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Welcome to the course on error control coding, an introduction to linear block codes.  
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So we will continue our discussions on some simple linear block codes.  
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This time we are going to discuss about Reed-Muller codes, we will talk about their construction, 

we will give an example, we will prove some properties of Reed-Muller code.  
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And then we will talk about decoding of Reed-Muller code. 
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So for any integer m and r such that r lies between – r is greater than zero and less than equal to 

m there exist a binary rth order Reed-Muller code which we denote by these parameter r and m, 

Reed-Muller code has the following code properties. So the length of the code is 2m and the 

dimension key is given by 1+m choose 1 plus m choose 2 up to m choose r. And the minimum 

distance of the code is given by 2m-r.  
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So let us take an example, let us take m to be 4 and r to be 2. So in this case the length of the 

code word will be 24 which is 16, and since the order of this Reed-Muller code is 2, so this k will 

be 1+4C1+4C2 so this will be 1+4+4x3/2 so this will be equal to 11, 1+4+6 so k is this thing, and 

minimum distance is 24-2 which is 4.      
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Now how do we construct a Reed-Muller code? So to do that let us define.  
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So we are defining an, binary m-tuple let us call it vi so for i going from 1 to m we define a 

binary m-tuple in this particular fashion. So there is alternating runs of zeros and ones.  
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So vi is run of zeros for 2i-1 times, then run of ones for 2i-1 like that. So this vi consist of 2m-i+1 

alternating zeros and ones and where each of these runs of zeros and ones are for 2i-1. 
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So let us take an example, let us consider m to be 4, m to be 4. 
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So then this m-tuples are 24 that is 16 okay. So what is v1, now v1 should have runs of zeros and 

ones where this run is 2i-1 so when i is 1 this is 1. So that means we should have v1 is 0, because 

that is the run of 1 then followed by a run of 1 for one time, then followed by zero one time, then 

1 one time so like that it will continue for this block of 16. Now what is v2, for v2 i is 2, so 2i-1 

would be in this case 2. 

 

So we should have 2 runs of zero followed by run of 1 which is repeated twice, run of zero is 

repeated twice, 101 this you continue up to block size of 16. What about v3, in this case i is 3. So 

what will be 2i-1, 2i-1 would be 4, so you have runs of zero for four times, followed by runs of 1, 

four times, then again runs of zero, and runs of 1. What about v4, here i is 4, so 2i-1 will be 8, so 

we have runs of zeros for eight times followed by runs of 1 eight times. So that is how we define 

our – this binary m-tuple for each of these i going from 1 to m.    
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Next we define a Boolean product. How do we define a Boolean product let us say, we have 2 n-

tuples x and y. So I am denoting x by x0, x1, x2, x3, xn-1, similarly denoting y by y0, y1, y2, yn-1. 

Now we define these Boolean product as – so this is bitwise and x0.y0, x1.y1, x2.y2 up to xn-1.yn-1, 

so this x0.y0 will be 1, only if both x0 and y0 are 1, otherwise it will be 0. 

 

 

 

 

 

 

 

 

 

 

 

 

 



(Refer Slide Time: 06:41) 

 

 

 

And same with others so xi.yi will be 1 only if both of them are 1. 
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So that is how we are defining this Boolean product operation.  
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So let us take an example, this is our v1 if you recall this was our v1 and this is our v2.  
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So if we define Boolean product between v1 and v2 we write it at v1.v2 and v1.v2  will be 1 only 

where v1 and v2 both are 1. So which is like this location number 4 bit, this location, then this 

location and then this location. So you can see it is only one at the 4th, 8th, 12th and 16th location, 

all other time is zero. This is zero for all other time okay. So this is how we define the Boolean 

product. 
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We also define an all one tuple so this vo is basically all ones of length 2m. Now for i1, i2, i3, il 

which lies between 1 and m we can define this product vector vi1, vi2, vi3, vil where this is 

basically Boolean product between these vi’s. And we say this has degree l if there are l vi’s 

which are participating in this product.  
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And weight of this product is given by 2m-l. So now that we have defined these tuples vi’s and the 

Boolean product between them, we are ready to define the generator matrix for Reed-Muller 

code.  
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So an rth order Reed-Muller code which is of length 2m can be generated by these set of 

independent vectors where these vectors are v0, v1, v2 then Boolean product of second order 

which is v1, v2, v1, v3 these are all second order product, then we will have third order product, 

fourth order product depending on what the r is. So we generate Reed-Muller code using these 

2m tuples basically of these v0, v1, v2 and their Boolean product.  
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And as you can see that v0 is all one sequence, so there is one such possible ways, we can get this 

v1 this mC1 ways of choosing v1mC2 ways of – so v1, v2, v3, vm this is basically m choose 1, then 

Boolean product of degree 2 can be chosen m chose 2A.  
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And similarly Boolean product up to order r can be chosen m choose r ways. So that is basically 

the dimension of the code. 
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Now if we arrange these vectors v0, v1, v2 and the Boolean product up to order r as rows of a 

matrix, that will be our generator matrix for Reed-Muller code. And each of these v0, v1 and their 

Boolean product they are basically linearly independent.  
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So we can generate our Reed-Muller code using these v0, vi and their Boolean product as rows of 

our generator matrix.  
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So let us illustrate this with an example we take a case where 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



(Refer Slide Time:  11:12) 

 

 

 

 m is 4 so m is 4 meaning our code word length would be 2m which is 16 so we are dealing with 

Reed Muller code of length 16. Now let us consider  
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A second order Reed Muller code so we will have to now recall what is a degree if you go back  
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This product vector is set to have degree l if there are l such vi’s which are participating in this 

Boolean product   
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So we have to write all these as rows are generator matrix up to product of degree r   
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So this your v0 vector, these are all your v1 v2 v3 v4, this is degree 1, and then these are all 

possible degree 2 Boolean product vectors, because m is 4 so we will have v1 v2 v3 v4 and r is 2 

so we have to consider all possible Boolean products of degree 2 so that would be v1 v2, v1 v3, v1 

v4, v2 v3, v2 v4, v3 v4 and that’s what we have listed here and of course you have your 
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All one pattern and these so what you are going to do is you are going to arrange these as rows of 

your generator matrix, so this is your 11 x 16 generator matrix okay and we will use  this to 

generate our set of code words. Now there is another alternative construction of Reed-Muller 

code  
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So if you are given Reed-Muller code of length 2m-1 then you can use two of them to construct a 

Reed-Muller code 
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 Of length  2m so how do you do that, so this is done in this particular fashion so if you have two 

Reed-Muller code so one Reed-Muller code of coder R and length  2m-1 and you have another 

Reed-Muller code of order R-1 and length 2m-1 then these two can be used to construct a Reed-

Muller code of order R  and length   2m,   and in this particular  way so first so you can so if this is 

this is one code of length 2m-1 and some other code of length 2m-1 this is your code u which is 

order R and this is u +v where u is given by this and v is given by this, so in other words you can 

construct Reed-Muller code recursively from smaller order and  smaller length. 
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Code, the same thing I can I am writing in terms of generator matrix so as I said  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



(Refer Slide Time:  14:55) 

 

 

 

This is a Reed-Muller code of length 2m-1,  this is  another Reed-Muller code of length 2m-1,  first 

is just u which is this, this code Reed-Muller code order R length to 2m-1  and the second is this so 

this is your u which is this, and the next one this is your v which is this. So I can write down so 

in other words I can construct Reed-Muller code recursively from smaller length Reed-Muller 

code, this is another way of generating the generator matrix for the Reed-Muller code. 
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So let us prove some of the properties of Reed-Muller code, the first property that  
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We are going to prove is that minimum distance of Reed-Muller code is 2m-r  
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We are going to prove this result using mathematical induction.  
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So how does this work, so first we assume m to be one and let us check whether this minimum 

distance holds 
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Correct for m = 1 so for m=1 let us consider two scenarios one where r is zero and in second case 

r is 1. So when m is 1 what is the length of the Reed-Muller code it is 2m so that is length is two. 
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Okay and when order is zero so G will consist of only v0 which is 11 so the Reed-Muller code of 

order zero and m1 is essentially a length two repetition code and what is the minimum distance 

of this code it is two. So let us plug that  
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In here and see whether this is correct m in our case is 1 and r is 0 so this gives us minimum 

distance of 2 and that is precisely what we are getting, so this whole proof for m=1 and r=0  
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Now let us say if it holds true also for 
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 M=1 and R=1, now if M=1 and R=1 so then the length of the code word is again 2 so G will 

consist of v0 and v1 okay, and what is my  
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v0 and v1  
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v1 is 0101 and v0 is 1 so this length 2 so what I will get is  
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G is 11 and this is 01 so this will be my generator matrix, now this will generate these following 

code words of length 2 and what is the minimum distance between these codes that is 1 we can 

say minimum rate code word is minimum weight of nonzero code word is 1. So minimum 

distance in this case is 1 okay and let us check, so in this case m is 1 and r is 1 so 21-1  20  that is   1 

and that is what we are getting fine. So then this is true for m=1 now, let use assume is true for 

any m=m and then we will try to prove that it is also true for  m=m+1 so let us assume that this is 

true for. 
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 Up to 
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m and for any order where order can be from zero to m let us assume that this is true so 

minimum distance is given by 2m-r. Now what we are going to show is that this is also true for 

m+1 and what should be the minimum distance for m+1 it should be 2m+1-r ,  so that is this. So 

next what we are going to show you is that minimum distance of m rth order Reed-Muller code   
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RM +1 Reed-Muller code is basically given by this, now to prove this we are going to make use 

of this construction of Reed-Muller code     
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That Reed-Muller code of order r and m can be constructed recursively using this, we are going 

to make use of this conduction to prove our result  
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So let us see how we proceed so let us consider  
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Two code word 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



(Refer Slide Time:  20:25) 

 

 

 

 f, f´ which belongs to Reed-Muller code of order R and length 2m  and let g, g´ belongs to Reed- 

Muller code of code r-1 and length 2m,  then we defining two code words then are Reed-Muller 

code of order R and length 2m+1  is of the form we just said u and u+1, so these code words and c1 

and c2 which is of the form f and f + g, f´, f´ + g they must be code word belonging to this Reed -

Muller code and this follows from our recursive constriction of Reed-Muller code which we just 

motioned so c1 and c2 must be code words for this Reed-Muller code  
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 Now let us try to compute the minimum distance between these codes c1 and c2   
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Which are code words Reed-Muller code of order r and length 2m+1, so first case that we will 

consider is when g is same as g´ and second case that we will consider is when G is not same as 

g´, so when g is same as g' what is the minimum distance between c1 and c2? Now if g and g' are 

same then basically your code c1 is nothing but it is f here. 
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Of length 2m and there is another code word f of length 2m and C2 is f ' of length 2m and then you 

have f ' of length 2m, so what is the minimum distance between this code? It is minimum distance 

between f and f ' plus minimum distance between f and f ', so that is what we are writing here. So 

if g is equal to g' the minimum distance between C1 and C2 is 2 times the minimum distance 

between f and f '.  

 

And what is the minimum distance between f and f '? f and f ' belongs to Reed-Muller code of 

order r and length 2m, so their minimum distance should be 2m-r, so then from this we get that 

minimum distance between C1 and C2 which are two code words belonging to Reed-Muller code 

for order r and length 2 m+1 this should be greater than equal to 2m+1-r. So for this particular case 

we have shown. 
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That minimum distance is indeed this, now we will also have to show. 
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If g is not same as g' then also we have to show that minimum distance is at least this. 
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So next we consider the case when g is not same as g', now if g is not same as g' then weight 

minimum distance of the code we can say basically number of positions where c1 and c2 are 

differing this can be written as w(f - f ') + w(g - g '+ f - f ') if we are talking about binary codes 

this will be basically plus this also fine because that is the same thing. So if you have two code 

words just call it c1 which is f here and this is f + g and then you have c2 which is f ', f ' + g ' then 

the minimum distance between code is f minus weight of f – f ' and weight of this minus this. So 

that is what we are writing here, that minimum distance between c1 and c2 is given by this plus 

this.  

 

Now we also know that let us say if we have two n – tuples then w(a) + w(b) where a and b are 

some n – tuples, this is basically w(a) + w(b) is greater than equal to w(a + b), right? Now if I 

consider ‘a’ to be x + y and ‘b’ to be y and let us say x + y they are all binary n – tuples we are 

talking about, then a + b will be x + y plus y so that is given by x.  

 

So what we will get is w(x + y) + w(y) is greater than equal to w(x), right? Or we can write w(x 

+ y) is greater than equal to w(x) – w(y). Next we are going to make use of this result to simplify 



this expression, this you can consider this is my x and this is my y. So I can write w(x + y) to be 

greater than equal to w(x) – w(y).  
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So when I do that then distance minimum distance between c1 and c2 is this term coming here 

and what did I do? This was w(x) this is x this was y this I can write as this is greater than equal 

to w(x) – w(y). So this weight of x is this term minus w(y) which is this term, fine? So now this, 

this cancels out what I get is w (g - g').    
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Now what is g? g belongs to Reed–Muller code of order r – 1 and length 2m . 
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Then what is the minimum distance of this, so what is the minimum distance between g and g' ? 

This should be 2m-r what is r? The order here is r-1 so this is r-1. So this is 2m+1-r . So what we 

have shown is.  
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Even when g is not same as g', our minimum distance is still 2m-r+1 . So now we have proved that 

minimum distance if, minimum distance of rth order Reed-Muller code of length 2m+1 is basically 

given by this.   
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So this will conclude the proof using mathematical induction that the minimum distance of Reed 

– Muller code is 2m-r . The next result which we are going to show you is. 
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That m-rth order is Reed–Muller code is the dual code of rth order Reed–Muller code. So let us 

see this is our original code then the dual code is given by this, now what do we need to show for 

dual code, if we take a code word from this code and if we take a code word from the dual code 

they are orthogonal, right? So the dot product should be zero.     
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Another point which I should mention here is. 
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Let us go back to our construction of Reed- Muller code here, please note the way these Boolean 

products are constructed, in fact we just proved also the minimum distance of the code is even, is 

2m-r. So minimum distance of Reed–Muller code is even so Reed – Muller code would not have 

odd weight code words. 
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So now we will show if we take a code word from (m-r-1)th order Reed-Muller code and if we 

take another code word from rth order Reed–Muller code then they are orthogonal. That is the 

first thing we are going to prove. 
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So let us consider a code word a, which belongs to (m-r-1)th order Reed–Muller code which is of 

length 2m  and let us consider another Reed–Muller code ‘b’ which is of order r and length 2m so 

‘a’ can be viewed as a polynomial of degree m-r-1 or less.  
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And similarly the degree of the polynomial b is less than equal to r.   
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So if we consider their product then this will be a polynomial of degree m-r-1+r so that would be 

of degree less than or equal to m-1. So then this product a and b will belong to a Reed–Muller 

code of order m-1 and this is of length 2m. Now note that Reed–Muller code has only even 

weight code words. 
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So when we are considering this dot product a. b since Reed-Muller code has only even weight 

code word then a. b would be zero.  
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So modulo 2 this will be zero. So in other words then what we have shown is if you take a code 

word  ‘a‘ which belongs to (m-r-1)th order Reed–Muller code and if you take another code word 

which belongs to rth order Reed–Muller code then they are orthogonal to each other. 
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Next we check the dimension of (m-r-1)th. 
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Order Reed–Muller code and rth order Reed–Muller code and we see that some of the dimension 

is 2m which is a length of the code word. So this does prove then that (m-r-1)th order Reed– 

Muller code this just radon m here, is dual to rth order Reed–Muller code. 
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Now let us say that some of the codes that we have studied are actually a special case of Reed– 

Muller code. So the first thing which is clear from the construction is. 
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That any r-1 order Reed–Muller code is a proper sub code of an rth order Reed–Muller code. 
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And this is easy to see if you noticed and go back to our code construction, what was our 

generator matrix? Our generator matrix consists of these tuples. 
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If you noticed and go back to our code construction what was our generator matrix? Our 

generator matrix consist of these tuples v0, v1, v2 up to product of degree r. So if you are 

considering zeroth order Reed-Muller code this will only have v0. In the G matrix if you are 

considering first order Reed-Muller code. 
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It will have v0 and it will also have v1, v2, v3, vm. If you are considering second order Reed- 

Muller code this will have this and it will have all these second order terms. So you can see that 

smaller order Reed-Muller code is already embedded in the. 
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Larger order Reed-Muller code, so from the construction you can see that smaller order Reed- 

Muller code is essentially a proper sub code of a larger order Reed-Muller code. So this, this 

relation holds and this can be easily seen from the construction of Reed-Muller code.  
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The zeroth order Reed-Muller code is a repetition code, this we have shown earlier also. Note 

that for the zeroth order Reed-Muller code your G matrix will only have this v0 which is all ones. 

And that is precisely the generator matrix for repetition code.  
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(m-1)th  order repetition code (m-1)th order Reed-Muller code is actually a single parity check 

code again this is easy to see.  
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We can just use the results that we have proved. We know that (m-r-1)th order Reed-Muller code 

is dual to the rth  order Reed-Muller code. So if r is let us say zero then it is dual to (m-1)th order 

Reed-Muller code. 
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So zeroth order Reed-Muller code is dual to (m-1)th order Reed-Muller code. And what is the 

dual of a repetition code, it is a single parity check code.  
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 So (m-1)th order Reed-Muller code is nothing but a single parity check code. Similarly, (m-2) 

order Reed-Muller code is our. 
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Extended hamming code which we just talked about in the last lecture. So let us discuss how we 

can decode Reed-Muller code, so we will illustrate the decoding of Reed-Muller code through an 

example, and we are going to use what we call majority logic decoding. So let us consider the 

Reed-Muller code. 
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With parameter m=4 and r=2. So in other words the generator matrix will then consist of v0 all 

first order vi’s and these Boolean product of order two. We already know how to, how to get this 

v1, v2, v3, vm, we just talked about that earlier and we will also know how to compute the 

Boolean product. So this is essentially our generator matrix G of a 2,4 Reed-Muller code.  
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Now the message that we want to encode, let us call it a0, a4, a3, this is how we are denoting the 

message tool that we are going to encode and since the rows of our generator matrix are. 
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Given by v0, v1, v2, v3, v4 and this, so our code word would be. 
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Linear combination of rows of the generator matrix, so that we are writing denoting by a0v0 + 

a4v4, a3v3 and similarly a34v3v4, a24v2v4, so this is how this is linear combination of these 11 rows 

of this generator matrix. 
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That is how we will generate our code words. So this 16 length code word is basically linear 

combination of these rows of a generator matrix. 
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Now we will spend some time looking at the generator matrix and we will use some observations 

from the generator matrix to decode our code. So what are these observations so first thing we 

will see 
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If we can, if we see the first four components of each generator vector and subsequent groups of 

three groups of four consecutive components they are zero except for vector v1v2, now what do I 

mean by that? 
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So let us look at this group of four this is group of four, this is group of four, so what I am saying 

is if you look out this group of four and if you add them up. Let us look at this first group of four 

this will be zero sum will be zero, zero, zero, zero. This is one, this is zero, zero, zero, zero, zero 

you take any such four, this is zero, zero, zero this one is zero, this one is zero, this is not zero. 

Again this row, this one is zero, zero, zero, zero, so you take any such groups of four. This one is 

zero, zero, zero, zero, zero this is not zero and these are all zeros. Similarly this is not zero these 

are all if you add up these they are all zero, one plus one, one plus, one plus one these are all zero 

same here one plus one, zero one plus one zero so if you look at these bits four bits at a time you 

will notice except for this one v1v2 all others are zero.  
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Now how can we make use of this fact? 
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v1v2 so what we will do is if we add up those first four elements. 
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The contribution from all others will be zero except, because v1v2 is non zero so we will get 

contribution from what a12 is.  
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So in other words these code word bit then can be written as so if I am  calling this bit at zeroth 

location as zero bit at first location as b1, second location b2, and b3 then by adding the first four 

bits I can get information about what a12 was. 
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And this can continue for next set of bits as well. 
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So this is let say b0b1b2b3 this is b4b5b6b7 this is b8b9b10b11 this is b12b13b14b15. So if I add this 

b0b1b2b3 or b4b5b6b7, b8b9b10b11 or b12b13b14b15 what I am getting is contributions from all other 

rows are nullified only I receive the contribution effect of this v1v2.  
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And the bit a12 can then be found by adding these four columns together. So I can get the 

information about a12 by looking at these first four columns or first four bits of these code word. 

Similarly in next four bits of the code word if I add them up I can get another independent 

information about a12. And same thing I can get from the next set of four coded bits. So what you 

can see is I am getting four independent views about what a12 is. Now the decoder can take a 

majority logic decode. If there is no error of course all of them will tell me about that a12 is the 

same bit whether zero or one. But if there is, is there is a single error what you will notice is you 

know in some other bits. Let us say there is an error in some. 

 

 

 

 

 

 

 

 

 



(Refer Slide Time:  42:47) 

 

 

 

Bit location b1 then a12 here would be different from what a12 I am getting from other three 

equations and then I will use majority logic decoding. What is majority logic decoding so I will 

take the majority decision if, if three of them are saying a12 is zero then I will go for zero   

otherwise I will go for 1 okay.  
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So this is how I can decode bit a12. 
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So and this. 
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Will be repeated for decoding other bits as well so let us say my receive bit is ro, r1,r2, r15 

corresponding to the transmitted bit b0, b1, b2, b15 then I can decode a12 , how, I will just add 

these first 4 bits, then add the next 4 bits, next 4 bits, next 4 bits, so I am getting 4 independent 

views about what a12 is, and then I will take a majority decision, majority of them are saying 0 I 

will go for 0 otherwise I will go for 1. 
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Now the same thing exactly same way I can decode other bits. 
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So let us look at a23 if you look at a23. 
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Let us look at this row evaluate with a different pen, let us look this row, this row, this row and 

this row so if I add bits in this row this will be 0, this will give me 0, this will give me a 1, this 

will give me 0, this will give me 0, this will give me 0, so you can see all rows will give me 0 

except this particular row and same thing I can repeat for  
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If I look at a 2nd row,  4th row 6th row and 8th I will get the same information. 
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 So if I look at. 
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Now let us say I look at this row if I look at this row, this row, this row and this row so this will 

give me 0, this, this, this will give me 0 this will give me 0, now here this is a 1, this is a 0 this a 

0 and this is 0, so this will give me 1, and all other rows will give me 0. 
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So if I add up. 
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These bits 4 bits at a time in similar fashion I can get independent. 
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Information about a23,  so again the point we noted.  
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Here is. 
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What you need to do is you would look at this and find out.  
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Basically like a combination of these receive bits which will give information about one 

particular transmitted bit and not others and once you do that. 
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You can similarly do for other bits, I just listed here you can verify yourself that if you add these 

bit location you will get independent formation about a14, similarly for a24. 
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And a34, now once you have decoded a12, a23, or once you have decoded all of these, again 

remember the way we are decoding is so we are getting 4 independent views about the same bit 

majority of them are must saying it is 0 we go for that or else the majority of them are saying that 

they are one, we will go for that. 
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So once we have decoded this the sequences let us just subtract the contribution of these bits 

from the receive signal, so then the new receive sequence that we are calling r1 is the actual rate 

sequence – the contribution from these Boolean product terms subtracted, now once we do this 

then what we are left with is. 
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Essentially we are left with this, so we are now left with decoding a0 , a4 , a3, a2, and a1, so first 

we try to decode the rth order terms then we try to decode r – 1 it or it term and finally so here we 

first decoded the terms related to. 
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Second order, now we will try to decode these terms which are related to the first order and we 

will again follow the same procedure, what we are going to do is we are again going to look at. 
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This G matrix and we are going to look at the bit so we are now looking at because the 

contribution of these have been removed so we are now looking at this G matrix, we are only 

looking at this, assuming we have correctly decoded a12, a13 , a14 contribution of these have been 

removed so only we thing we are left with is this, now if you notice if you add up 2 rows like this 

consider these 2 rows so what you would have noticed for all other except v1 we will get 0. 
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So in other words I can get 8 independent views about what a1 by just looking at these 2 

columns of this matrix so I can I am getting 8 independent equations for a1 and again I will go 

for majority logic decoding so whatever majority of them are saying I will decide in favor of that 

and the same procedure can be repeated to find out. 
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What a2, a3, a4 are again.  
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This is just a typo, this should be a2 here and similarly this is a3 here.  
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And this is a4 here, okay now this is exactly same procedure I followed for a1 we are using for 

a2, a3, a4 , a4. 
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A4 and then we are getting independent equations, 8 independent equations and we take majority 

decision in decoding these, now once we have decoded. 
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A1, a2, a3, a4 we will then remove the contribution of this from the receive sequence so our 

receive sequence r1 we remove this so what we are now left is the term containing v0 so we only 

left with a0, so now we have 16 opinion about a0 and again we take a majority decision and that is 

how we decide in favor of a0 so this in a nut shell. 
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A how we are decoding a how we are decoding a Reed-Muller code, so first we try to decode the 

rth thought terms then r – 1 and like that and the key is look at the generator matrix and from 

there try to find out combinations of bits which will give independent opinion about a particular 

transmitted bit, so with this I will conclude this discussion on Reed-Muller, code thank you. 

 

 

Acknowledgement 
Ministry of Human Resource & Development 

 
Prof. Satyaki Roy 

Co-ordinator, NPTEL IIT Kanpur 
 

NPTEL Team 
Sanjay Pal 

Ashish Singh 
Badal Pradhan 
Tapobrata Das 
Ram Chandra 
Dilip Tripathi 

Manoj Shrivastava 
Padam Shukla 



Sanjay Mishra 
Shubham Gupta 

K. K. Mishra 
Aradhana Singh 

Sweta 
Ashutosh Gairola 

Dilip Katiyar 
Sharwan 
Hari Ram 

Bhadra Rao 
Puneet Kumar Bajpai 

Lalty Dutta 
Ajay Kanaujia 

Shivendra Kumar Tiwari 
 

an IIT Kanpur Production 
 

©copyright reserved 
 
 
 
  
 
 
   


