones in each column and this will ensure that each column of this matrix will have wc = 3 



and each of the rows of this matrix will have wr = 6, so this is another way I can use the 

permutation matrices to construct my regular LDPC code.             
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Now let us talk about what is an irregular LDPC code, so in irregular LDPC code as opposed to 

regular LDPC code the number of ones in each column and number of ones in each row are 

different. 
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So we will have to specify the degree the node distribution the column node distribution as well 

as the row node distribution. 
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So for an irregular LDPC code we define the distribution of column nodes as well as row nodes 

according to some distribution. 
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So what is a degree distribution? We define the degree distribution by this polynomial. 
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Which has a property that ɤ(1) is basically 1 so these are the fraction of nodes with degree i. 
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Now an irregular LDPC code we have to specify two degree distribution one is the column 

degree distribution, other is the row degree distribution. 
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So the column degree distribution we are denoting by λ(x) and the row degree distribution we are 

denoting by p(x) so this is my column degree distribution, this is my row degree distribution 

where λi is the fraction of edges incident on the variable node which has degree i and pi is 

fraction of edges incident to the check node with degree i. So let us take an example to illustrate 

this let us just see.  
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If we use this same degree. 
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 Notation to represent this, so the column row distribution is defined by λ(x). 
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Now here all the columns for the regular LDPC code all the columns have weight 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



(Refer Slide Time: 37:18) 

 

 

 

So then λ here is 1 and we will define xi-1 and i degree here is three so degree distribution for the 

column for this regular LPDC code will be x2, similarly the row distribution here is because all 

the nodes have row weight six so this will be x6-5 , x5 so that is how we are writing the degree 

distribution so again. 
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Have a look at the degree distribution this is the fraction of nodes with degree i and these are 

fraction of nodes with degree i, this is the row degree distribution; this is the column degree 

distribution. 
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Let us take this example, so we have 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, so n is 12, okay. 
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n is 12, now what is column degree distribution? So this is basically each node participating in 

how many parity check equations. 
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Let us look at this node, how many parity check equation it is participating in 1, 2, 3? 
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So let us just so there is, this is participating in three parity check equations, what about this? It is 

participating 1, 2, 3, so it is also participating in three, this is participating in 1, 2, 3, this is 

participating in three, this is participating in 1, 2, 3, this is participating in two 1, 2, so there is 

one node which is participating in two, what about this? It is participating in four 1, 2, 3, 4, so 

this one node which is participating in four, this is participating in two 1, 2, this is participating 

in three 1, 2, 3.  

 

So this is participating in three 1, 2, 3, it is participating in three 1, 2, 3, it is participating in two 

1, 2, and this is participating in 1, 2, 3, 4, 5, okay, so then how many nodes are participating in 

two parity check constrain that is three so what is the fraction, that is 3/12, they are participating 

in two parity check constrain, there are seven of them which are participating in three parity 

check constrain.  

 

So fraction of them is 7/12 then this is 1/ 12 and this which participate in four and then 1/ 12 

which participate in 5, so then what is the column distribution? So this fraction is 1/4x2-1 that is x 

plus 7/12x3-1 that is x2 plus 1/12x4-1 that is three, plus 1/12x4 so this is the column degree 



distribution for an LDPC code which is described by this tanner graph, similarly we can find the 

row distribution.    

 

Let us look parity digit constraints. So let us look at this parity digit constraint. So here, 1, 2, 3, 

4, 5, so there are five nodes which are participating in this. What about this one 1,2,3,4,5,6,7 so 

there are seven bits which are participating in this. This one 1,2,3,4,5 so there is five of them. 

Then here 1,2,3,4,5,6 so there is six. 

 

This one is 1,2,3,4,5,6,7 and this one is 1,2,3,4,5,6 so you can see out of these and what is the 

total number of parity check equations these are six 1,2,3,4,5 and 6. So then fraction of parity 

check equations where five bits are participating is 2/6 and same is the ratio for 6 and 7. So then 

we can write the row distribution as 1/3 x5-1 that is 4 + 1/3 x6-1 that is 5+ 1/3 x7-1 that is 6 and that 

is precisely what I have written here okay.  

 

So to describe an irregular LDPC code we need to describe these two degree distribution namely 

the column degree distribution and the row degree distribution.     
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So we can use a random algorithm to construct an LDPC code so we first select a profile that 

describes the number of rows of each weight and desired number of columns of each weight and 

then we need to put out mechanism of putting edges between the vertices in such a way that this 

constraint is satisfy that. So many number of rows should have so many weight and so many 

number of columns should have so many weight.  
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So we can place edges at random subject to the profile constraint and one way of constructing it 

is as follows. So make a list of all columns in a matrix with each column appearing in the list 

number of times which is equal to the its weight. So if let say there are five columns which have 

weight three. So then you will repeat each of these five columns three times.   
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In this matrix. Similarly you make a list of all rows in the matrix such that in each row is 

repeated equal to the its weight. And then what you do is. 
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You map one list which is a list of columns into the other list which is the list of rows by random 

permutation making sure that there is no duplication. So you, you just create a link from the list 

of columns to the list of rows. And this way you can construct an irregular LDPC code which 

will satisfy the degree distribution profile. We can also use random permutation matrices to 

generate our irregular LDPC code; again we are going for very simple constructions so. 
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We will go with this micas construction so let us say we would like to design an LDPC code 

which has column weight such that 11/12th of the columns have column weight three and 1/12th 

of column has column weight nine. So we are interested in and we are interested in row, row 

weight of seven. So we want each of these row to have weight seven each of these row should 

have weight seven and we want that 11/12th of the column should have weight three and 1/12th of 

the column should have weight nine. So how can we construct this?   
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Using the construction using random permutation matrices that we have studied so again I am 

splitting up this into so these are by so this is my rate half code so this n/2 x n each of them are 

n/6/n/6 matrices these are n/6/n/6 matrices. Now note that up to this I am ensuring that each 

column has weight three and each row has weight five. Now I need column weight of. 
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11/12 matrices to be three. So this is already I have got 5/6 columns I have got column weight as 

three. So then what I can do for the remaining 1/6 fraction of columns I split them into two and 

what I do is I have column weight here and then I further split them into so these are all zero 

matrices. So this you can see this row will have weight three so this will ensure that 11/12 

fraction of columns have weight three. 

 

And here you can see this has weight nine I have added this is weight two, weight two, weight 

two that is 6+3, 9 so this column this set of columns will have weight nine. And you can check I 

already had each row weight up to five. And now I have this row has weight two so this will be 

overall weight will be seven. This has weight 0+2 the overall weight is seven. Here the overall 

row weight is seven. 

 

So I am ensuring that the way I split up this matrices I am ensuring that each row will have 

weight seven whereas 11/12 fraction of the columns have column weight three whereas 1/12 

fraction of the column has weight nine. 
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Now same thing can be done in multiple ways, this is another construction. You can see here 

again I am ensuring that each of the columns have weight three so up to this point you have 5/6th 

of the column have weight three. Now I need another 1/12th column which have weight three. So 

I can do that by placing ones like this. Now I also have to ensure that row weight is seven, so 

how do I ensure so I have three here so I need a weight four here.  

 

So I do it by one and three. So this is column weight of the row weight seven. Here it is three this 

was zero so this has to have weight of four. Now again this what are these three, four these are 

again obtain by overlapping of random permutation matrices. And when we are over lapping 

make sure that there is no overlap of ones.  
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Okay. So you can verify that each row here so 1,2,3,4,5,6 so this is seven, this is weight zero 

again here this is weight seven each row will have weight seven. So it is the same profile, 

different construction.   
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There is another construction, same column weight distribution that 11/12 fraction of the bits 

should have column weight three and 1/12 should have column weight nine. And row weight 

should be seven, and you can check it each of the row here has weight seven and all of these 

rows from here to here have column weight three and this has column weight nine four, four and 

this will have weight one. So we can use random permutation matrix to construct irregular LDPC 

codes as well. Thank you.  
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