
Indian Institute of Technology Kanpur
National Programme on Technology Enhanced Learning (NPTEL)

Course Title
Error Control Coding: An Introduction to Linear Block Codes

Lecture-8

Low density parity check codes

by
Prof. Adrish Banerjee

Department of Electrical Engineering, IIT Kanpur

Welcome to the course on error control coding, an introduction to linear block codes.

(Refer Slide Time: 00:19)

Today we are going to give a brief introduction to low density parity check codes.

(Refer Slide Time: 00:27)

(Refer Slide Time: 00:28)

So we will start off with very basic definition of what do we mean by a low density parity check

matrix. What do we mean by low density?

(Refer Slide Time: 00:38)

And then we will show how we can write the parity check matrix using a bipartite graph which is

known as tanner graph.

(Refer Slide Time: 00:49)

Then we will talk about what is a regular LDPC code.

(Refer Slide Time: 00:54)

And we will give some few simple constructions of regular LDPC code.

(Refer Slide Time: 01:01)

Then we will talk about irregular LDPC code.

(Refer Slide Time: 01:05)

Then again we will give some very simple construction of irregular LDPC codes.

(Refer Slide Time: 01:11)

So what do we mean by low density? So we will first define what do we mean by density. So a

density of a source is basically the expected number of ones in the source.

(Refer Slide Time: 01:26)

Now when is it a low density, now a source is low density or sparse if the density of 1 is less

than 0.5.

(Refer Slide Time: 01:37)

And we say the vector is very low density or it is low density if the density vanishes as the length

of the vector increases. In other words number of ones are fixed even if we increase the length of

the vector, in that case the density will vanish as length increases.

(Refer Slide Time: 02:02)

We will also define a term which is called an overlap, so if you have two n tuples we call an

overlap between two vectors as the number of positions in which the ones are common. So for

example if you have a vector let us call it v0 which is 1001101 and you have a vector v1 which is

1010110, then we can see there is an overlap here in one location, two location, so there is an

overlap of two.

(Refer Slide Time: 02:45)

So what is a low density parity check code, as the name suggest a low density parity check code

are specified by a parity check matrix which is of low density. And what do we mean by low

density, so the number of ones in this parity check matrix is very small, it is less than ½. So an

LDPC codes are specified by a parity check matrix which consist of mostly zeros and very few

ones.

(Refer Slide Time: 03:23)

Now what is a regular LDPC code? A regular LDPC code is defined by these three parameters,

this is the code length, this is number of ones in the columns of the parity check matrix. So a

regular LDPC code has same number of ones in each of the columns of the parity check matrix.

(Refer Slide Time: 03:51)

And that number is given by w subscript C. Similarly w subscript R gives us the number of ones

in each of the row of this parity check matrix.

(Refer Slide Time: 04:08)

Again for a regular LDPC code the number of ones in each row is same. So a regular LDPC code

is specified by this block length n and number of ones in each of the columns and number of

ones in each of the rows. So we can describe it by a low density parity check matrix of m x n

where each column has a fixed number of ones and that is wc3 and that as we greater than 3, this

has to do with distance properties of LDPC codes. And each row has w odd number of ones

where wr is greater than equal to wc.

(Refer Slide Time: 04:51)

In other words, now what do the rows in the parity check matrix specify? Now if there are wr

ones in rows of the parity check matrix it specifies that wr bits are participating in a parity check

equation. And in all the parity check equations the same number of bits are participating.

(Refer Slide Time: 05:20)

And what is the implication of wc ones in each column, it means that each bit appears in w sub c

parity check equations. So each bit participates in wc parity check equations. So that is what I am

saying here, so each parity check constraint in an regular LDPC code will have wr code bits. And

each code bit appears in wc parity check constraints.

(Refer Slide Time: 05:57)

Now typically the number of ones, because it is a low density parity check matrix, so numbers of

ones are much less than the dimension of these matrix and wr is also much less than n.

(Refer Slide Time: 06:13)

Number of ones we can count it column wise or n columns and there are wc ones in each column,

that number should be equal to number of rows multiplied by number of ones in each row.

(Refer Slide Time: 06:31)

And number of parity check equations is atleast equal to n-k so the rate is atleast 1-wc/wr.

Sometimes we do have some redundant parity check equations in the LDPC parity check matrix.

(Refer Slide Time: 06:55)

This is one example of a low density parity check code, you can see in this matrix most of the

entries are zeros, these are all zeros, these are zeros, these are zeros. You can see most of the

entries in this matrix are zero, very few are ones. And you can see that each row, let us look at

row number 1, row number 1 has four ones, row number 2 has four ones, you can check any row,

you can check let us say this row.

This has 1, 2, 3, 4, there are four, so each row of this low density parity check matrix has four

number of ones. So wr in this case is four, and each column let us take column 1, there is a 1

here, there is a 1 here, and there is a 1 here. So column weight is 3, you can check any column.

Look at this column 1 here, 1 here, and 1 here. So column weight is 3 you can take this column

there is a 1 here, there is a 1 here, and there is a 1 here, so the column weight is 3.

So wc is 3, n is 20 you can see there is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,

19, 20, so the block size is 20 and this is full rise, so the rate here is 1-3/4 which is a rate 1/4

code. So this is an example of a low density parity check code. You can see the fraction of ones

is much smaller than number of zeros.

(Refer Slide Time: 09:00)

Now we can represent these parity check matrix using a bipartite graph and these – this bipartite

graph representation of parity check matrix of a linear block code is known as tanner graph

named after Michael Tanner.

(Refer Slide Time: 09:20)

So what is a bipartite graph, in a bipartite graph the nodes can be partitioned into two classes?

Now what are those two classes, what is the property that no edge can connect nodes from the

same class, so when we partition the nodes of this graph into two classes, there is no connection

between nodes within a class. So if you want to reach another node within a class you at least

have to have a travel twice okay.

(Refer Slide Time: 10:05)

So a bipartite graph is one where I can separate out the nodes into two classes such that there is

no edge connecting nodes in the same class. Now we can draw a bipartite graph for an LDPC

code parity check matrix, so a tanner graph and that is basically known as tanner graph.

(Refer Slide Time: 10:30)

So tanner graph for an LDPC code is a bipartite graph which has the property that there are two

sets of class of nodes, one class of nodes which we call variable nodes, they represent the n bits

of the code word.

(Refer Slide Time: 10:44)

And the other class is what is known as check nodes, they represent these m parity check

equations.

(Refer Slide Time: 10:56)

And how do we connect an edge, an edge connects a variable node to the check node if and only

if that particular bit participates in that parity check equation.

(Refer Slide Time: 11:14)

So let us take an example to illustrate how we can draw the tanner graph of an LDPC code, so

this is an LDPC code block

(Refer Slide Time: 11:25)

n is 12 number of ones in each column you can see 1, 2, 3, that Wc is 3 and number of ones in

each row is 6 you can check 1,2,3,4,5,6, each row has 6 ones each column has 3 ones, now how

do we draw the tanner graph of this so I as I said there are two class of nodes, one class of nodes

for the variable nodes

(Refer Slide Time: 11:58)

And how may variable nodes we have we have 12 variable nodes, so let us just draw 12 variables

node 1, this 2, 3, 4, 5, 6, 7, 8,9, 10, 11, 12, let us just label them, let us just label them as 0, 1, 2,

3, 4, 5, 6, 7, 8, 9, 10, and 11 and then you have how many parity check equations 1, 2, 3, 4, 5, 6,

so we will have the next set of nodes will be for parity check equations and they are 6 of them 4,

5, 6, okay let us just label these bits that will be easier for a, so let us this 0, 1, 2, 3, 4, 5, 6, 7, 8,

9, 10, 11, okay now let us similarly label these parity check equations this let us say a zero parity

check equation 1, 2, 3, 4, 5, so let us look at this one. This 0 at parity check equation. Now which

are the bits that are participating in the parity check constrain.

Bit number 0 so we will draw and edge from bit number 0 to this parity check constrain, bit

number 1 that is this, this bit number 2 that is this, bit number 5 that is this, bit number 6 that is

this, bit number 10 okay. So this is my first parity check constrain, let us look at now this one,

which are the bits participating bit number 0, bit number 0, bit number 1, bit number 1, bit

number 2, so there is an edge from bit number 2 to this parity check constrain, bit number three

that is this, bit number 4 that is this, and then you have bit number 11.

So you have this 1 okay now look at this parity check constrain, now which are the bits that are

participating, this is 5 so that is here, 6 that is this one, 7 that is this one, 9 that is this one, then

10 that is this one, and then 11 that is this one, okay. Similarly for this parity check constrain bit

number 0 is participating so you have edge from here to here, then bit number 3 is participating

so there is an edge from here to here, bit number 7 is participating so there is an edge from here

to here, bit number 8 is participating so there is an edge from here to here, bit number 9 is

participating so there is an edge from here to here, and bit number11 is participating so there is

an edge from here to here.

And similarly we can do for this I will just do it this is 1, 3, 4, 6, 7, 8, that is it and this finally

this parity check constrain bit number 2, bit number 4, bit number 5, bit number 8, bit number 9,

bit number 10 so this is the tanner graph representation of this low density parity check code.

(Refer Slide Time: 16:45)

Okay

(Refer Slide Time: 16:48)

Now let us define what do we mean by cycle in this tanner graph so cycle is defined as

(Refer Slide Time: 16:58)

A path consisting of length l which will start from a node and come back to the same node, so

what is a cycle so it is a path cycle of length l is starts from particular node and comes back to

same node so let us look at this as I said this node, so if you start from this node this edge 1, 2, 3,

4, 5, 6, so this is a cycle of length 6. Now note that it is a bipartite graph so it will only have even

length cycles because there is no connection between nodes of the same class.

(Refer Slide Time: 17:43)

As I said in this particular example this has cycle 6. 1, 2, 3, 4, 5, 6, and

(Refer Slide Time: 17:43)

 This can be viewed from the parity check matrix also

(Refer Slide Time: 17:56)

So in 1, 2, 3, 4, 5, 6, okay

(Refer Slide Time: 18:05)

 Now we will define what is known as girth. Girth is the length of the smallest cycle in this graph

so girth is defined as the length of the smallest cycle in this graph

(Refer Slide Time: 18:25)

In this particular example the smallest cycle is 6 you can see there is no cycle of length 2 or 4

(Refer Slide Time: 18:33)

(Refer Slide Time: 18:37)

Now when we are decoding LDPC codes we would like the girth to be very large because

number of independent detritions that we can get is proportional to the girth of the corresponding

tanner graph

(Refer Slide Time: 18:52)

Of the LDPC code

(Refer Slide Time: 18:55)

Now that we have defined what is a regular LDPC code let us talk about how we can construct

these LDPC codes, so we will first start with random construction of LDPC codes given by

Gallager.

(Refer Slide Time: 19:12)

So if n is the block length and m is the number of parity check equations

(Refer Slide Time: 19:20)

And if you are asked to design a regular LDPC code with Wc 1’s per column and Wr 1’s per row

you can follow this procedure.

(Refer Slide Time: 19:33)

So divide m x n matrix which is your parity check matrix, you divide them into Wc m/ Wc into n

sub matrices, such that in each of these sub matrices your column will only have a single 1

(Refer Slide Time: 19:59)

Next you start writing so in each of this sub matrices what you do is you write 1’s in the

descending order, so the ith row will have 1’s from location i-1 Wr + 1 to i x Wr, so what you do

is so I will just illustrate

(Refer Slide Time: 20:21)

Basically

(Refer Slide Time: 20:23)

So what you would do is first you have an

(Refer Slide Time: 20:27)

m x n matrix now this was a rate half code remember rate ¼ code, remember Wc is 3 Wr is 4 so

this is 15 x 20 matrix, now what you do is you divide this 15x 20 matrix into 3x 3 5x 20 matrix

sub matrices, right that was the first step

(Refer Slide Time: 20:58)

Divide an m x n matrix into Wc m/ Wc into n sub-matrices.

(Refer Slide Time: 21:05)

So once you divide them so these so this is 15 x 20 sub-matrices, this is another 5 x 20 sub-

matrix, this is another 5 x 20 sub matrix, and each of this sub matrix should have only ones and

what you do you start writing ones in the descending order, so you write start writing one here

from location 0 now wr in this case is 4 so in the 0 through you start writing from column 0 to 3

next row you start writing from 4 to 7 like that you start writing ones so that is what.

(Refer Slide Time: 21:51)

I have written here that first of these sub-matrices contains all ones in the descending order such

that ith row contains ones from location I – 1 x wr + 1 to I times wr so once you have constructed.

(Refer Slide Time: 22:15)

(Refer Slide Time: 22:15)

This sub-matrix this 5 x 20 sub matrix by putting one slide this in descending like this, once you

have constructed this rest all are zeros, now note that each of the columns here have 1 ones.

(Refer Slide Time: 22:36)

And what about you can check any column of these sub-matrix it has only 11 and note what is

the row weight, now each of the row here has wr which is just 4 number of ones, you can check

this is 4 ones, you can check here this has 4ones here, these are the 4 ones here, you can check

this, this is 4 ones, so what you have created is you have created a sub-matrix which has column

weight 1 and row weight wr, now next.

(Refer Slide Time: 23:14)

To get wc column weight what do I need, I need to design a similar sub matrix here which will

have 1, 1 in each of the column and wr ones in each row. Now how do I get this sub matrix and

this sub matrix, so what I can do is I can do column permutation so for example.

(Refer Slide Time: 23:45)

I can move this column here I can move this column here I can do column permutation, now

when I do column permutation I do not change the weight of the column it is still 1. And I do not

change the weight of the rows it is still 4.

(Refer Slide Time: 24:04)

So by doing call up and mutation I will get this sub matrix which will again have 11 in each

column and 4 ones in each row.

(Refer Slide Time: 24:19)

The same thing I will do for this sub matrix, I will again do column permutation of this matrix

and I will get this sub matrix, so the subsequent sub matrices are obtained by doing column

permutation and by doing column permutation I am not disturbing the way the row weight or the

column weight, the column weight of this sub matrix is still one, the row weight is still 4, now

once I do this then I am able to design these 3, 5 x 20 sub matrices, each of them have column

weight one.

(Refer Slide Time: 24:55)

So overall column rate will be 3 and overall row weight is still 4 so I am able to design a low

density parity check matrix which has 3 ones in each column and 4 ones in each row.

(Refer Slide Time: 25:15)

So that is what I said that other sub matrices are merely column permutation of the first sub

matrix so this is.

(Refer Slide Time: 25:26)

Gallager’s construction of a regular LDPC code which has wc ones in each column and wr ones

in each row.

(Refer Slide Time: 25:41)

Now we will talk about simple constructions based on permutation matrix and these were given

by MacKay we can read this paper Good Error-correcting Codes on very sparse matrices by

David MacKay which appeared in IEEE Transactions on Information Theory in May 1999, so

one way of designing an m x n matrix which has wc column weight and wr column weight is you

can randomly put ones ensuring these criteria is satisfied and also you want to ensure that

overlap between 2 rows.

Of this parity check matrix is not more than one, otherwise you will have cycles.

(Refer Slide Time: 26:29)

For an in your LDPC code, now next what we are going to talk about is how we can use

permutation matrix to design our LDPC codes, so that is what I am going to show in the next few

slides.

(Refer Slide Time: 26:52)

So let us define what a permutation matrix, so a permutation matrix is an identity matrix which is

row reordered.

(Refer Slide Time: 27:01)

So this is an example of a 5 x 5 permutation matrix, you can see each row has 11 and each

column so each row has only 11 and each column has a single 1 and this is just an identity matrix

with row reordered.

(Refer Slide Time: 27:23)

Now we could also use a circular matrix to design our LDPC codes, now what is circular matrix?

So a circular matrix has a property that each row is just a circular shift of previous row, so for

example if we take this example, this first row is 01, 001 now this 0 comes here, this 1 comes

here, this 0 comes here, this 0comes here, and this 1 comes here, so that is your second row. Now

in third row this 0 comes here, 1 comes here, this 0 comes here, 1 comes here, this 0 comes here,

and this 0 comes here.

Similarly here this 0 comes here, this 0 comes here, 1 comes here, 0 comes here, and 1 comes

here, and likewise this 1 comes here, this 0 comes here, 0 comes here, 1 here, 0 here, so you can

see each row has a circular shift of previous row, so we will now show how we, so we can

randomly construct these permutation matrix this is just an identity matrix which is row

reordered. Now we will show how we can construct our LDPC codes using these permutation

matrix.

(Refer Slide Time: 28:49)

So the first example that we are going to consider is an example of a regular LDPC code, now

this regular LDPC code has column weight 3 so wc is 3 and row weight is 6 so wr is 6. You can

see if this a regular LDPC code because all the rows and columns have the same weight okay.

Now how can we use permutation matrix to design this so let us take this example so let us say

you have to design and so what is the rate here, rate here is 1 – wc/wr so this is 1 – 3/6 that is the

rate ½ so m will be n/2.

So m here will be n/2 so what we did was so this is you can think of this as n/2 x n, so what we

did was we divided this n/2 x n matrices into sub matrices in this particular way so this is, so this

one that you see this is n/2 x n/2 matrix and there is another n/2 x n/2 matrix so these are 2 n/2 x

n/2 matrices which are further divided into sub matrices n/6 / n/6 so each of them are your n/6 /

n/6 matrix and what does this signifies, this signifies that this is the notation that we are using to

denote a permutation matrix.

(Refer Slide Time: 30:50)

So this one random permutation matrix, there is another random permutation matrix by the

location of one is different from what was here in this particular matrix. So this is another

random permutation matrix so these ones that you see here these are all random permutation

matrices, okay. Now note that we need a column weight of three, now if we stack if we stack

three permutation matrices like this, now each of these permutation matrix has 1,1 in its column.

(Refer Slide Time: 31:32)

(Refer Slide Time: 31:35)

So overall we will get wc = 3 and if we stack six of them like this, then each row also has 1,1 so

we will get overall six ones in each row, so this way we can generate a LDPC code with these

parameters wc = 3 and wr = 6, now the same thing can be generated using by overlapping of

random permutation matrices, now what do I mean by overlap of random permutation matrix so

let us say you have a permutation matrix and you add another permutation matrix, now please

note you ensure that there is no overlap between ones in this matrix and this matrix.

(Refer Slide Time: 32:43)

If you add these two permutation matrix what will you get?

(Refer Slide Time: 32:52)

You will get a matrix which will have two ones in each row and two ones in each column, now if

I add another permutation matrix and I ensure that this the one in this permutation matrix does

not overlap with ones in this permute, in this matrix which I got by adding two permutation

matrix then the resultant permutation matrix that I will get will have row weight three and

column weight also three, so another way of designing this LDPC code is by overlapping of

random permutation matrices.

Please note when I overlap them I have to ensure that there is no ones that are getting overlap

then only I will be able to retain the weight, so if I overlap three such random permutation

matrices and I ensure that there is no overlap between the ones in each of these three random

permutation matrix then what I will get is a matrix which will have three ones in each row and

three ones in each column, I can construct another n/2 x n/2 matrix this one.

Which is again by overlapping of three different random permutation matrices ensuring that

there is no overlap of ones I can get another matrix which will have three ones in each row and

three ones in each column and this will ensure that each column of this matrix will have wc = 3

and each of the rows of this matrix will have wr = 6, so this is another way I can use the

permutation matrices to construct my regular LDPC code.

(Refer Slide Time: 35:06)

Now let us talk about what is an irregular LDPC code, so in irregular LDPC code as opposed to

regular LDPC code the number of ones in each column and number of ones in each row are

different.

(Refer Slide Time: 35:24)

So we will have to specify the degree the node distribution the column node distribution as well

as the row node distribution.

(Refer Slide Time: 35:35)

So for an irregular LDPC code we define the distribution of column nodes as well as row nodes

according to some distribution.

(Refer Slide Time: 35:47)

So what is a degree distribution? We define the degree distribution by this polynomial.

(Refer Slide Time: 35:53)

Which has a property that ɤ(1) is basically 1 so these are the fraction of nodes with degree i.

(Refer Slide Time: 36:05)

(Refer Slide Time: 36:08)

Now an irregular LDPC code we have to specify two degree distribution one is the column

degree distribution, other is the row degree distribution.

(Refer Slide Time: 36:19)

So the column degree distribution we are denoting by λ(x) and the row degree distribution we are

denoting by p(x) so this is my column degree distribution, this is my row degree distribution

where λi is the fraction of edges incident on the variable node which has degree i and pi is

fraction of edges incident to the check node with degree i. So let us take an example to illustrate

this let us just see.

(Refer Slide Time: 37:02)

If we use this same degree.

(Refer Slide Time: 37:03)

(Refer Slide Time: 37:04)

 Notation to represent this, so the column row distribution is defined by λ(x).

(Refer Slide Time: 37:11)

Now here all the columns for the regular LDPC code all the columns have weight 1.

(Refer Slide Time: 37:18)

So then λ here is 1 and we will define xi-1 and i degree here is three so degree distribution for the

column for this regular LPDC code will be x2, similarly the row distribution here is because all

the nodes have row weight six so this will be x6-5 , x5 so that is how we are writing the degree

distribution so again.

(Refer Slide Time: 37:47)

Have a look at the degree distribution this is the fraction of nodes with degree i and these are

fraction of nodes with degree i, this is the row degree distribution; this is the column degree

distribution.

(Refer Slide Time: 38:04)

Let us take this example, so we have 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, so n is 12, okay.

(Refer Slide Time: 38:14)

n is 12, now what is column degree distribution? So this is basically each node participating in

how many parity check equations.

(Refer Slide Time: 38:32)

Let us look at this node, how many parity check equation it is participating in 1, 2, 3?

(Refer Slide Time: 38:39)

So let us just so there is, this is participating in three parity check equations, what about this? It is

participating 1, 2, 3, so it is also participating in three, this is participating in 1, 2, 3, this is

participating in three, this is participating in 1, 2, 3, this is participating in two 1, 2, so there is

one node which is participating in two, what about this? It is participating in four 1, 2, 3, 4, so

this one node which is participating in four, this is participating in two 1, 2, this is participating

in three 1, 2, 3.

So this is participating in three 1, 2, 3, it is participating in three 1, 2, 3, it is participating in two

1, 2, and this is participating in 1, 2, 3, 4, 5, okay, so then how many nodes are participating in

two parity check constrain that is three so what is the fraction, that is 3/12, they are participating

in two parity check constrain, there are seven of them which are participating in three parity

check constrain.

So fraction of them is 7/12 then this is 1/ 12 and this which participate in four and then 1/ 12

which participate in 5, so then what is the column distribution? So this fraction is 1/4x2-1 that is x

plus 7/12x3-1 that is x2 plus 1/12x4-1 that is three, plus 1/12x4 so this is the column degree

distribution for an LDPC code which is described by this tanner graph, similarly we can find the

row distribution.

Let us look parity digit constraints. So let us look at this parity digit constraint. So here, 1, 2, 3,

4, 5, so there are five nodes which are participating in this. What about this one 1,2,3,4,5,6,7 so

there are seven bits which are participating in this. This one 1,2,3,4,5 so there is five of them.

Then here 1,2,3,4,5,6 so there is six.

This one is 1,2,3,4,5,6,7 and this one is 1,2,3,4,5,6 so you can see out of these and what is the

total number of parity check equations these are six 1,2,3,4,5 and 6. So then fraction of parity

check equations where five bits are participating is 2/6 and same is the ratio for 6 and 7. So then

we can write the row distribution as 1/3 x5-1 that is 4 + 1/3 x6-1 that is 5+ 1/3 x7-1 that is 6 and that

is precisely what I have written here okay.

So to describe an irregular LDPC code we need to describe these two degree distribution namely

the column degree distribution and the row degree distribution.

(Refer Slide Time: 43:10)

So we can use a random algorithm to construct an LDPC code so we first select a profile that

describes the number of rows of each weight and desired number of columns of each weight and

then we need to put out mechanism of putting edges between the vertices in such a way that this

constraint is satisfy that. So many number of rows should have so many weight and so many

number of columns should have so many weight.

(Refer Slide Time: 43:43)

So we can place edges at random subject to the profile constraint and one way of constructing it

is as follows. So make a list of all columns in a matrix with each column appearing in the list

number of times which is equal to the its weight. So if let say there are five columns which have

weight three. So then you will repeat each of these five columns three times.

(Refer Slide Time: 44:14)

In this matrix. Similarly you make a list of all rows in the matrix such that in each row is

repeated equal to the its weight. And then what you do is.

(Refer Slide Time: 44:28)

You map one list which is a list of columns into the other list which is the list of rows by random

permutation making sure that there is no duplication. So you, you just create a link from the list

of columns to the list of rows. And this way you can construct an irregular LDPC code which

will satisfy the degree distribution profile. We can also use random permutation matrices to

generate our irregular LDPC code; again we are going for very simple constructions so.

(Refer Slide Time: 45:12)

We will go with this micas construction so let us say we would like to design an LDPC code

which has column weight such that 11/12th of the columns have column weight three and 1/12th

of column has column weight nine. So we are interested in and we are interested in row, row

weight of seven. So we want each of these row to have weight seven each of these row should

have weight seven and we want that 11/12th of the column should have weight three and 1/12th of

the column should have weight nine. So how can we construct this?

(Refer Slide Time: 46:05)

Using the construction using random permutation matrices that we have studied so again I am

splitting up this into so these are by so this is my rate half code so this n/2 x n each of them are

n/6/n/6 matrices these are n/6/n/6 matrices. Now note that up to this I am ensuring that each

column has weight three and each row has weight five. Now I need column weight of.

(Refer Slide Time: 46:53)

11/12 matrices to be three. So this is already I have got 5/6 columns I have got column weight as

three. So then what I can do for the remaining 1/6 fraction of columns I split them into two and

what I do is I have column weight here and then I further split them into so these are all zero

matrices. So this you can see this row will have weight three so this will ensure that 11/12

fraction of columns have weight three.

And here you can see this has weight nine I have added this is weight two, weight two, weight

two that is 6+3, 9 so this column this set of columns will have weight nine. And you can check I

already had each row weight up to five. And now I have this row has weight two so this will be

overall weight will be seven. This has weight 0+2 the overall weight is seven. Here the overall

row weight is seven.

So I am ensuring that the way I split up this matrices I am ensuring that each row will have

weight seven whereas 11/12 fraction of the columns have column weight three whereas 1/12

fraction of the column has weight nine.

(Refer Slide Time: 48:28)

Now same thing can be done in multiple ways, this is another construction. You can see here

again I am ensuring that each of the columns have weight three so up to this point you have 5/6th

of the column have weight three. Now I need another 1/12th column which have weight three. So

I can do that by placing ones like this. Now I also have to ensure that row weight is seven, so

how do I ensure so I have three here so I need a weight four here.

So I do it by one and three. So this is column weight of the row weight seven. Here it is three this

was zero so this has to have weight of four. Now again this what are these three, four these are

again obtain by overlapping of random permutation matrices. And when we are over lapping

make sure that there is no overlap of ones.

(Refer Slide Time: 49:31)

Okay. So you can verify that each row here so 1,2,3,4,5,6 so this is seven, this is weight zero

again here this is weight seven each row will have weight seven. So it is the same profile,

different construction.

(Refer Slide Time: 49:52)

There is another construction, same column weight distribution that 11/12 fraction of the bits

should have column weight three and 1/12 should have column weight nine. And row weight

should be seven, and you can check it each of the row here has weight seven and all of these

rows from here to here have column weight three and this has column weight nine four, four and

this will have weight one. So we can use random permutation matrix to construct irregular LDPC

codes as well. Thank you.

Acknowledgement
Ministry of Human Resource & Development

Prof. Satyaki Roy

Co-ordinator, NPTEL IIT Kanpur

NPTEL Team
Sanjay Pal

Ashish Singh
Badal Pradhan
Tapobrata Das
Ram Chandra
Dilip Tripathi

Manoj Shrivastava
Padam Shukla

Sanjay Mishra
Shubham Rawat

Shikha Gupta
K. K. Mishra

Aradhana Singh
Sweta

Ashutosh Gairola
Dilip Katiyar

Sharwan
Hari Ram

Bhadra Rao
Puneet Kumar Bajpai

Lalty Dutta
Ajay Kanaujia

Shivendra Kumar Tiwari

an IIT Kanpur Production

©copyright reserved

