
Indian Institute of Technology Kanpur
National Programme on Technology Enhanced Learning (NPTEL)

Course Title
Error Control Coding: An Introduction to Linear Block Codes

Lecture-6B

Some Simple Linear Block Codes-II: Reed Muller Codes

by
Dr. Adrish Banerjee

Department of Electrical Engineering, IIT Kanpur

Welcome to the course on error control coding, an introduction to linear block codes.

(Refer Slide Time: 00:24)

So we will continue our discussions on some simple linear block codes.

(Refer Slide Time: 00:29)

This time we are going to discuss about Reed-Muller codes, we will talk about their construction,

we will give an example, we will prove some properties of Reed-Muller code.

(Refer Slide Time: 00:41)

And then we will talk about decoding of Reed-Muller code.

(Refer Slide Time: 00:43)

So for any integer m and r such that r lies between – r is greater than zero and less than equal to

m there exist a binary rth order Reed-Muller code which we denote by these parameter r and m,

Reed-Muller code has the following code properties. So the length of the code is 2m and the

dimension key is given by 1+m choose 1 plus m choose 2 up to m choose r. And the minimum

distance of the code is given by 2m-r.

(Refer Slide Time: 01:34)

So let us take an example, let us take m to be 4 and r to be 2. So in this case the length of the

code word will be 24 which is 16, and since the order of this Reed-Muller code is 2, so this k will

be 1+4C1+4C2 so this will be 1+4+4x3/2 so this will be equal to 11, 1+4+6 so k is this thing, and

minimum distance is 24-2 which is 4.

(Refer Slide Time: 02:27)

Now how do we construct a Reed-Muller code? So to do that let us define.

(Refer Slide Time: 02:35)

So we are defining an, binary m-tuple let us call it vi so for i going from 1 to m we define a

binary m-tuple in this particular fashion. So there is alternating runs of zeros and ones.

(Refer Slide Time: 02:59)

So vi is run of zeros for 2i-1 times, then run of ones for 2i-1 like that. So this vi consist of 2m-i+1

alternating zeros and ones and where each of these runs of zeros and ones are for 2i-1.

(Refer Slide Time: 03:29)

So let us take an example, let us consider m to be 4, m to be 4.

(Refer Slide Time: 03:37)

So then this m-tuples are 24 that is 16 okay. So what is v1, now v1 should have runs of zeros and

ones where this run is 2i-1 so when i is 1 this is 1. So that means we should have v1 is 0, because

that is the run of 1 then followed by a run of 1 for one time, then followed by zero one time, then

1 one time so like that it will continue for this block of 16. Now what is v2, for v2 i is 2, so 2i-1

would be in this case 2.

So we should have 2 runs of zero followed by run of 1 which is repeated twice, run of zero is

repeated twice, 101 this you continue up to block size of 16. What about v3, in this case i is 3. So

what will be 2i-1, 2i-1 would be 4, so you have runs of zero for four times, followed by runs of 1,

four times, then again runs of zero, and runs of 1. What about v4, here i is 4, so 2i-1 will be 8, so

we have runs of zeros for eight times followed by runs of 1 eight times. So that is how we define

our – this binary m-tuple for each of these i going from 1 to m.

(Refer Slide Time: 05:46)

Next we define a Boolean product. How do we define a Boolean product let us say, we have 2 n-

tuples x and y. So I am denoting x by x0, x1, x2, x3, xn-1, similarly denoting y by y0, y1, y2, yn-1.

Now we define these Boolean product as – so this is bitwise and x0.y0, x1.y1, x2.y2 up to xn-1.yn-1,

so this x0.y0 will be 1, only if both x0 and y0 are 1, otherwise it will be 0.

(Refer Slide Time: 06:41)

And same with others so xi.yi will be 1 only if both of them are 1.

(Refer Slide Time: 06:49)

So that is how we are defining this Boolean product operation.

(Refer Slide Time: 06:57)

So let us take an example, this is our v1 if you recall this was our v1 and this is our v2.

(Refer Slide Time: 07:03)

(Refer Slide Time: 07:05)

So if we define Boolean product between v1 and v2 we write it at v1.v2 and v1.v2 will be 1 only

where v1 and v2 both are 1. So which is like this location number 4 bit, this location, then this

location and then this location. So you can see it is only one at the 4th, 8th, 12th and 16th location,

all other time is zero. This is zero for all other time okay. So this is how we define the Boolean

product.

(Refer Slide Time: 07:53)

We also define an all one tuple so this vo is basically all ones of length 2m. Now for i1, i2, i3, il

which lies between 1 and m we can define this product vector vi1, vi2, vi3, vil where this is

basically Boolean product between these vi’s. And we say this has degree l if there are l vi’s

which are participating in this product.

(Refer Slide Time: 08:37)

And weight of this product is given by 2m-l. So now that we have defined these tuples vi’s and the

Boolean product between them, we are ready to define the generator matrix for Reed-Muller

code.

(Refer Slide Time: 09:03)

So an rth order Reed-Muller code which is of length 2m can be generated by these set of

independent vectors where these vectors are v0, v1, v2 then Boolean product of second order

which is v1, v2, v1, v3 these are all second order product, then we will have third order product,

fourth order product depending on what the r is. So we generate Reed-Muller code using these

2m tuples basically of these v0, v1, v2 and their Boolean product.

(Refer Slide Time: 09:46)

And as you can see that v0 is all one sequence, so there is one such possible ways, we can get this

v1 this mC1 ways of choosing v1mC2 ways of – so v1, v2, v3, vm this is basically m choose 1, then

Boolean product of degree 2 can be chosen m chose 2A.

(Refer Slide Time: 10:18)

And similarly Boolean product up to order r can be chosen m choose r ways. So that is basically

the dimension of the code.

(Refer Slide Time: 10:31)

Now if we arrange these vectors v0, v1, v2 and the Boolean product up to order r as rows of a

matrix, that will be our generator matrix for Reed-Muller code. And each of these v0, v1 and their

Boolean product they are basically linearly independent.

(Refer Slide Time: 10:59)

So we can generate our Reed-Muller code using these v0, vi and their Boolean product as rows of

our generator matrix.

(Refer Slide Time: 11:07)

So let us illustrate this with an example we take a case where

(Refer Slide Time: 11:12)

 m is 4 so m is 4 meaning our code word length would be 2m which is 16 so we are dealing with

Reed Muller code of length 16. Now let us consider

(Refer Slide Time: 11:25)

A second order Reed Muller code so we will have to now recall what is a degree if you go back

(Refer Slide Time: 11:36)

This product vector is set to have degree l if there are l such vi’s which are participating in this

Boolean product

(Refer Slide Time: 11:45)

So we have to write all these as rows are generator matrix up to product of degree r

(Refer Slide Time: 11:57)

So this your v0 vector, these are all your v1 v2 v3 v4, this is degree 1, and then these are all

possible degree 2 Boolean product vectors, because m is 4 so we will have v1 v2 v3 v4 and r is 2

so we have to consider all possible Boolean products of degree 2 so that would be v1 v2, v1 v3, v1

v4, v2 v3, v2 v4, v3 v4 and that’s what we have listed here and of course you have your

(Refer Slide Time: 12:48)

All one pattern and these so what you are going to do is you are going to arrange these as rows of

your generator matrix, so this is your 11 x 16 generator matrix okay and we will use this to

generate our set of code words. Now there is another alternative construction of Reed-Muller

code

(Refer Slide Time: 13:19)

So if you are given Reed-Muller code of length 2m-1 then you can use two of them to construct a

Reed-Muller code

(Refer Slide Time: 13:36)

 Of length 2m so how do you do that, so this is done in this particular fashion so if you have two

Reed-Muller code so one Reed-Muller code of coder R and length 2m-1 and you have another

Reed-Muller code of order R-1 and length 2m-1 then these two can be used to construct a Reed-

Muller code of order R and length 2m, and in this particular way so first so you can so if this is

this is one code of length 2m-1 and some other code of length 2m-1 this is your code u which is

order R and this is u +v where u is given by this and v is given by this, so in other words you can

construct Reed-Muller code recursively from smaller order and smaller length.

(Refer Slide Time: 14:48)

Code, the same thing I can I am writing in terms of generator matrix so as I said

(Refer Slide Time: 14:55)

This is a Reed-Muller code of length 2m-1, this is another Reed-Muller code of length 2m-1, first

is just u which is this, this code Reed-Muller code order R length to 2m-1 and the second is this so

this is your u which is this, and the next one this is your v which is this. So I can write down so

in other words I can construct Reed-Muller code recursively from smaller length Reed-Muller

code, this is another way of generating the generator matrix for the Reed-Muller code.

(Refer Slide Time: 15:46)

So let us prove some of the properties of Reed-Muller code, the first property that

(Refer Slide Time: 15:53)

We are going to prove is that minimum distance of Reed-Muller code is 2m-r

(Refer Slide Time: 16:03)

We are going to prove this result using mathematical induction.

(Refer Slide Time: 16:07)

So how does this work, so first we assume m to be one and let us check whether this minimum

distance holds

(Refer Slide Time: 16:19)

Correct for m = 1 so for m=1 let us consider two scenarios one where r is zero and in second case

r is 1. So when m is 1 what is the length of the Reed-Muller code it is 2m so that is length is two.

(Refer Slide Time: 16:40)

Okay and when order is zero so G will consist of only v0 which is 11 so the Reed-Muller code of

order zero and m1 is essentially a length two repetition code and what is the minimum distance

of this code it is two. So let us plug that

(Refer Slide Time: 17:07)

In here and see whether this is correct m in our case is 1 and r is 0 so this gives us minimum

distance of 2 and that is precisely what we are getting, so this whole proof for m=1 and r=0

(Refer Slide Time: 17:25)

Now let us say if it holds true also for

(Refer Slide Time: 17:28)

 M=1 and R=1, now if M=1 and R=1 so then the length of the code word is again 2 so G will

consist of v0 and v1 okay, and what is my

(Refer Slide Time: 17:49)

v0 and v1

(Refer Slide Time: 17:50)

v1 is 0101 and v0 is 1 so this length 2 so what I will get is

(Refer Slide Time: 18:00)

G is 11 and this is 01 so this will be my generator matrix, now this will generate these following

code words of length 2 and what is the minimum distance between these codes that is 1 we can

say minimum rate code word is minimum weight of nonzero code word is 1. So minimum

distance in this case is 1 okay and let us check, so in this case m is 1 and r is 1 so 21-1 20 that is 1

and that is what we are getting fine. So then this is true for m=1 now, let use assume is true for

any m=m and then we will try to prove that it is also true for m=m+1 so let us assume that this is

true for.

(Refer Slide Time: 19:09)

 Up to

(Refer Slide Time: 19:09)

m and for any order where order can be from zero to m let us assume that this is true so

minimum distance is given by 2m-r. Now what we are going to show is that this is also true for

m+1 and what should be the minimum distance for m+1 it should be 2m+1-r , so that is this. So

next what we are going to show you is that minimum distance of m rth order Reed-Muller code

(Refer Slide Time: 19:50)

RM +1 Reed-Muller code is basically given by this, now to prove this we are going to make use

of this construction of Reed-Muller code

(Refer Slide Time: 20:01)

That Reed-Muller code of order r and m can be constructed recursively using this, we are going

to make use of this conduction to prove our result

(Refer Slide Time: 20:20)

So let us see how we proceed so let us consider

(Refer Slide Time: 20:24)

Two code word

(Refer Slide Time: 20:25)

 f, f´ which belongs to Reed-Muller code of order R and length 2m and let g, g´ belongs to Reed-

Muller code of code r-1 and length 2m, then we defining two code words then are Reed-Muller

code of order R and length 2m+1 is of the form we just said u and u+1, so these code words and c1

and c2 which is of the form f and f + g, f´, f´ + g they must be code word belonging to this Reed -

Muller code and this follows from our recursive constriction of Reed-Muller code which we just

motioned so c1 and c2 must be code words for this Reed-Muller code

(Refer Slide Time: 21:26)

 Now let us try to compute the minimum distance between these codes c1 and c2

(Refer Slide Time: 21:35)

Which are code words Reed-Muller code of order r and length 2m+1, so first case that we will

consider is when g is same as g´ and second case that we will consider is when G is not same as

g´, so when g is same as g' what is the minimum distance between c1 and c2? Now if g and g' are

same then basically your code c1 is nothing but it is f here.

(Refer Slide Time: 22:06)

Of length 2m and there is another code word f of length 2m and C2 is f ' of length 2m and then you

have f ' of length 2m, so what is the minimum distance between this code? It is minimum distance

between f and f ' plus minimum distance between f and f ', so that is what we are writing here. So

if g is equal to g' the minimum distance between C1 and C2 is 2 times the minimum distance

between f and f '.

And what is the minimum distance between f and f '? f and f ' belongs to Reed-Muller code of

order r and length 2m, so their minimum distance should be 2m-r, so then from this we get that

minimum distance between C1 and C2 which are two code words belonging to Reed-Muller code

for order r and length 2 m+1 this should be greater than equal to 2m+1-r. So for this particular case

we have shown.

(Refer Slide Time: 23:30)

(Refer Slide Time: 23:31)

That minimum distance is indeed this, now we will also have to show.

(Refer Slide Time: 23:37)

(Refer Slide Time: 23:38)

If g is not same as g' then also we have to show that minimum distance is at least this.

(Refer Slide Time: 23:47)

(Refer Slide Time: 23:50)

So next we consider the case when g is not same as g', now if g is not same as g' then weight

minimum distance of the code we can say basically number of positions where c1 and c2 are

differing this can be written as w(f - f ') + w(g - g '+ f - f ') if we are talking about binary codes

this will be basically plus this also fine because that is the same thing. So if you have two code

words just call it c1 which is f here and this is f + g and then you have c2 which is f ', f ' + g ' then

the minimum distance between code is f minus weight of f – f ' and weight of this minus this. So

that is what we are writing here, that minimum distance between c1 and c2 is given by this plus

this.

Now we also know that let us say if we have two n – tuples then w(a) + w(b) where a and b are

some n – tuples, this is basically w(a) + w(b) is greater than equal to w(a + b), right? Now if I

consider ‘a’ to be x + y and ‘b’ to be y and let us say x + y they are all binary n – tuples we are

talking about, then a + b will be x + y plus y so that is given by x.

So what we will get is w(x + y) + w(y) is greater than equal to w(x), right? Or we can write w(x

+ y) is greater than equal to w(x) – w(y). Next we are going to make use of this result to simplify

this expression, this you can consider this is my x and this is my y. So I can write w(x + y) to be

greater than equal to w(x) – w(y).

(Refer Slide Time: 26:29)

(Refer Slide Time: 26:34)

So when I do that then distance minimum distance between c1 and c2 is this term coming here

and what did I do? This was w(x) this is x this was y this I can write as this is greater than equal

to w(x) – w(y). So this weight of x is this term minus w(y) which is this term, fine? So now this,

this cancels out what I get is w (g - g').

(Refer Slide Time: 27:08)

(Refer Slide Time: 27:13)

Now what is g? g belongs to Reed–Muller code of order r – 1 and length 2m .

(Refer Slide Time: 27:21)

Then what is the minimum distance of this, so what is the minimum distance between g and g' ?

This should be 2m-r what is r? The order here is r-1 so this is r-1. So this is 2m+1-r . So what we

have shown is.

(Refer Slide Time: 27:50)

Even when g is not same as g', our minimum distance is still 2m-r+1 . So now we have proved that

minimum distance if, minimum distance of rth order Reed-Muller code of length 2m+1 is basically

given by this.

(Refer Slide Time: 28:17)

So this will conclude the proof using mathematical induction that the minimum distance of Reed

– Muller code is 2m-r . The next result which we are going to show you is.

(Refer Slide Time: 28:34)

That m-rth order is Reed–Muller code is the dual code of rth order Reed–Muller code. So let us

see this is our original code then the dual code is given by this, now what do we need to show for

dual code, if we take a code word from this code and if we take a code word from the dual code

they are orthogonal, right? So the dot product should be zero.

(Refer Slide Time: 29:05)

Another point which I should mention here is.

(Refer Slide Time: 29:07)

(Refer Slide Time: 29:08)

(Refer Slide Time: 29:09)

(Refer Slide Time: 29:10)

(Refer Slide Time: 29:11)

(Refer Slide Time: 29:12)

(Refer Slide Time: 29:13)

(Refer Slide Time: 29:14)

Let us go back to our construction of Reed- Muller code here, please note the way these Boolean

products are constructed, in fact we just proved also the minimum distance of the code is even, is

2m-r. So minimum distance of Reed–Muller code is even so Reed – Muller code would not have

odd weight code words.

(Refer Slide Time: 29:34)

(Refer Slide Time: 29:35)

(Refer Slide Time: 29:36)

So now we will show if we take a code word from (m-r-1)th order Reed-Muller code and if we

take another code word from rth order Reed–Muller code then they are orthogonal. That is the

first thing we are going to prove.

(Refer Slide Time: 29:54)

So let us consider a code word a, which belongs to (m-r-1)th order Reed–Muller code which is of

length 2m and let us consider another Reed–Muller code ‘b’ which is of order r and length 2m so

‘a’ can be viewed as a polynomial of degree m-r-1 or less.

(Refer Slide Time: 30:25)

And similarly the degree of the polynomial b is less than equal to r.

(Refer Slide Time: 30:31)

So if we consider their product then this will be a polynomial of degree m-r-1+r so that would be

of degree less than or equal to m-1. So then this product a and b will belong to a Reed–Muller

code of order m-1 and this is of length 2m. Now note that Reed–Muller code has only even

weight code words.

(Refer Slide Time: 31:14)

So when we are considering this dot product a. b since Reed-Muller code has only even weight

code word then a. b would be zero.

(Refer Slide Time: 31:24)

So modulo 2 this will be zero. So in other words then what we have shown is if you take a code

word ‘a‘ which belongs to (m-r-1)th order Reed–Muller code and if you take another code word

which belongs to rth order Reed–Muller code then they are orthogonal to each other.

(Refer Slide Time: 31:52)

Next we check the dimension of (m-r-1)th.

(Refer Slide Time: 31:55)

Order Reed–Muller code and rth order Reed–Muller code and we see that some of the dimension

is 2m which is a length of the code word. So this does prove then that (m-r-1)th order Reed–

Muller code this just radon m here, is dual to rth order Reed–Muller code.

(Refer Slide Time: 32:29)

Now let us say that some of the codes that we have studied are actually a special case of Reed–

Muller code. So the first thing which is clear from the construction is.

(Refer Slide Time: 32:46)

That any r-1 order Reed–Muller code is a proper sub code of an rth order Reed–Muller code.

(Refer Slide Time: 32:56)

And this is easy to see if you noticed and go back to our code construction, what was our

generator matrix? Our generator matrix consists of these tuples.

(Refer Slide Time: 32:57)

(Refer Slide Time: 32:57)

(Refer Slide Time: 32:57)

(Refer Slide Time: 32:58)

(Refer Slide Time: 32:58)

(Refer Slide Time: 32:59)

(Refer Slide Time: 33:00)

(Refer Slide Time: 33:00)

(Refer Slide Time: 33:00)

(Refer Slide Time: 33:01)

(Refer Slide Time: 33:02)

(Refer Slide Time: 33:02)

(Refer Slide Time: 33:03)

(Refer Slide Time: 33:03)

(Refer Slide Time: 33:04)

(Refer Slide Time: 33:04)

(Refer Slide Time: 33:05)

(Refer Slide Time: 33:06)

If you noticed and go back to our code construction what was our generator matrix? Our

generator matrix consist of these tuples v0, v1, v2 up to product of degree r. So if you are

considering zeroth order Reed-Muller code this will only have v0. In the G matrix if you are

considering first order Reed-Muller code.

(Refer Slide Time: 33:30)

It will have v0 and it will also have v1, v2, v3, vm. If you are considering second order Reed-

Muller code this will have this and it will have all these second order terms. So you can see that

smaller order Reed-Muller code is already embedded in the.

(Refer Slide Time: 33:52)

(Refer Slide Time: 33:52)

(Refer Slide Time: 33:53)

(Refer Slide Time: 33:54)

(Refer Slide Time: 33:54)

(Refer Slide Time: 33:54)

(Refer Slide Time: 33:55)

(Refer Slide Time: 33:56)

(Refer Slide Time: 33:56)

(Refer Slide Time: 33:57)

(Refer Slide Time: 33:57)

(Refer Slide Time: 33:58)

(Refer Slide Time: 33:58)

(Refer Slide Time: 33:58)

(Refer Slide Time: 33:59)

(Refer Slide Time: 34:01)

(Refer Slide Time: 34:01)

(Refer Slide Time: 34:02)

(Refer Slide Time: 34:02)

(Refer Slide Time: 34:04)

Larger order Reed-Muller code, so from the construction you can see that smaller order Reed-

Muller code is essentially a proper sub code of a larger order Reed-Muller code. So this, this

relation holds and this can be easily seen from the construction of Reed-Muller code.

(Refer Slide Time: 34:16)

The zeroth order Reed-Muller code is a repetition code, this we have shown earlier also. Note

that for the zeroth order Reed-Muller code your G matrix will only have this v0 which is all ones.

And that is precisely the generator matrix for repetition code.

(Refer Slide Time: 34:40)

(m-1)th order repetition code (m-1)th order Reed-Muller code is actually a single parity check

code again this is easy to see.

(Refer Slide Time: 34:52)

(Refer Slide Time: 34:52)

(Refer Slide Time: 34:53)

We can just use the results that we have proved. We know that (m-r-1)th order Reed-Muller code

is dual to the rth order Reed-Muller code. So if r is let us say zero then it is dual to (m-1)th order

Reed-Muller code.

(Refer Slide Time: 35:10)

(Refer Slide Time: 35:11)

(Refer Slide Time: 35:12)

So zeroth order Reed-Muller code is dual to (m-1)th order Reed-Muller code. And what is the

dual of a repetition code, it is a single parity check code.

(Refer Slide Time: 35:27)

 So (m-1)th order Reed-Muller code is nothing but a single parity check code. Similarly, (m-2)

order Reed-Muller code is our.

(Refer Slide Time: 35:39)

Extended hamming code which we just talked about in the last lecture. So let us discuss how we

can decode Reed-Muller code, so we will illustrate the decoding of Reed-Muller code through an

example, and we are going to use what we call majority logic decoding. So let us consider the

Reed-Muller code.

(Refer Slide Time: 36:05)

With parameter m=4 and r=2. So in other words the generator matrix will then consist of v0 all

first order vi’s and these Boolean product of order two. We already know how to, how to get this

v1, v2, v3, vm, we just talked about that earlier and we will also know how to compute the

Boolean product. So this is essentially our generator matrix G of a 2,4 Reed-Muller code.

(Refer Slide Time: 36:53)

Now the message that we want to encode, let us call it a0, a4, a3, this is how we are denoting the

message tool that we are going to encode and since the rows of our generator matrix are.

(Refer Slide Time: 37:11)

Given by v0, v1, v2, v3, v4 and this, so our code word would be.

(Refer Slide Time: 37:17)

Linear combination of rows of the generator matrix, so that we are writing denoting by a0v0 +

a4v4, a3v3 and similarly a34v3v4, a24v2v4, so this is how this is linear combination of these 11 rows

of this generator matrix.

(Refer Slide Time: 37:39)

That is how we will generate our code words. So this 16 length code word is basically linear

combination of these rows of a generator matrix.

(Refer Slide Time: 37:52)

Now we will spend some time looking at the generator matrix and we will use some observations

from the generator matrix to decode our code. So what are these observations so first thing we

will see

(Refer Slide Time: 38:07)

If we can, if we see the first four components of each generator vector and subsequent groups of

three groups of four consecutive components they are zero except for vector v1v2, now what do I

mean by that?

(Refer Slide Time: 38:26)

(Refer Slide Time: 38:27)

So let us look at this group of four this is group of four, this is group of four, so what I am saying

is if you look out this group of four and if you add them up. Let us look at this first group of four

this will be zero sum will be zero, zero, zero, zero. This is one, this is zero, zero, zero, zero, zero

you take any such four, this is zero, zero, zero this one is zero, this one is zero, this is not zero.

Again this row, this one is zero, zero, zero, zero, so you take any such groups of four. This one is

zero, zero, zero, zero, zero this is not zero and these are all zeros. Similarly this is not zero these

are all if you add up these they are all zero, one plus one, one plus, one plus one these are all zero

same here one plus one, zero one plus one zero so if you look at these bits four bits at a time you

will notice except for this one v1v2 all others are zero.

(Refer Slide Time: 39:54)

Now how can we make use of this fact?

(Refer Slide Time: 39:56)

v1v2 so what we will do is if we add up those first four elements.

(Refer Slide Time: 40:13)

The contribution from all others will be zero except, because v1v2 is non zero so we will get

contribution from what a12 is.

(Refer Slide Time: 40:24)

(Refer Slide Time: 40:24)

So in other words these code word bit then can be written as so if I am calling this bit at zeroth

location as zero bit at first location as b1, second location b2, and b3 then by adding the first four

bits I can get information about what a12 was.

(Refer Slide Time: 40:52)

And this can continue for next set of bits as well.

(Refer Slide Time: 40:55)

(Refer Slide Time: 40:57)

(Refer Slide Time: 40:57)

(Refer Slide Time: 40:58)

So this is let say b0b1b2b3 this is b4b5b6b7 this is b8b9b10b11 this is b12b13b14b15. So if I add this

b0b1b2b3 or b4b5b6b7, b8b9b10b11 or b12b13b14b15 what I am getting is contributions from all other

rows are nullified only I receive the contribution effect of this v1v2.

(Refer Slide Time: 41:45)

And the bit a12 can then be found by adding these four columns together. So I can get the

information about a12 by looking at these first four columns or first four bits of these code word.

Similarly in next four bits of the code word if I add them up I can get another independent

information about a12. And same thing I can get from the next set of four coded bits. So what you

can see is I am getting four independent views about what a12 is. Now the decoder can take a

majority logic decode. If there is no error of course all of them will tell me about that a12 is the

same bit whether zero or one. But if there is, is there is a single error what you will notice is you

know in some other bits. Let us say there is an error in some.

(Refer Slide Time: 42:47)

Bit location b1 then a12 here would be different from what a12 I am getting from other three

equations and then I will use majority logic decoding. What is majority logic decoding so I will

take the majority decision if, if three of them are saying a12 is zero then I will go for zero

otherwise I will go for 1 okay.

(Refer Slide Time: 43:10)

So this is how I can decode bit a12.

(Refer Slide Time: 43:13)

So and this.

(Refer Slide Time: 43:16)

Will be repeated for decoding other bits as well so let us say my receive bit is ro, r1,r2, r15

corresponding to the transmitted bit b0, b1, b2, b15 then I can decode a12 , how, I will just add

these first 4 bits, then add the next 4 bits, next 4 bits, next 4 bits, so I am getting 4 independent

views about what a12 is, and then I will take a majority decision, majority of them are saying 0 I

will go for 0 otherwise I will go for 1.

(Refer Slide Time: 43:52)

Now the same thing exactly same way I can decode other bits.

(Refer Slide Time: 43:59)

So let us look at a23 if you look at a23.

(Refer Slide Time: 44:04)

(Refer Slide Time: 44:05)

Let us look at this row evaluate with a different pen, let us look this row, this row, this row and

this row so if I add bits in this row this will be 0, this will give me 0, this will give me a 1, this

will give me 0, this will give me 0, this will give me 0, so you can see all rows will give me 0

except this particular row and same thing I can repeat for

(Refer Slide Time: 44:48)

(Refer Slide Time: 44:49)

If I look at a 2nd row, 4th row 6th row and 8th I will get the same information.

(Refer Slide Time: 45:00)

 So if I look at.

(Refer Slide Time: 45:01)

Now let us say I look at this row if I look at this row, this row, this row and this row so this will

give me 0, this, this, this will give me 0 this will give me 0, now here this is a 1, this is a 0 this a

0 and this is 0, so this will give me 1, and all other rows will give me 0.

(Refer Slide Time: 45:31)

So if I add up.

(Refer Slide Time: 45:32)

These bits 4 bits at a time in similar fashion I can get independent.

(Refer Slide Time: 45:42)

Information about a23, so again the point we noted.

(Refer Slide Time: 45:49)

Here is.

(Refer Slide Time: 45:50)

What you need to do is you would look at this and find out.

(Refer Slide Time: 45:57)

Basically like a combination of these receive bits which will give information about one

particular transmitted bit and not others and once you do that.

(Refer Slide Time: 46:10)

(Refer Slide Time: 46:12)

You can similarly do for other bits, I just listed here you can verify yourself that if you add these

bit location you will get independent formation about a14, similarly for a24.

(Refer Slide Time: 46:28)

And a34, now once you have decoded a12, a23, or once you have decoded all of these, again

remember the way we are decoding is so we are getting 4 independent views about the same bit

majority of them are must saying it is 0 we go for that or else the majority of them are saying that

they are one, we will go for that.

(Refer Slide Time: 46:53)

So once we have decoded this the sequences let us just subtract the contribution of these bits

from the receive signal, so then the new receive sequence that we are calling r1 is the actual rate

sequence – the contribution from these Boolean product terms subtracted, now once we do this

then what we are left with is.

(Refer Slide Time: 47:26)

(Refer Slide Time: 47:27)

Essentially we are left with this, so we are now left with decoding a0 , a4 , a3, a2, and a1, so first

we try to decode the rth order terms then we try to decode r – 1 it or it term and finally so here we

first decoded the terms related to.

(Refer Slide Time: 47:49)

Second order, now we will try to decode these terms which are related to the first order and we

will again follow the same procedure, what we are going to do is we are again going to look at.

(Refer Slide Time: 48:05)

This G matrix and we are going to look at the bit so we are now looking at because the

contribution of these have been removed so we are now looking at this G matrix, we are only

looking at this, assuming we have correctly decoded a12, a13 , a14 contribution of these have been

removed so only we thing we are left with is this, now if you notice if you add up 2 rows like this

consider these 2 rows so what you would have noticed for all other except v1 we will get 0.

(Refer Slide Time: 48:48)

So in other words I can get 8 independent views about what a1 by just looking at these 2

columns of this matrix so I can I am getting 8 independent equations for a1 and again I will go

for majority logic decoding so whatever majority of them are saying I will decide in favor of that

and the same procedure can be repeated to find out.

(Refer Slide Time: 49:14)

What a2, a3, a4 are again.

(Refer Slide Time: 49:17)

This is just a typo, this should be a2 here and similarly this is a3 here.

(Refer Slide Time: 49:31)

And this is a4 here, okay now this is exactly same procedure I followed for a1 we are using for

a2, a3, a4 , a4.

(Refer Slide Time: 49:47)

A4 and then we are getting independent equations, 8 independent equations and we take majority

decision in decoding these, now once we have decoded.

(Refer Slide Time: 49:59)

A1, a2, a3, a4 we will then remove the contribution of this from the receive sequence so our

receive sequence r1 we remove this so what we are now left is the term containing v0 so we only

left with a0, so now we have 16 opinion about a0 and again we take a majority decision and that is

how we decide in favor of a0 so this in a nut shell.

(Refer Slide Time: 50:31)

A how we are decoding a how we are decoding a Reed-Muller code, so first we try to decode the

rth thought terms then r – 1 and like that and the key is look at the generator matrix and from

there try to find out combinations of bits which will give independent opinion about a particular

transmitted bit, so with this I will conclude this discussion on Reed-Muller, code thank you.

Acknowledgement
Ministry of Human Resource & Development

Prof. Satyaki Roy

Co-ordinator, NPTEL IIT Kanpur

NPTEL Team
Sanjay Pal

Ashish Singh
Badal Pradhan
Tapobrata Das
Ram Chandra
Dilip Tripathi

Manoj Shrivastava
Padam Shukla

Sanjay Mishra
Shubham Gupta

K. K. Mishra
Aradhana Singh

Sweta
Ashutosh Gairola

Dilip Katiyar
Sharwan
Hari Ram

Bhadra Rao
Puneet Kumar Bajpai

Lalty Dutta
Ajay Kanaujia

Shivendra Kumar Tiwari

an IIT Kanpur Production

©copyright reserved

