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Welcome to the course on error control coding, an introduction to linear block codes.

(Refer Slide Time: 00:24)

= -

Firisas: Lil-Saamenaunn.. & ——

Lecture @#6B: Some simple lincar block codes -11: Reed Muller
Codes

So we will continue our discussions on some simple linear block codes.
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Qutline of the lecture

@ Reed-Muller code

This time we are going to discuss about Reed-Muller codes, we will talk about their construction,

we will give an example, we will prove some properties of Reed-Muller code.
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Qutline of the lecture

@ Feed-Muller code
e Decoding of Reed Muller code

And then we will talk about decoding of Reed-Muller code.
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Reed-Muller code

@ Far any wlagers m and Fowith 0 < F < m, Thérs &asls 3 bnary

rrh_-urdﬂn Haad an [RM) code. demoted bry HMIr,l'ﬂ], wnth the
lellemning pararmetens TR

|'- Code length - 7 = 2™
| m i i
| Lhmensian k[-r::} 1+ { 1 ]I| i [ 5 } il I: : ]

J Minimum distance - .. P i

- e

m
where ; is the binomial coefficient
!

So for any integer m and r such that r lies between — r is greater than zero and less than equal to
m there exist a binary r'" order Reed-Muller code which we denote by these parameter r and m,
Reed-Muller code has the following code properties. So the length of the code is 2™ and the

dimension key is given by 1+m choose 1 plus m choose 2 up to m choose r. And the minimum

distance of the code is given by 2™,
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Reed-Muller code

@ Faor any intagers m and Foaath D < r < m, there &xsls 3 binary
irh-unlm Rl Mullar [ RM ] code denotoed by BM(r.n), with the

lallowing pararmetars

Code length : n =27

f i [ ) [ )
irmen=ion © k(r, m) 1+ { 1 ]I| i- [ 5 } I [ . J
Minimum distance : d,,., ol ach
= & e
m 1 S T ¢ 8
whene [ ! } is the hinomial coefficient = i3 % 3 &¥3

esletm=4 and r=2 then n=16, s =11. and dpn =4 = |}

So let us take an example, let us take m to be 4 and r to be 2. So in this case the length of the

code word will be 2* which is 16, and since the order of this Reed-Muller code is 2, so this k will

be 1+4Ci1+4C: so this will be 1+4+4x3/2 so this will be equal to 11, 1+4+6 so k is this thing, and

minimum distance is 242 which is 4.
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@ For 1 <7< m, let v, be 3 banary 2™-tuple of the followmg form
Bevall Tiond  Deeel Tasal )
v, C— L — L —— [——
:-I :|.--L j-" ‘_x--1

which consists of 2™ altemnating all-zero and all-one 2 L. tuples.

Now how do we construct a Reed-Muller code? So to do that let us define.
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@ For 1| < i< m, let w;, be a binary 2™-tuple of the following form
( 1] 1] 1 1 0] a 1 1 )
" e — L — L . L—
- 1 o 1 - 1 2= 1

which consists of 2™—*+1 altemating all-zero and all-one 2 L tuples

So we are defining an, binary m-tuple let us call it vi so for i going from 1 to m we define a

binary m-tuple in this particular fashion. So there is alternating runs of zeros and ones.
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@ For 1 < i< m, let w; be a binary 2™-tuple of the following form
( 0 i] 1 1 a a 1 1 )
v — et et ——
¥Ez - 1 :--l. - 1 - 1

which consists of 2™ alternating all-zero and all-one 2

tuples

So vi is run of zeros for 2*! times, then run of ones for 2! like that. So this vi consist of 2m-i+1

alternating zeros and ones and where each of these runs of zeros and ones are for 2.
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@ For 1 < i < m, let v, be a binary 2™-tuple of the following form
( 1] 1] 1 1 1] ad 1 1 )
v e wmt e L
j--l :-.-I. 2.-1 :.-I

which consists of 2™*+1 altermmating all-zero and all-one 2 L tuples
@ For m = &, we have the following four 16-tuples.

v (0101010101010101)
v = (001100110071 0011)
vy = (0000111100001111)
v = (0D0D0000011111111)

So let us take an example, let us consider m to be 4, m to be 4.
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@ Forl < i< m, let v, be 2 binary 2™-tuple of the following form
Beoelf  Teosd Dese Tasesl !
b Pl AT =y 8 i1

1

which consists of 27" altemating all-zero and all-one 2 L tuples

@ For m = 4, we have the following four 16-tuples. ; ! 1
feicia ¥ s, :
v (@101010101010201) * .17
v, (0D11001100110011) i =2
¥y (0D00111100001111) ¥y =3
w - (0000000011111111} :_I-'=q
My e .9

So then this m-tuples are 2* that is 16 okay. So what is vi, now vi should have runs of zeros and
ones where this run is 2! so when i is 1 this is 1. So that means we should have vi is 0, because
that is the run of 1 then followed by a run of 1 for one time, then followed by zero one time, then
1 one time so like that it will continue for this block of 16. Now what is vz, for v2 i is 2, so 2""!

would be in this case 2.

So we should have 2 runs of zero followed by run of 1 which is repeated twice, run of zero is
repeated twice, 101 this you continue up to block size of 16. What about vs, in this case i is 3. So
what will be 2!, 2! would be 4, so you have runs of zero for four times, followed by runs of 1,
four times, then again runs of zero, and runs of 1. What about vs, here i is 4, so 2! will be 8, so
we have runs of zeros for eight times followed by runs of 1 eight times. So that is how we define

our — this binary m-tuple for each of these i going from 1 to m.
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® Letx = (a0, 9. X} and ¥ = (v, 1. 1, . ¥e_1) be two

Bariary f-tuples, s delihe Buolean product ol = and y i lollows

x-3= (% - Mo % e s By - ¥ )

where -7 denctes the Boolean product of x and y

Next we define a Boolean product. How do we define a Boolean product let us say, we have 2 n-
tuples x and y. So I am denoting x by Xo, X1, X2, X3, Xn-1, similarly denoting y by yo, y1, y2, yn-1.
Now we define these Boolean product as — so this is bitwise and Xo.yo, X1.y1, X2.y2 up to Xn-1.yn-1,

so this xo.yo will be 1, only if both xo and yo are 1, otherwise it will be 0.
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Heed-Muller code

@ Let x = (... %) and y = (v, /1. y2. - . ¥a1) be two

per
Iriary f-tuples, e dalibe Buolean product al = and y &5 lollows

x-¥=lm-yo. % Fie Ty P

where *-7 denoles the Boolean product of = and y

And same with others so xi.yi will be 1 only if both of them are 1.
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@ Let x = [ap, My, 27, - M-y and y = (¥, y1. 2. ¥n—1) be two

Iunary n-tuples, we deline Boolean product o 2 and y a5 Tollows

X-F = {% - P s Sl Fee1)

where *- denoles the Boolean product of = and y
@ [or example, if

w=(0101010101010101)

and
vy=(0D11001100110011)

(0]

W= (000100010001 0001)

So that is how we are defining this Boolean product operation.
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Reed-Muller code

@ For 1 <7 < m, let w, b= a binary 2™-tuple of the following form

C faaafll  Teend eaal I |
2.-I jl-[ 2.-1 9i=1

which consists of 2™—++1 altemating all-zero and all-one 2°- L tuples.
il

@ For m = 4, we have the following four lﬁ-:uplns : 7 )
(e voy = = \. e g
vy [EIILI{ILEIII.'I'II".ILEIIIJI] Tl
=i
v = (D011001100110011) 2 -2
wy = (0000111100001111) ¥y i=3
w = (00000000LLILLLIL11) S'7_4
y J.g

2

So let us take an example, this is our vi if you recall this was our vi and this is our vo.
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where "7 denctes the Boolean product of £ and v
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® Let x — (M, 3. %2, .Mp—1] and ¥ = (¥5. ¥1. ¥2. - . ¥e—1) be two

binary m-tuples, we delime Boolean prodect of = and ¥ 4% Tealbomes

E-¥= (% - ¥, X0 - M s Faed - Fae)

wivere 77 denotes the Boolean product of x and v:
@ [or example, if

w=(0101010101010101)
= '

and 1 ¥ L

w=(0011001100110011)

thedn

v -wy = (00 proguipoolau 01}

So if we define Boolean product between vi and v2 we write it at vi.v2 and vi.v2 will be 1 only
where vi and v2 both are 1. So which is like this location number 4 bit, this location, then this
location and then this location. So you can see it is only one at the 4%, 8" 12" and 16" location,
all other time is zero. This is zero for all other time okay. So this is how we define the Boolean

product.
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@ Let vy denote gll gne 2™-typles, wg = {1.1.--- ,1). For
150 <= Dy =om, the pfn-rhlri wertar
W, W, L

15 i 1o have degres |

We also define an all one tuple so this vo is basically all ones of length 2™. Now for i1, i2, i3, i
which lies between 1 and m we can define this product vector vii, vi2, vis, vii where this is
basically Boolean product between these vi’s. And we say this has degree 1 if there are | vi’s

which are participating in this product.
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Feed-Muller code

& The rth-urder RM code | RM{rm), of length 27 is generated by

falkawring set of independent veTam

Crmnilr. m) [ Wi, Wi W, <o W, WV WY, Wy (W

up to products of degree r}

And weight of this product is given by 2™, So now that we have defined these tuples vi’s and the
Boolean product between them, we are ready to define the generator matrix for Reed-Muller

code.
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& The r"h-grd_lglr. RM code R r-":f.:' of length 27 is generated by

o

lollowing st of independent wWTom

Crapalr. m) T I I L S TR L S

up to products of degree r}

So an r'™ order Reed-Muller code which is of length 2™ can be generated by these set of

independent vectors where these vectors are vo, vi, v2 then Boolean product of second order

which is vi, v2, vi, v3 these are all second order product, then we will have third order product,

fourth order product depending on what the r is. So we generate Reed-Muller code using these

2™ tuples basically of these vo, vi, v2 and their Boolean product.
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& The rfh--url:ll:r RM cade , RM{r.m ). of length 27 is generated by

fallowing 58t of independent vecTarms

Cepa( v, m) [, Wi, W3, < <o Wy, WIS, W WY, W (W

up to products of degree r}

@& Thers ame

om=1=(7)+(3) ()

vectors i Gl r, /)

And as you can see that vo is all one sequence, so there is one such possible ways, we can get this
v1 this mC ways of choosing vimCz ways of — so vi, v2, v3, vm this is basically m choose 1, then

Boolean product of degree 2 can be chosen m chose 2A.
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Heed-Muller code

& The rth-urdl:r RM code , RM{r.m). of length 27 is generated by
following 58t ol ndependent vecTors
Copma [ v . vr1) [wg, Wi, Wa, <<= Wy, WIS, W, - W (W

up to products of degre= r}

& Thers ar=

wem=1+(7)+(7) =

I~ 3
e

wectors v Ggagl £, m)

And similarly Boolean product up to order r can be chosen m choose r ways. So that is basically

the dimension of the code.
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@ The fth order RM code . RM{r.m ). of length 2™ is generated by

lallowing 58t of indepandant vedlors

Ceual . m) [wg, Wi, 5, << - W, WIS W WY W (W o

up to products of degree r|

& There are

wm=t+ () (7)s-(7)
veCtors o Ggarlr, /)

# [f the vectors in Gusel{r. m) are arranged as rows of a matrix, then
the matrix is & generator matrix of the RM{r m) code

Now if we arrange these vectors vo, vi, v2 and the Boolean product up to order r as rows of a
matrix, that will be our generator matrix for Reed-Muller code. And each of these vo, vi and their

Boolean product they are basically linearly independent.
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& The ri"-arder RM code | RM{r.m). of length 27 s generated by

tallering set ol independent watom

Crualr. m) |'U1J WL WD Wy VIV WV W (W
up to products of degres r}

& Thera are

wem=1+( T }+{ ool LN T)
weC Tors i Gggaelr, M)

® |f the vectors in Guselr. m) are arranged as rows of a matrix, then
the matriz s & genecator matriz of the RM{r m) code

So we can generate our Reed-Muller code using these vo, vi and their Boolean product as rows of

our generator matrix.
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Reed-Muller code

@ Let m = 4, and r = 2, the second-order RM code of length n = 16 is
generated by the following 11 vectors
vo 11111111331131111
vp 0101010101010101
v;: 0011001100110011
vs 0000111100001111
vws 0000000011111111
wiv: 0001000100010001
wivy 0000010100000101
wivgy D000000001010101
wwi 0000001100000011
wwy 0000000000110011
vivy, 0000000000001111

So let us illustrate this with an example we take a case where
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Muller code

@ Let m =4, and r = 2, the second-order RM code of length n = 16 is

generated by the following 11 vectors

vo 1111111111111111
v 0101010101010101
v; 0011001100110011
vy 0000111100001111
vy O00OO0O0OOO011111111

viva: 0001000100010001

wivs 0000010100000101

wivs 0000000001010101

wvv; 0000001100000011

wvve 0000000000110011

vive 0000000000001111

m is 4 so m is 4 meaning our code word length would be 2™ which is 16 so we are dealing with

Reed Muller code of length 16. Now let us consider
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Muller code

@ Let m =4, and r = 2, the second-order RM code of length n = 16 is

generated by the following 11 vectors

vo 1111111111111111
v 0101010101010101
v; 0011001100110011
vy 0000111100001111
vy O00OO0O0OOO011111111

viva: 0001000100010001

wivs 0000010100000101

wivs 0000000001010101

wvv; 0000001100000011

wvve 0000000000110011

vive 0000000000001111

A second order Reed Muller code so we will have to now recall what is a degree if you go back
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Reed-Muller code

@ Let vy denote all one 27-tuple, wo = (1, 1, 1). For
< <h<-<i= m, the product vector

is said to have degree |

@ The weight of the product

is equal to 2™

This product vector is set to have degree 1 if there are 1 such vis which are participating in this

Boolean product
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@ The rth-mder RM code , RM(r.m), of length 2™ is generated by
following set of independent vectors

Grurlr. m) {vg.vy. vz M VIV VIV W (Ve
up to products of degree r}

@ There are

L2l

vectors in Geu(r, m)

-'ll-Ja
—
N~ 3
e

So we have to write all these as rows are generator matrix up to product of degree r
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@ Let m

generated by the following 11 vectors:

4, and r

—= ¥

v

2, the second-order RM code of length n =

¥YERYYEFREEERERETIERDY
0101010101010101

v; 0011001100110011 :;
v; 0000111100001111

Wy W
v 0000000011111111 "
vive 000100010001 0001 v, Vg
wv; 00DOD10100600101 %

VoV
wyvy, 0000000001010101 vy Vs
vav; 0000001100000011

Vo
Lv;n

0000000000110011
0000000000001111

16 is

So this your vo vector, these are all your vi v2 v3 v4, this is degree 1, and then these are all
possible degree 2 Boolean product vectors, because m is 4 so we will have vi v2 v3 vaand r is 2
so we have to consider all possible Boolean products of degree 2 so that would be vi v2, vi v3, vi

va, v2v3, V2 va, va va and that’s what we have listed here and of course you have your
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@ Let m =4, and r = 2. the second-arder RM code of length n = 16 is
generated by the following 11 vectors
_owy 1111111F11131111 t
vi 0101010101010101 vIL
v; 0011001100110011 :;
vi 0000111100001111
ViV
ve 0000000011111111 [ o
viva 0001000100010001 v, v
wv; 0000010100000101 :Sﬁ
wvy, 0000000001010101 Vg Ve
ww; 0000001100000011
vwva 0000000000110011
wiv, 0000000000001111 J '*I¢

All one pattern and these so what you are going to do is you are going to arrange these as rows of
your generator matrix, so this is your 11 x 16 generator matrix okay and we will use this to
generate our set of code words. Now there is another alternative construction of Reed-Muller

code
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@ For 1 < r < m, we define

Rir.m)={{u,u+v)lue Rir.m—1),ve R(r—1.m—1}}

So if you are given Reed-Muller code of length 2™ then you can use two of them to construct a

Reed-Muller code
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Reed-Muller code

@ For 1 < r < m, we define ik i
S o _"‘;__ __L.__]
Rir.m) = {(uv.u+v)|pc R(r.m l_ﬂ;—?{r -1, m -lj}l
P e — — _R\
| u : E*—\..-i
= .Lh-‘ :L-\-L

Of length 2™ so how do you do that, so this is done in this particular fashion so if you have two

Reed-Muller code so one Reed-Muller code of coder R and length 2™ and you have another

Reed-Muller code of order R-1 and length 2™! then these two can be used to construct a Reed-

Muller code of order R and length 2™ and in this particular way so first so you can so if this is

this is one code of length 2™! and some other code of length 2™! this is your code u which is

order R and this is u +v where u is given by this and v is given by this, so in other words you can

construct Reed-Muller code recursively from smaller order and smaller length.
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@ For 1 < r < m, we define

Rir.m)={(uu+vw)|lus Rlr.m—1).ve R(r—1.m— 1)}
@ The generator matrix can be written as

Gir, m-1) G{r, m-1)

Gir ) 0 G(r-1, m-1)

Code, the same thing I can [ am writing in terms of generator matrix so as I said
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Reed-Muller code

@ For 1 < r < m, we define

E(r.m)= {{u.u Rir.m—-1),ve Rir - m- 1)}
i
& The generator malﬂ:\‘\lxﬂas \
22 ""-ﬁ

This is a Reed-Muller code of length 2™ this is another Reed-Muller code of length 2™ first
is just u which is this, this code Reed-Muller code order R length to 2™ and the second is this so
this is your u which is this, and the next one this is your v which is this. So I can write down so
in other words I can construct Reed-Muller code recursively from smaller length Reed-Muller

code, this is another way of generating the generator matrix for the Reed-Muller code.
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Reed-Muller code

@ Minimum distance of RM({r.m) s 2™-".

So let us prove some of the properties of Reed-Muller code, the first property that
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Reed-Muller code

# Minimum distance of RM(r,m) s 27",

We are going to prove is that minimum distance of Reed-Muller code is 2™
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Reed-Muller code

@ Mimimum distance of RM(r,m) is 27

@ Proof: We will prove the result by mathematical induction

We are going to prove this result using mathematical induction.
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Reed-Muller code

@ Minimum distance of RM(r,m) is 277
@ Proof: We will prove the result by mathematical induction

@ Let m=1, then RM(D,1) is a length two repetition code. In this case
the minimum distance is 2

So how does this work, so first we assume m to be one and let us check whether this minimum

distance holds
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Reed-Muller code

@ Minimum distance of RM(r,m) is 2™ ",
@ Prool: We will prove the result by mathematical induction

@ Let m=1, then RM(0,1) is a length two repetition code. In this case
the minimum distance is 2

Correct for m = 1 so for m=1 let us consider two scenarios one where 1 is zero and in second case

ris 1. So when m is 1 what is the length of the Reed-Muller code it is 2™ so that is length is two.
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Reed-Muller code

@ Minimum distance of RM(r.m) is 27~

@ Proof: We will prove the result by mathematical induction

@ Let m=1, then RM(0,1) is a length two repetition code. In this case
the minimum distance is 2 G Lr-_: | :!l

Okay and when order is zero so G will consist of only vo which is 11 so the Reed-Muller code of

order zero and ml is essentially a length two repetition code and what is the minimum distance

of this code it is two. So let us plug that
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Reed-Muller code

medl, =9
@ Minimum distance of RM{r.m} is 2"* —— 5
@ Proof: We will prove the result by mathematical induction
@ Let m=1, then RM(0,1) is a length two repetition code. In this case
the minimum distance is 2 Gow [1 ] }

In here and see whether this is correct m in our case is 1 and r is 0 so this gives us minimum

distance of 2 and that is precisely what we are getting, so this whole proof for m=1 and r=0
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Minimum distance of RM(r,m) is 27"

Proof: We will prove the result by mathematical induction
@ Let m=1, then RM(0,1) is a length two repetition code. In this case
the minimum distance is 2

@ RM(1,1) has four codewords {00, 01, 11, 10} of length 2. Minimum
distance in this case is 2.

Now let us say if it holds true also for
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@ Minimum distance of RM(r,m} is 27",

@ Proof: We will prove the result by mathematical induction

@ Let m=1, then RM(0,1) is a length two repetition code. In this case
the minimum distance is 2 = L "f,“

@ RM(1,1) has four codewords {00.01,11.10} of length 2. Minimum
distance in this case 1s 2.

M=1 and R=1, now if M=1 and R=1 so then the length of the code word is again 2 so G will

consist of voand vi okay, and what is my
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Vuller cade

@ Minimum distance of RM(r,m} is 27",
@ Proof: We will prove the result by mathematical induction

@ Let m=1, then RM(0,1) is a length two repetition code. In this case
the minimum distance is 2 = [_ "':f'

@ RM(1,1) has four codewords {00.01,11.10} of length 2. Minimum
distance in this case 1s 2.

voand vi
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@ For 1 < i < m, let w; be a binary 2™-tuple of the following form

s e 1--- . s |
which consists of 27~ '+1 alternating all-zero and all-one 2 Ltuples.
@ For m = 4, we have the following four 16-tuples 2i - 1=1
(or1olol : el T el
v (0101010101010101) =1
v: = (0011001100110011) 2 =z
vy = (0000111100001111) V3 .i:‘E
v = (0000000011111111) 2"‘:4

N
2 =%

v1is 0101 and vois 1 so this length 2 so what I will get is
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Reed-Muller code

ms= 1

@ Minimum distance of RM(r,m) is gt

Proof: We will prove the result by mathematical induction

@ Let m=1, then RM(0,1) is a length two repetition code. In this case
r Wa

the minimum distance is 2 = | 'y,

@ RM(1.1) has four codewords lOU.C@ 11. 10} of length 2. Minimum
e, e Bt = PN
distance in this case is B.1. (= ]:.":‘ l_]/

G is 11 and this is 01 so this will be my generator matrix, now this will generate these following
code words of length 2 and what is the minimum distance between these codes that is 1 we can
say minimum rate code word is minimum weight of nonzero code word is 1. So minimum
distance in this case is 1 okay and let us check, so in this case mis 1 and ris 1 so 2!"' 2° thatis 1
and that is what we are getting fine. So then this is true for m=1 now, let use assume is true for
any m=m and then we will try to prove that it is also true for m=m+1 so let us assume that this is

true for.
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@ Mimmum distance of RM({r.m) is 277

@ Proof: We will prove the result by mathematical induction

@ Let m=1, then RM([0,1) is a length two repetition code. In this case
the minimum distance is 2

@ RM(1,1) has four codewords {00,01,11, 10} of length 2. Minimum
distance in this case is 2.

@ Let us assume for upto m and for 0 < r < m, the minimum distance
is 2™ ", We will show that dwis for RM{rm+1) is 2™ 7 i

Up to
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ey

@ Minimum distance of RM(r.m) is 2™ *

@ Proof: We will prove the result by mathematical induction.

@ Let m=1, then RM(0,1) is a length two repetition code. In this case
the minimum distance is 2

@ RM(1.1) has four codewords [00,01.11. 10} of length 2. Minimum
distance in this case is 2.

@ Let us assume for upto m and for 0 < r < m, the minimum distance

i5 2™ 7. We will show that g, for RMir_m--—_i} is 2™t

m and for any order where order can be from zero to m let us assume that this is true so
minimum distance is given by 2™" Now what we are going to show is that this is also true for
m+1 and what should be the minimum distance for m+1 it should be 2™+ so that is this. So

next what we are going to show you is that minimum distance of m r'" order Reed-Muller code
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Reed-Muller code

& Minimum distance of RM(r.m) is 2™ "
@ Proof: We will prove the result by mathematical induction.

@ Let m=1 then RM(0,1) is a length two repetition code. In this case
the minimum distance is 2

@ RM(1.1) has four codewards (00,01, 11. 10} of length 2. Minimum
distance in this case is 2.

@ Let us assume for upto m and for 0 < r = m. the minimum distance
i5 2™ 7. We will show that du., for RMir,m-r_i.} g 2™t

RM +1 Reed-Muller code is basically given by this, now to prove this we are going to make use

of this construction of Reed-Muller code
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Reed-Muller code

@ For 1 = r < m, we define

]?{r m)={{vu+v)jwe Rlrm—1)ve R{r—1.m- l”_k
i . © ¥ Y
\:“Qﬂ

That Reed-Muller code of order r and m can be constructed recursively using this, we are going

to make use of this conduction to prove our result
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Reed-Muller code

@ Minimum distance of RM(r,m} is 27-°

So let us see how we proceed so let us consider
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Reed-Muller code

@ Let F.F € RM(r, m) and let g.g' € RM(r-1.m). Then vectors
€= (F.F+g)and ez = (F.F + g') must be in RM(r, m+1}

Two code word
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Reed-Muller code

@ Let F.F € RM(r, m) and let g, g" € RM(r-1,m). Then vectors
c; = (F.f+g)andcy = (F.F +g') must be mn EM(r, m+1)

e

f, f which belongs to Reed-Muller code of order R and length 2™ and let g, g” belongs to Reed-
Muller code of code r-1 and length 2™ then we defining two code words then are Reed-Muller
code of order R and length 2™ is of the form we just said u and u+1, so these code words and ci
and c2 which is of the form fand f+ g, f', f” + g they must be code word belonging to this Reed -
Muller code and this follows from our recursive constriction of Reed-Muller code which we just

motioned so ¢l and ¢2 must be code words for this Reed-Muller code
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Reed-Muller code

@ Let F.F € RM(r, m) and let g. g' € RM(r-1,m). Then vectors
ey = (FLF+g)and ez = (F.F +g') must be in RM(r, m+1)

e ifg=g. thend(cy.ca) =2d(F.F)=2.-27"

Now let us try to compute the minimum distance between these codes ci and c2
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Reed-Muller code

@ Let F.F € RM(r, m) and let g.g' € RM(r-1,m). Then vectors
cp=(F.f+g)andcy = (F.F 4 g') must be in M.—.m.l}
@ If g =g'. then d(cy.c3) = 2d(f.F) > 2.2™

Which are code words Reed-Muller code of order r and length 2™ so first case that we will
consider is when g is same as g” and second case that we will consider is when G is not same as
g’, so when g is same as g' what is the minimum distance between ci and c2? Now if g and g' are

same then basically your code c1 is nothing but it is f here.
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Reed-Muller code

+ Lotl]f F € RM(r. m)and let g.g" € RM(r-1.m). Then vectors
€ = [F.T +g) and 3 = (F, ¥ + g') must be in RM(r, m+1)

o UL — i

i ! 2 '|'.': gm—r s

@ f[g _;Jthen in._cﬂ fi[f.ﬂ s Cel4$ £
= T

d.f_:.-\l_:l -7 -

7

Of length 2™ and there is another code word f of length 2™ and C: is ' of length 2™ and then you
have f' of length 2™, so what is the minimum distance between this code? It is minimum distance
between fand f' plus minimum distance between f and f', so that is what we are writing here. So
if g is equal to g' the minimum distance between Ci and C: is 2 times the minimum distance

between fand .

And what is the minimum distance between f and f'? f and f ' belongs to Reed-Muller code of
order r and length 2™, so their minimum distance should be 2™, so then from this we get that
minimum distance between Ci and C2 which are two code words belonging to Reed-Muller code
for order r and length 2 ™! this should be greater than equal to 2™, So for this particular case

we have shown.
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Reed-Muller code

@ Let £, = RM(r. m) and let g. g’ € RM({r-1.m). Then vectors
gy = (F.F+g) and e = (F'. ¥ - g') must ba in RM(r. m+1)

— -
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& Minimum distance of RM({r.m) s 27"

@ Proof: We will prove the result by mathematical induction

@ Let m=1, then RM(0,1) is a length two repetition code. In this case
the minimum distance is 2

@ RM(1,1) has four codewords {00,01,11,10} of length 2. Minimum
distance in this case s 2

@ Let us assume for upto m and for 0 < r < m, the minimum distance
527" We will show that dwi, for RM(r.m+1) is 27 H

That minimum distance is indeed this, now we will also have to show.
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{eed-Muller code

@ Let(f.F € RM|r, m}I[nnd let g.g" € RM(r-1.m). Then vectors
oy = (F.T+g) and c3 = (f. ¥ + g') must be in RM(r, m+1)
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sd-Muller code

= e
2 Let’f_f' € RM(r. m)jand let g.g' € RM(r-1.m). Then vectors

oy = (F.T +g) and c3 = (F, ¥ + g') must be in RM(r, m+1)
'Iflji ['J i ﬂcﬂ];aﬁth.f' o H=¥ rﬂf_r-F 4
dl6.cQZ2 L—

1
(Y L;'

B

)

¥
L

[ o]

If g is not same as g' then also we have to show that minimum distance is at least this.



(Refer Slide Time: 23:47)

Reed-Muller code

@ Let f.F € RM(r. m) and let g.g’ € RM(r-1.m). Then vectors
gy = (F.f+g) and 3 = (. ¥ + g') must be in RM(r, m+1)

elfg=g. then dic).c3) = 2d(f.F) =2-2™"

aligg, thendiep.eg) =wilf —F)+wig—g +F-F)
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Resd-Muller code

'-'-'ifi‘]-r u':'p_:l F 1’.:,1 f—b_:'
asxt3 b ath =%
wiTey) + widz Wi wlfre) z wid-wly
@ Let F.F &€ RM(r. m) and let g.g' € RM(r-1.m). Then vectors
cp=(F.fLg)and c3 = (F.F £ g') must be in RM{r, m+1}
e lfg=g. then dicy.c3) = 2d(f.F) =2-2™"
slfg#g. then dicp.c3) =wif —F)+wig—g +F-F)

r_',.[-'; f4a)
C;£

ol

So next we consider the case when g is not same as g', now if g is not same as g' then weight
minimum distance of the code we can say basically number of positions where c1 and c2 are
differing this can be written as w(f - ') + w(g - g '+ £ - f') if we are talking about binary codes
this will be basically plus this also fine because that is the same thing. So if you have two code
words just call it c1 which is f here and this is f + g and then you have c2 which is f', f' + g ' then
the minimum distance between code is f minus weight of f — f' and weight of this minus this. So
that is what we are writing here, that minimum distance between c1 and c2 is given by this plus

this.

Now we also know that let us say if we have two n — tuples then w(a) + w(b) where a and b are
some n — tuples, this is basically w(a) + w(b) is greater than equal to w(a + b), right? Now if |
consider ‘a’ to be x + y and ‘b’ to be y and let us say x + y they are all binary n — tuples we are

talking about, then a + b will be x + y plus y so that is given by x.

So what we will get is w(x +y) + w(y) is greater than equal to w(x), right? Or we can write w(x

+y) is greater than equal to w(x) — w(y). Next we are going to make use of this result to simplify



this expression, this you can consider this is my x and this is my y. So I can write w(x + y) to be

greater than equal to w(x) — w(y).
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Reed-Muller code

& Let f.F € RM(r, m) and let g.g’ € RM{r-1.m). Then vectors
€y = (F.F+g)and c3 = (F.¥ + g') must be in RM(r, m+1)

@ lig=g. then dicy.c3) = 2d(F.F) =2-2™"

slfg#g thendiepe3)=w(f - F)+wlg—g +F-¥)

@ Since wix +y) = wix) — wiy), we have

dler.ca) > w(f - F) + wig—g') - wif - F) = wig —g)
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Reed-Muller code

@ Let £.F = RM(r, m) and let g.g' € RM(r-1,m). Then vectors
gy = (F.f+g)and g3 = (F'.¥ + g') must be in RM(r. m+1)

@ lfg=g. then dcy.c3) = 2d(F.F) = 2.2 "

° g #g. then dfci.ca) = w(f- ) 4 L)
5 2 wh)-wly)

& Since wix +

¥) =
d(gy.ez) = twig-g) W{ f_f w(g - g)

wix) } we have

So when I do that then distance minimum distance between c1 and c2 is this term coming here
and what did I do? This was w(x) this is x this was y this I can write as this is greater than equal
to w(x) — w(y). So this weight of x is this term minus w(y) which is this term, fine? So now this,

this cancels out what I getis w (g - g").
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Read-Muller code

@ Let . F € RM(r, m) and let g.g' € RM(r-1.m). Then vectors
cy = (F.f+g) and cz = (. F + g') must be in RM(r, m+1}

e lig=g. thendici.q)=2d(f.F)=2.2""

sligg. thendicp.ca) =wlf - ) +wig—g' +T-T)

@ Since wix + y) = wix) — wiy). we have

dicy.ca) = wi(f — F) + wig - g) - wif - F) = wig — g)

# Since g — g € R(r-1,m), 5o that w{g — g') > 2™1r—} = m-r+l
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Zeed-Muller code

# Let F.F € RM{r, m) and let g.g’ & RMEr_-hI__mj Then vectars
c; = (F.F+g)and ca = (F % + g') must be in RM(r, m+1)

e [fg =g, then dic).c3) =2d(F.F)>2-2""
s lfg=g, then diej.c3) =wlf —F) +wig—g +F—F)
@ Since wix + y) = wix) — wiy). we have

dici.ca) = w(f - F) - wig-g)—wi(f - F)=wig - g)

# Since g — g’ € R(r-1,m), so that w(g —g') = 2™ 1"-1l = pm—r#l

Now what is g? g belongs to Reed—Muller code of order r — 1 and length 2™.
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Reed-Mulle

_-[r-l}

@ Let F.F e RM{r, m) and let g. g £ RM;r_'}ﬂ} Then vectors
= (f.f+g)and c3 = (F. ¥ + g') must be in RM{r, m+1)

e lfg=g. then diey.c3) = 2d(F.F) = 2.2

elfg#g. thendiej.cz) =w(f—F)+wig—g +F—F)

—

® Since w(x + y) = w(x) — wiy), we have

dicg.ca) = wlf —F) + wig—g') — wif —F) = wig —¢)

@ Since g — g’ € R(r-1.m), so that w{g — g') = 2™/} =™+l

Then what is the minimum distance of this, so what is the minimum distance between g and g' ?
This should be 2™ what is r? The order here is r-1 so this is r-1. So this is 2™"!T . So what we

have shown is.
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Reed-Muller code

ey
p = 2
@ Lot F.F 2 RM{r, m) and let g. g’ & RM;F-'-.]ﬂl Then vectors
€ = (F.f+g)and g3 = (F.F + g') must be in RM(r, m+1)
o lfg =g, then d(c;.c3) = 2d(F.F) 222"
slfg=g thendiejca)=wl(f —F)+wlg—g +F-F)
@ Since w(x + y) = wix) — w(y), we have

wmai=Y

dicy.c) = wif - F) +wig —g') - w(f —F)=w(g —g)

# Since g — g’ € R(r-1,m), so that w(g — g') = 2™ 1% = pmrtl

Even when g is not same as g', our minimum distance is still 2m"!

. So now we have proved that
minimum distance if, minimum distance of r order Reed-Muller code of length 2™ is basically

given by this.
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Read-Muller code

@ The (m—r— lj:h-nfdm RM code is the dual code of rM-arder RM

code

So this will conclude the proof using mathematical induction that the minimum distance of Reed

— Muller code is 2™". The next result which we are going to show you is.
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Reed-Muller code

. (|
@ The (m—r— lfh-urde: RM code is the dual code of rtM-order RM

code T

That m-r'" order is Reed—Muller code is the dual code of r' order Reed—Muller code. So let us
see this is our original code then the dual code is given by this, now what do we need to show for
dual code, if we take a code word from this code and if we take a code word from the dual code

they are orthogonal, right? So the dot product should be zero.
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Reed-Muller code

[ cl
@ The (m—r— llrh-urr.tr;-r RM code is the dual code of r"-order RM

code

Another point which I should mention here is.
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_-[r—l}

i =l

i

wmal=T

@ Let F.F € RM(r. m) and let g.g' € RM(r-1.m). Then vectors
o =(Ff+g) andcy =(F.F +g) must be in RM(r, m+1)

s lifg=g. then dicy,c3) = 2d{F.F) =2-2™"
slfg=g, then diej.c3) =wifF —F) +wig—g +F-F)

@ Since w(x + y) = w(x) — w(y), we have

di.) > wif - F) + wig - g) - wif - F) = wig - g)

@ Since g — ¢ € R{r-1.m), so that wig — g') > 2™ Ir=1 = pm—r+l

= =
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@ Let £, € RM(r, m) and let g, g' € RM(r-1,m). Then vectors
= (F.F+g)and c3 = (F.F + g') must be in RM(r, m+1}

e [fg=g. then d{cy.ca) = 2d(F.F) =2-2™ "
slfg#g, then dley,e2) =wl(f —F) +wig g +7-T)

— %y
@ Since w(x +y) = w(x) 5 2wl

dler.c2) > wif twig—g) - wif A)=wg-g)




(Refer Slide Time: 29:09)

Read-Muller code

| EE e |
* Lntif Fc RM.[.F' m)fand let g, g’ © RM(r-1,m). Then vectars

(1 ':%7' g)and ¢z = (F.¥ + g') must be in RM(r. m+1)
l"[l E then d{cy.c2) :%[f.f'#}zlzm . —-—L‘ C [-F ;]

- -7
dfc.c ) Z 7

p— i

r
G4
z

T

iy
=

[ =

[
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~-Muller code

& Minimum distance of RM:r,m} S
@ Proof: We will prove the result by mathematical induction

@ Let m=1, then RM{0.1) 15 a length two repetition code. In this case
the minimum distance is 2

@ RM(1,1) has four codewords (00,01, 11,10} of length 2. Minimum
distance in this case is 2

@ Let us assume for upto m and furi*- r < m, the minimum distance
15 2™ 7. We will show that g, for RM(rm+1) is 27 1
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d-Muller code

w1, Y0
@ Minimum distance of RM{rm) is 2", —= 2
& Proof: We will prove the result by mathematical induction

@ Let m=1, then RM{0.1) 15 a length two repetition code. In this case

=
the mmimum distance is 2 C‘rL LI |_'-“|
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# Minimum distance of RM(r.m) s 27"

@ Proof: We will prove the result by mathematical induction
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Reed-Muller code

@ For 1 = r < m, we define e L

l-ﬁ"[r.m:l = 1{5._: +¥)jue ﬁ'[}.m:\l].v-— i—;in- lIIJ_&
@ The generator matrmh‘\\gbc\y(:m_aﬁ \\
-\-TH_""--@
- [ Glr. m-TT~_ G(r. m-1
\. m) L 0 ' Glr-1, m-1

-

_lm-" 1!- ot
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Reed-Muller

code

@ Let m=4, and r = 2, the second-order RM code of length n =16 is
generated by the following 11 vectors

—a ¥p

il |

11[11[11111[11[1]
0101010101010101

Y

Vi

v; 0011001100110011 :jr
vy 0000111100001111
vea 0000000011111111 Y'::
viva 0001000100010001 | v, ve
wivy 0000010100000101 | 3
wv, 0000000001010101 | vave
v, 0000001100000011
wawy 0000000000110011
vive uuuuuouuuuunnnJ I%1é

Let us go back to our construction of Reed- Muller code here, please note the way these Boolean
products are constructed, in fact we just proved also the minimum distance of the code is even, is

2™ So minimum distance of Reed—Muller code is even so Reed — Muller code would not have

odd weight code words.
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d-Muller code

@ let m=4, and r= 2, the second-order RM code of length n = 16 is
generated by the following 11 vectors:

[(ow 1111111111111111 %
Vi

-w; 0101010101010101 Ve
v; 0011001100110011 s
v, 0000111100001111 :
Wy Y

ve 0000000011111111 | .-
viv: 0001000100010001 | V,va
wiv; 0000010100000101 | 2%
Vals

v, 0000000001010101 Vv
wyy 0000001100000011
vavy 0000000000110011
vivg 000000000000121211 J
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Reed-Muller code

rr!| =

@ For ] « r < m, we define

rm; Huu--v}E R[rm—l v = Rir — lm-lll
[ i_;d»-uT
— J

r r
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Reed-Muller code

= Cd
@ The (m—r— lJrh-DidEl RM code is the dual code of rtM.arder RM

ciode

So now we will show if we take a code word from (m-r-1)" order Reed-Muller code and if we
take another code word from r'" order Reed—Muller code then they are orthogonal. That is the

first thing we are going to prove.
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Reed-Muller code

@ The (m—r— l]th arder RM code 15 the dual cade of rM.arder RM
code

@ Proof: Let us consider 2 ¢ RM(m — r — 1, m). b € RM(r,m). Then
alw, . V) is 3 polynomial of degree < m-r -1

So let us consider a code word a, which belongs to (m-r-1)th order Reed—Muller code which is of
length 2™ and let us consider another Reed—Muller code ‘b’ which is of order r and length 2™ so

‘a’ can be viewed as a polynomial of degree m-r-1 or less.
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& The [m—r— 'I:|th arder RM code is the dual code of rT-arder RM

codo

@ Proof. Let us consider 2 € RM{m - r — 1,m), b € RM(r,m). Then
a{vy.--- .vn) is a polynomial of degree < m—r - L.

@ Similarly, b{wy.--- . ¥m) has degree < r, and their product ab has
degree < m— 1 SRR

And similarly the degree of the polynomial b is less than equal to r.
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code

@ The (m—r— l]th cider RM code ia the dual eode of r.arder RM

code

@ Proof: Let us consider a € RM{m — r - 1, m), b c RM(r,m). Then
alvy. - . ¥m) is @ polynomial of degree < m—r — 1

@ Similarly, b{vy,--- . vm) has degree < r, and their product ab has
degree < m— 1

& Therslore ab -_@ﬂ_m — 1, ) and has even weight. Therefore the
dot product 3-b =0 mod 2

So if we consider their product then this will be a polynomial of degree m-r-1+r so that would be
of degree less than or equal to m-1. So then this product a and b will belong to a Reed—Muller
code of order m-1 and this is of length 2™. Now note that Reed—Muller code has only even

weight code words.
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Reed-Muller code

@ The (m—r— ljth arder RM code is the dual code of r™.arder RM

code

@ Proof: Let us consider 3 € RM(m ~ r = 1.m), b € RM(r.m). Then
alw,--- . ¥m) is 2 polynomial of degree < m—r — 1.

a Similarly, blvy,--- . vim) has degree < r, and their product ab has

degres < m— 1

e

? 'i'hrrrfurr ab e E’ﬂf’ — 1, m} and has even weight. Therefore the
dot product d_f._'.l 0 mod 2

So when we are considering this dot product a. b since Reed-Muller code has only even weight

code word then a. b would be zero.
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Reed-Muller code

@ The (m—r- 'I.]t'-I order RM code is the dual code of r.arder RM

code

@ Proof; Let us consider a € RM{m - r - 1, m). b © RM({r, m). Then
3wy, ++ , V) is 3 polynomial of degree < m—r — L.

& Similarly, b(vy,.--- . vm) has degree < r, and their product ab has

degree < m— 1

3 fﬁ&:r_r abe ﬂd_&'n — 1, m) and has even weight. Therefore the
dot product Ltg 9 mod 2

So modulo 2 this will be zero. So in other words then what we have shown is if you take a code
word ‘a‘ which belongs to (m-r-1)th order Reed—Muller code and if you take another code word

which belongs to rth order Reed—Muller code then they are orthogonal to each other.
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Reed-Muller code

@ The (m—r— 'l]th-::-rdrr RM code is the dual code of rM.arder RM

code

@ Proof: Let us consider 3 € RM{m ~r— 1.m), b € RM(r, m). Then
a{vy, -+« . V) is a polynomial of degree < m—r — L.

@ Similarly, b(wy.--- . viy) has degree < r, and their product ab has
degres < m— L

@ Therefore ab & REM{m — 1, m) and has even weight. Therefore the
dot product a-b =0 mod 2
@ Also, dim RM{m-r-1.m} + dim RM(r,m])

(7)) o1 o(2)

= 2™

which implies that RM{m — r — 1) = EM{r.m)~

Next we check the dimension of (m-r-1)%,
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@ The (m—r— '[Jth arder RM cade is the dual code of rMarder RM

coda

@ Proof. Let us consider 2 ¢ RM(m — r = 1.m), b € RM(r.m). Then
alw.-+* .¥m) 15 a polynomial of degree < m — r — 1.

@ Similarly, b{wy.--- . vy) has degree < r, and their product ab has

degres < m — 1

@ Therefore ab = RM(m — 1, m) and has even weight. Therefore the
dot product - b =0 mod 2

& Also, dim RM{m-r-1,m) + dim RM(r.m)

(1) (e )ore () (1)

= 3

_—

which implies that PM[m r ]_H RM{me:l'

Order Reed—Muller code and " order Reed—Muller code and we see that some of the dimension
is 2™ which is a length of the code word. So this does prove then that (m-r-1) order Reed—

Muller code this just radon m here, is dual to r' order Reed—Muller code.
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Reed-Muller code

@ From the construction we can see that RM({r-1,m) code is a proper
subcade of the RM(r.m) code. hence

RM(0, m) © RM(1.m) < .- © RM(r, m)

Now let us say that some of the codes that we have studied are actually a special case of Reed—

Muller code. So the first thing which is clear from the construction is.
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Reed-Muller code

@ From the construction we can see that RM{r-1,m) code is a proper
subcode of the RM(r,m) code. hence :

RM(0, m) © RM(1, m) € - - © RM(r. m)

That any -1 order Reed—Muller code is a proper sub code of an ' order Reed—Muller code.
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d-Muller

@ The (m—r— l]th order RM code is the dual cade of r-order RM

code

@ Proof: Let us consider a € RM(m — r - 1.m). b € RM(r.m). Then
a(wj. -, V) is 3 polynomial of degree < m—r — 1.

@ Similarly, B{vy,- - , vn) has degree < r, and their product ab has
degree < m—1.

& Therelore E—f RM(m — 1. m) and has even weight. Therefore the
dot product 4- & =0 mod 2

And this is easy to see if you noticed and go back to our code construction, what was our

generator matrix? Our generator matrix consists of these tuples.
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@ The (m—r — I]"" order RM code is the dual code of r"l:u'der RM

code

@ Proofl: Let us consider a = RM{m —r —1.m), be RM{r.m). Then
a(vy, -, vim) 1% a polynomial of degree < m —r — 1

@ Similarly, by, Vi) has degree < r, and their pn?ﬂnl;t alla has
dqgree - m _l

@ Therefore ab & RM(m — 1. m) and has even weight. Therefore the
dot product 3-b=0 mod 2
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d-Muller code

@ The (m — r— 1)*P_arder RM code is the dual code of P -arder RM

cade

@ Prool: Let us consider 2 € RM{m —r — 1,m), b & RM({r,m). Then
a{vy, - . vim) is a2 polynomial of degree < m —r — 1

@ Similarly, b{wy, , Vi) has degree < r, and their product ab has

degree < m — 1
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@ The (m—r— I}'h-nrdm RM code is the dual code of rtP-arder RM
code
@ Proofl: Let us consider 2E RM{m —r — ];.'_',r.'_l' b;ﬁ"iﬁr. m). Then

alvy, -, vm) 15 a polynomial of degree < m—r — 1
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d-Muller code

—d
@ The (m—r I]th-arder RM code is the dual code of rP-order RM
code. ™ = =
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Reed-Muller caode

—— [F"-J

2 =

l,--\_nl--"

@ Let I.F & RM{r, m) and let g !’ £ RM(r 1_I'I_'IJ Then vectors
= (F.f+g)andeg = (F.F +g') must be in RM(r. m+1)

If g = g then dici.c2) = 2d(I.F) = 2-2™
Ifg # g then d(er.cz) = w(f - F)twig-g +F F)

Since w(x + y) = w(x) — w(y). we have
dicr.c) > wl{f —F)+wig—g)—wlf - =wzg—g)

e Sinceg g CRir-lm) sothat wig g')>2m r-1 - pmril
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@ Let I.F & RM{r, m) and let ‘." & RM(r-1,m]. Then vectors
c; = (F.F+g)and 3 = (F.F + g') must be in RM(r. m+1)

@ Ifg =g then d(cr.c2) = 2d(F.F) 2 2. 2™
e Ifg # g, then d(cy 21 wif - F)iwig g +F

&

)
)
@ Since w(x + y) = wix] ), we have % R

d(er.c2) 2 w(f ) + wig —g) - wlf A) = wig —g)

-
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w(-u}-r wib) 3 wlatk)
ae X+9 1,;'3‘ ark =%
1

wi{Zey) + wild - wlrm) 2 it} ealia)
@ Let I.F = RM(r, m) and let g.g' = RM(r-1,m). Then vectors
ep=(I.F+g)and ez = (F.F + g') must be in RM{r, m+1)

o ifg=g. thend(ci.ca) = 2d(F.7) = 2.2 "

e ifg#g. thendley,ca) = wif F) i wig g +f_F)
€« £ :1F+s]
Ca £ 'I;’J' FLJI]
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—

@ Let/f.F & RM(r, m]f.lnd let g.g = RM(r-1,m). Then vectors
€= LT +g)and g3 = (F.F + g') must be in RM(r, m+1)

@ Iflg '/thtndﬁ_ﬂ:] %“[i 2 2"' G [‘F ;—J

dtc.coZz 2" i ——

— 1

€2 r%i_J
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Reed-Muller code

@ Let . = RM(r, m) and let u - F'\'_M r-1,m). Then vectors
€y = (FL.F+g)and ez = (F.F + g') must be in RM(r, m+1)
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@ Minmum distance of RM({r.m]) s 2™ °
@ Proaf: We will prove the result by mathematical induction

@ Let m=1, then RM(0,1) is a length two repetition code. In this case
the minimum distance is 2

RM(1.1) has four codewords [00. 01, 11,10} of length 2. Minimum
distance in this case is 2.

@ Let us assume for upto m and for 0 < r < m, the minimum distance
is 27 We will show that dwis for RM({r.m+1) is 27 **1




(Refer Slide Time: 33:02)

5 R0 e aea

Farrames: LEF-*IEI-I.

d-Muller code

=1

@ Minimum distance of RM(r,m) is 2™ =, red

@ Proof: We will prove the result by mathematical induction
@ Let m=1, then RM({0,1) is a length two repetition code. In this case
the minimum distance is 2. G ":..'

RM(1.1) has four codewords [ﬂﬂ.f@ 11.10} of length 2. Minimum _
distance in this case is B1. i [,o II J.’
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@ Minimum distance of RM{r,m) = 3’"_"

the minimum distance is 2

wedl, =9
—

@ Proof: We will prove the result by mathematical induction

@ Let m=1, then RM{0.1) is a length two repetition code. In this case

G- ['1]



(Refer Slide Time: 33:03)

Reed-Muller code

@ Minimum distance of RM({rm) s 2™ °
@ Proof: We will prove the result by mathematical induction
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@ Mimmum distance of RM{r.m) s 2™ °




(Refer Slide Time: 33:04)

@ For 1 < r < m, we define

Rir, m) Hu u W) lu ﬁ'{r m '.I.] veE R(r m=1)}

1.
@ The generator matru:‘r}\;e\vﬁﬂl \ /
[ Gir, m-1 Gir. m-1
Grom = | 4 \\%‘F_L mﬁ’/J

"

?_ i gl

¥ g
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Muller code

@ For 1 < r < m, we define

Rir.m) = {{v.u+v}juc Rir.m~=1)ve R{r=1.m~1}}
— . i gl
@ The generator matrix c b\e\%&q_as /

.““ -HT--\-- -
. | Gir, m-1 Glr. m-1
:{a m) | 2 \T\qm_ o, J
7. | e, e

X s
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d-Muller code

generated by the following 11 vectors:
rF_.vc. 1111111111111111 “':

& Let 4, and r = 2, the second-order RM code of length n = 16 s

vi 0101010101010101 i
w: 0011001100110011 o
o

v; 0000111100001111
Wy
wve 0000000011111111 | .5
viva 0001000100010001 | v, va
wiv; 0000010100000101 :ij:
viv, 0000000001010101 | vava
vav; 0000001100000011
vavs 0000000000110011

vivg 00D0DO00CO000T111 J

H=%1é
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Reed-Muller code

 The riM_order RM code RM(r.m), of length 2™ is generated by
following set of independent vectors:

Gapilr,m) = Q“ﬂ W3, oo W, WD, MV, M 1%
up to products of degree r}

@ There are

k(r. m) I(T)(

— =
— =

\~ 3
S —
i~ 3

vectors in Geul(r, m)

If you noticed and go back to our code construction what was our generator matrix? Our
generator matrix consist of these tuples vo, vi, v2 up to product of degree r. So if you are
considering zeroth order Reed-Muller code this will only have vo. In the G matrix if you are

considering first order Reed-Muller code.
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R ee d -M u Il er co r] e

e The rM_order RM code EM(r.m}, of length 2™ is generated by
following set of indfajendent vertors:

- —
Gapilr, m) LL_LHI.- -_:."}vlu:.ulvl.-- ¥ 1'"‘_'\3;.

Up to products of degree r].

@ There are

k(r. m) I{T)EZLJ

—— =

vectors in Gaulr, m)

It will have vo and it will also have vi, v2, v3, vm. If you are considering second order Reed-

Muller code this will have this and it will have all these second order terms. So you can see that

smaller order Reed-Muller code is already embedded in the.
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R ee cj| -M u Il er co r] e

e The r'"_grder RM code | EM(r.m}, of length 2™ is generated by
following set of indfajendmt veCtors:

Gauilr.m) = ELEL:I— I:} LU ST L ST . w&.

up to products of degree r}.

@ There are

wem1+(7)(5) ()

vectors in Gau(r, m)
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@ The r'M_order RM code EM{r.m), of length 2™ is generated by
following set of independent vectors:

Gapilr.m) = {wg,wy vz, -~ vy vy, vy, S A

up to products of degree r}

@ There are

em=1+(T)+(7)++(7)

vectors in Geu(r, m)

@ |f the vectors in Gaae(r. m) are arranged as rows of a matrix, then
the matrix is a generator matrix of the RM(r. m) code
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@ Letm =4, and r

generated by the fallowing 11 vectors:

—= Yo
L

1111111111111111
0101010101010101
0011001100110011
0000111100001111
0000000011111111
oooL0D0100010001
0000010100000101
oooooODDODIDIODION
Co0o0001100000011
000000000011 0011
Co00QOC0OO0O0OQOITI11

2, the second-order RM code of length n = 16

b
Wi
Vi
W
.
Wy W
Vi Wy
v, """"}
VoY,
Vg
W Vg

[P &
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Reed-Muller code

@ For 1 + r‘_m we define

R(r, m]. Hll u -+ 'll':l H’{r m £ Rir m 1”
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Reed-Muller code

@ For | < r < m, we define

Iﬁ'{r.m} [{g.u + v_:l“u-: ﬁ'{; m\ﬁl] vie Rir=1

Bl TE e
@ The generator maula‘hu\be\:%e_n_as
e

. [ Glr, m-1 G(r, m-1
G(r, m) \ 0 o1, me1
Lol
2. — —

— e

= A
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Reed-Muller code

@ Minimum distance of RM(rm) s 2™ °
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Reed-Muller code

@ Minimum distance of RM{r.m) s 277
& Proof: We will prove the result by mathematical mduction
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@ Minimum distance of RM(r,m]) is 2™ *

the minimum distance is 2

medl, -
—_ 5

@ Prool: We will prove the result by mathematical induction

@ Let m=1, then RM(0.1} is a length two repetition code. In this case

G ['1]
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sd-Muller code

m=1

# Minimum distance of RM(r.m) is 27 ° pn 1) ¥=1

& Proof- We wll prl:wr-rhc result by mathematical induction
@ Let m=1, then RM(D.1) is a length two repetition code. In this case
the minimum distance is 2 a[%

@ RM(L.1) has four codewords H]ﬂ.[@..ll. 10} of length 2. Minimum
distance in this case is b1 G ,- L IIJ
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@ Minimum distance of RM{r.m] s 2™ °
@ Prool: We will prove the result by mathematical induction.

@ Let m=1, then RM(0.1) is a length two repetition code. In this case
the minimum distance is 2

@ RM(1.1) has four codewords {00.01. 11,10} of length 2. Minimum
distance in this case is 2

@ Let us assume for upto m and for 0 < r <= m, the minimum distance
s 2™ " We will show that dw. for RM{r.m+1) is 271
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d-Muller code

@ Let _ff' e RM;r. m:l and let L[' & EM r-1,m). Then vectars
ey = (FLF+g)and ez = (F.F + g') must be in RM(r, m+1)
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sd-Muller code

@ Let/f.F € RM(r, m)jand let g.g © RM(r-1,m). Then vectors
€1 'Ir-_‘ﬁnd ¢z = (F.F +g') must be in RM(r, m+1)
o iffg = g then dler. ) _é[f =22 ',,...r é . [4 £
dlc.c ) &2 F b

Cx E;"

=

[ )
LT

-

[
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d-Muller code

wilaly wib) 3 wlasb)
a= X+4 b= a+rk =
wilzey) + w0z wld) gy 2 wifi)-wly
@ Let F.¥ = RM(r, m) and let g. g © RM(r-1,m). Then vectors
e =(ILF+g)and eg = (F.F +g') must be in RM(r, m+1)
@ If g = g'. then d(cy. c2) = 2d(f. 1) = 2-2""
e ifg # g, then dicy, c3) = wif

)+ wig

e pr
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@ Let F.F € RM(r, m) and let g. g = RM(r-1,m). Then vectors
ey = (F,f+g) and e3 = (I, F + g') must be in RM({r, m+1)

e lfg=g. then dic;.c2) = 24{f.F) = 2. 2"

Fliwg-og +f-F)

@ Ifg # g then d(cy.ca) = w(f
i . b, = 5 aui:]"""'}

). we have

)+ wig — &) — wif A) = wig —)

@ Since wix +y) = wix)

diey.c3) = wif
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d-Muller code

wasl="T

@ Let F.F = RM(r, m) and let !!' & RM(r l,mj Then vectors
€1 = (F.F+g)and ez = (F,F +g’) must be in RM(r, m+1)

@ Ifg =g then d(e;,e3) = 2d(F.F) =2.27 °

o lfg /g thendicy, ) = w(f -F)iwig g +Ff F)

i

@ Since w(x +y) > w(x) — w(y). we have
dicr.ez) = wil —F) + wig —g') —wi{l - F) =wig —g)

@ Since g — g = R(r-1,m), 30 that w(g —g') = 2™ 1) = pm—r+l

——
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Reed-Muller code

< ]
@ The (m— r — 1) order RM code is the dual code of r™M_order RM
code. " = = =
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@ The (m— r — 1)'P.arder RM code is the dual code of rth_order RM
code

@ Proof: Let us consider a € BM(m —r —1.m). b € RM(r. m). Then
alwvy, vim) 15 @ polynomial of degree < m —r — 1
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@ The (m—r - I]th-arder RM code is the dual code of r':!"_‘l::rder RM

code

@ Prool: Let us consider 2 = RM{m —r — 1. m). b & RM(r.m). Then
vy, -, vm) is a polynomial of degree < m—r — 1

@ Similarly, b{w. i) has degree < r, and their product ab has

degree < m _}
@ Therefore ab € KM(m = 1, m) and has even weight. Therefore the
dot product 3a-b=0 maod 2



(Refer Slide Time: 34:02)

-Muller code

@ The (m—r — I}'h-ﬂrder RM code is the dual code of rtM.arder RM

code

@ Proofl: Let us consider 3 € RM{m — r — 1, m), b & RM{r. m). Then
vy, -, vig) is 2 polynomial of degree < m—r — 1

@ Similarly, b{wy. . V) has degree < r, and their product ab has

degree < m -1
@ Therefore ab € RM{m — 1, m) and has even weight. Therefore the
dot product 3-b=0 mod 2

aAIm.dumRM:mrl.mJ-dimE'ﬁﬁ
e 0 s (PR Aot G Sl )

which implies that RM(m — r lr; RM{!Jm}-
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Reed-Muller code

@ From the construction we can see that RM({r-1.m) code is a proper
subcode of the RM({r.m) code. hence

BM(0.m)  RM(1,m) C --- = RM(r.m)

Larger order Reed-Muller code, so from the construction you can see that smaller order Reed-
Muller code is essentially a proper sub code of a larger order Reed-Muller code. So this, this

relation holds and this can be easily seen from the construction of Reed-Muller code.
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Reed-Muller code

@ From the construction we can see that RM{r-1,m) code is a proper
subcode of the RM{r.m) code. hence

RM{0.m) © RM(1.m) C --- C RM{r. m)

@ The zeroth order RM code is a repetition code. E"-fh:[

The zeroth order Reed-Muller code is a repetition code, this we have shown earlier also. Note
that for the zeroth order Reed-Muller code your G matrix will only have this vo which is all ones.

And that is precisely the generator matrix for repetition code.
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Muller code

# From the construction we can see that RM(r-1,m) code is a proper
subcode of the RM(r,m) code. hence

REM{0.m) C RM({1.m) C = RM(r.m)

@ The zerath order RM code is a repetition code.

@ The (m = 1)"-order RM code is a single parity check code

(m-1)" order repetition code (m-1)" order Reed-Muller code is actually a single parity check

code again this is easy to see.
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d-Muller cade

@ From the construction we can see that RM{r-1,m) code is a proper
subcode of the RM({r,m) code. hence

RM(0.m) — RM(1.m) C ---C RM{r. m)

@ The zeroth order RM code is a repetition code. EW:[
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Viuller code

@ From the construction we can see that RM{r-1,m) code is a proper
subcode of the KM(r,m) code. hence

RM(0.m) c RM(1, m) =~ RM{r.m)
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d-Muller code

@ The {m — r — 1)tM_arder RM code is the dual code of +P_arder RM

cade

# Proof: Let us consider a € RM{m —r — 1, m), b & RM({r, m). Then
a{vy, -+, vim) 15 a polynomial of degree < m—r — 1

& Similarly, b{w. V,x) has degree < r, and their product ab has
degree < m — 1

@ Therefore ab € RM{m — 1, m) and has even weight. Therefore the
dot product a-b=0 mod 2.

@ Alsa, dim RM{m-r-1L.m) + dim RM{r,m)

(7)o () e (1)

e

which implies that EM({m — r l}-} RM{erj'

(%)

We can just use the results that we have proved. We know that (m-r-1)" order Reed-Muller code
is dual to the '™ order Reed-Muller code. So if r is let us say zero then it is dual to (m-1)" order

Reed-Muller code.
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Reed-Muller code

@ From the construction we can see that RM(r-1.m) code is a proper
subcode of the KM{r,m) code. hence

RM(0, m) c RM(1.m) C --- C RM(r, m)
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d-Muller cade

@ From the construction we can see that RM{r-1,m) code is a proper
subcode of the RM({r,m) code. hence

RM(0.m) — RM(1.m) C ---C RM{r. m)

@ The zeroth order RM code is a repetition code. EW:[
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Zeed-Muller code

& From the construction we can see that RM(r-1.m} code s a proper
subcode of the RM(r,m) code. hence

RM(0.m) © RM{1.m) C =~ RM(r. m)

@ The zeroth order RM code is a repetition code

@ The (m l]‘h-order EM code is a single parity check code

So zeroth order Reed-Muller code is dual to (m-1)" order Reed-Muller code. And what is the

dual of a repetition code, it is a single parity check code.
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Reed-Muller code

@ From the construction we can see that RM({r-1.m} code is a proper
subcode of the RM(r,m) code. hence

RM(0.m) © RM{1.m) C ~ RM(r. m)

@ The zeroth order RM code s a repetition code

@ The (m l]‘h-order EM code is a single parity check code

So (m-1)" order Reed-Muller code is nothing but a single parity check code. Similarly, (m-2)

order Reed-Muller code is our.
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}-Muller code

@ From the construction we can see that RM(r-1,m) code is a proper
subcode of the RM({r,m] code. hence

BM(0, m) = RM(1. m) = --- © BM(r. m)

@ The reroth order RM code is a repetition code.

e The (m-1)tP

@ The (m— E}th-nrdEr RM code of length 2™ is distance-4 extended
Hamming code obtained by adding an averall parity bit to the

~order KM code is a single parity check code

Hamming code of length 2™ — 1

Extended hamming code which we just talked about in the last lecture. So let us discuss how we
can decode Reed-Muller code, so we will illustrate the decoding of Reed-Muller code through an
example, and we are going to use what we call majority logic decoding. So let us consider the

Reed-Muller code.
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@ Consider a 2nd order Reed Muller code of length n = 16 generated
by following 11 vectars Meg, ¥e L

Vo

Vi
L5
vy

-
= | v
~ vy

vivy

vivs

vavy

/ vavs

J s

11111111].1111'.[1].1_—\'I
0101010101010101
g0l1l001100110011
oooo0l1lilo0o0001111
oooooOO0O0O11111L111
0001000100010001
0000010100000101
oooooOOODO01010101
00000D1100000011
oo0000O0O0OCOO110011
ooo00O000O0O00001111™

With parameter m=4 and r=2. So in other words the generator matrix will then consist of vo all

first order vi’s and these Boolean product of order two. We already know how to, how to get this

vi, V2, V3, vm, we just talked about that earlier and we will also know how to compute the

Boolean product. So this is essentially our generator matrix G of a 2,4 Reed-Muller code.
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) r.'iil"lg of -Muller code

@ The message to be encoded is given by

(30. 3. 3. 3. 31 F3a. 304, 14, 373, 313. 301)

@ The codeword is given by

(o, by, b3, -~ . ) v + dava + vy + Bvz + @
VIV + S04V T 14V Vg

Fanvav] v 313V1Va + v

Now the message that we want to encode, let us call it ao, a4, a3, this is how we are denoting the

message tool that we are going to encode and since the rows of our generator matrix are.
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@ Consider a 2nd order Reed Muller code of length n = 16 generated
by following 11 vectars Meg, ¥e L

Vo

Vi
L5
vy

L6

Vi

— vy
L b
Wiva
WaWy
Wy

Vv

].Illlllllllllllllpﬂ'I
0101010101010101
0D11001100110011
0000111100001111
0000000011111111
0001000100010001
0000010100000101
O0D00OO0OODOOD1010101
0D0D0OOD1100000011
DDUGDBUGDGIIUGIIRJ
oD0O0OODOOODODOOOD1111

Given by vo, v1, v2, v3, v4 and this, so our code word would be.
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@ The message to be encoded 15 given by

(30.3s. 33. 3. 3. 334, 334 304, 333, 3. 32)
@ The codeword is given by

(b, by, ba. - -+ . bus) Jnvp + Java + vy + 2va + (v
FagvIvg + 324Vavy + Apvva
Vv +

Favivy |+ Javivs

Linear combination of rows of the generator matrix, so that we are writing denoting by aovo +

a4vs, asvs and similarly asavsva, a24vavas, so this is how this is linear combination of these 11 rows
of this generator matrix.
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Decoding of Reed-Muller code

@ The message to be encoded 15 given by

(30, 3s. 33. 32. 3y, 334, 324, 34, 333, 313. 313)

@ The codeword is given by

(b, by, ba. - -+ . bus) Jovy + Java + Aavy + Jvz + v

TaVIVy + J2aVaV¥a + AnaViVa

Famavava + daviva |+ apvivs

That is how we will generate our code words. So this 16 length code word is basically linear

combination of these rows of a generator matrix.
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Decoding of Reed-Muller code

@ We can see that first four components of each generator vector and
subscquﬂnt three gEroups of four consecutive COMmponents 15 Zero
except for the the vector vivz,

@ Thus the code bit 333 can be written as

a3 by + by + by + by
23 = by+byx+by+by
12 ba + by + b + b
a1z by b s b+ s

@ RM codes uses majority logic decision rule for decoding.

Now we will spend some time looking at the generator matrix and we will use some observations
from the generator matrix to decode our code. So what are these observations so first thing we

will see
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@ We can see that first four components of each generator vector and

subsequent three groups of four consecutive components is zero
except for the the vector vivy

@ Thus the code bit 343 can be written as

a2 h‘r'fh'fh'b;
a3 = batby+by+by
di2 = bag+by+ b+ bn
a2 bz + tyy 4 Dya b bys

@ RM codes uses majaority logic decision rule for decoding

If we can, if we see the first four components of each generator vector and subsequent groups of

three groups of four consecutive components they are zero except for vector vivz, now what do I

mean by that?
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Decoding of Reed-Muller ¢

@ The message to be encoded 15 given by

(30.3s. 33. 33, 3y, 3, 34, 34, 33, 3. 312)

@ The codeword is given by

(o, b, bz -~ brs)

g T Vg T Wy T RV T

Fa3aWva + Fzavave + apavva

Famavava + daviva |+ apvivz
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Decoding of Reed-Muller code

@ Consider a 2nd order Resd Muller code of length n = 16 generated
by following 11 vectors
vo 1111111 ll'lll_l',‘.l_lLl
vw 0101010L01010101
v 00110011001} 0011
vy 0000;1111'00001111
v 0000000011111111
— viv2 00010001009 110001
wivg 0000010 ll'[l oo UEU 101 <e
ViV ﬂﬂﬂﬂ‘lﬂﬁ_ﬂﬂ,ﬂlﬂ“{llUl ==
ViV IJIJUUHJG_IHIJDUDIOUII
ViV, ﬂﬂﬂﬂﬁﬂﬂgﬂlﬂﬂlllﬂﬂll
vsvy O00O0O0loDOODOOOlLI111

= @

4

So let us look at this group of four this is group of four, this is group of four, so what I am saying
is if you look out this group of four and if you add them up. Let us look at this first group of four
this will be zero sum will be zero, zero, zero, zero. This is one, this is zero, zero, zero, zero, zero
you take any such four, this is zero, zero, zero this one is zero, this one is zero, this is not zero.
Again this row, this one is zero, zero, zero, zero, so you take any such groups of four. This one is
Zero, zero, zero, zero, zero this is not zero and these are all zeros. Similarly this is not zero these
are all if you add up these they are all zero, one plus one, one plus, one plus one these are all zero
same here one plus one, zero one plus one zero so if you look at these bits four bits at a time you

will notice except for this one vivz all others are zero.
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@ We can see that first four components of each generator vector and

subsequent three groups uiT_er -;gnxguzwq components is zero
except for the the vector vyva

@ Thus the code bit 33 can be written as

a3 = Wttty
& = bytbs+bytbyr
a2 = bg+ by + b + bu
a bz + bz b s

@ RM codes uses majority logic decision rule for decoding.

Now how can we make use of this fact?
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Muller code

@ The message to be encoded s given by

(30, 34, 33. 3. 3y, 334 334, 34, 3, A13. 13)

@ The codeword is given by

(bo. by bz- - bns) = Jowp + 3eva + 3wy + vz + AV

FagaVaVg + dzaVavy + apaviiva

FanVavy ¢ 3anva 'In"l:'_\"l\'ﬁ

viv2 so what we will do is if we add up those first four elements.
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@ The message to be encoded is given by

| 3a. 3s. 33, 33, 31 . 334, s, 4. 323, -?1'1-312}

@ The codeword is given by

(bo.ba. b~ bis) = Mwtawetamtanton

FajaWivy T dniay + dnaivg

Fanvava + anvivy @{E
—_— el

The contribution from all others will be zero except, because vivz is non zero so we will get

contribution from what a1z is.
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@ The message to be encoded is given by

30, 25, 33, 32, 31. 334, 32s. 4. 33, H13. A13)

@ The codeword is given by

(bo, by, bp.--- . bns) = agwg + aawe + vy + agwz + vy
- FazaWivy + Sy + Anaviva

Fanvava + anvivy @I
—_—
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@ We can see that first four components of each generator vector and
'5Ub.'lfquf“t three Eroups U‘FT— L L1 e I:DI'I'I@I'EEI'ETS IS IE
except for the the vector vivz

@ Thus the code bit 332 can be written as

m o= mrbibth
i = bhhtbht+tbt+b
#12 by + By + o + by
12 bz + b3 4 by + s

@ RM codes uses majority logic decision rule for decoding

So in other words these code word bit then can be written as so if I am calling this bit at zeroth
location as zero bit at first location as b1, second location bz, and bs then by adding the first four

bits I can get information about what a2 was.
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@ The message to be encoded is given by

30, 25, 33, 32, 31. 334, 32s. 4. 33, H13. A13)

@ The codeword is given by

(bobobo,- - bis) = awetaeetam+antav

—

FazaVavy + dnvavy + anavive

Fanvava + anvivy @I
—

And this can continue for next set of bits as well.
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@ Consider a 2nd order Reed Muller code of length n = 16 generated

by following 11 vectors

Vi

L

L5

Wy

G=| L
viVvz

Wiy

L4k

Wy

Wiy

Wy

f"".:-l"br ¥ e

Illlllllllllllll_ﬁ
0101010101010101
0011001100110011
0o00111100001111
oooOO0ODODOL1I110111
0001000100010001
0000010100000101
0000O0DO0OO0O01010101
0000001100000011
000000000011 0011
ooo0OOOOOOOODO1111
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@ The message to be encoded is given by

30, 25, 33, 32, 31. 334, 32s. 4. 33, H13. A13)

@ The codeword is given by

{bﬂb'l.b".. £ lb'[".I] - gV + daVy T+ $vy T V) T ‘]ﬂ_
- - tajaaNg + dnay + apavig

Fanvava + anvivy @I
—_—
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Jecoding of Reed-Muller

@ We can see that first four compaonents of each generator vector and

subsequent three groups offw%nrs is zero
except for the the vector vivz

@ Thus the code bit 332 can be written as

m o= mrbibth
iz = btbstbgt by
#12 by + By + o + by
12 bz + b3 4 by + s

@ RM codes uses majority logic decision rule for decoding
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@ Consider a 2nd order Reed Muller code of length n = 16 generated

by follo 11 vectors
by O VLTI

¥ llllllllllll_lllll"1
v 0101010101010101

LE DDIIDUIL'DGIJOGLI
Wy DDUOLIILDGQGI_IJ.I_:A
vy I.']I.Jﬂl:ll'}“llﬂll'l.lll'll.l

— WV DDGIDGUIDQQIIQHDI
ULE 0000010100000101 ==
ViVy DUUDUBUQUlﬂlrﬂlﬂl =a
VW UDUOIUD]IIDBUUBUll
Va4 DDGG!DG@I’.‘HDGlllﬂﬂli

wwv, 0000l0DOODDOOOII111

So this is let say bobib2bs this is babsbeb7 this is bsbobiobi1 this is bi2bisbisbis. So if I add this
bobibabs or babsbeb7, bsbobiobi1 or bizbisbiabis what I am getting is contributions from all other

rows are nullified only I receive the contribution effect of this viva.
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oding of Reed-Muller code

@ We can see that first four components of each generator vector and

subsequent three groups of four consecutive components is zero
except for the the vector wyvz

@ Thus the code bit a3 can be written as

{22 hth+h+h

[32 = bibibih

| by + by + g + by
12 Dyz + by + By + bys )

@ RM codes uses majority logic decision rule for decoding

And the bit a2 can then be found by adding these four columns together. So I can get the
information about ai2 by looking at these first four columns or first four bits of these code word.
Similarly in next four bits of the code word if I add them up I can get another independent
information about ai2. And same thing I can get from the next set of four coded bits. So what you
can see is I am getting four independent views about what ai2 is. Now the decoder can take a
majority logic decode. If there is no error of course all of them will tell me about that ai2 is the
same bit whether zero or one. But if there is, is there is a single error what you will notice is you

know in some other bits. Let us say there is an error in some.
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'.',-dll'lg of Reed-Muller ¢

@ We can see that first four compaonents of each generator vector and
subsequent three groups of four consecytive companents is zero
except for the the vector vivz

@ Thus the code bit a12 can be written as

rmy = Bybtbth
a2 by + by + yg + by
12 Dyz + by + By + bys )

@ RM codes uses majority logic decision rule for decoding

Bit location b1 then a2 here would be different from what ai2 I am getting from other three
equations and then I will use majority logic decoding. What is majority logic decoding so I will
take the majority decision if, if three of them are saying ai> is zero then I will go for zero

otherwise I will go for 1 okay.
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& We can see that first four components of each generator vector and

subsequent three Eroups of four consecytive components is Tero

except for the the vector wivs

@ Thus the code bit 3;> can be written as

(= bbb
[ - bihinin
a2 bg + by + byg + by
ay = bl:'h!'bl-i'blﬁl

@ RM codes uses majority logic decision rule for decoding

So this is how I can decode bit ai2.
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IT'J-'-..-.:---:-hn.,g of Reed-Muller «

& Consider a 2nd order Reed Muller code of length n = 16 generated

by following 11 vecmh:s‘. bt b b b b o b
vo 111L111111L1111 1
vy 0101010101010101
v: D01lioo11001)0011
v 0000;111100001111)-
va l]DIJlJ,'ﬂlJ_ﬂl]'lEL_i![lllJ

— wvr ﬂﬂﬂliﬂﬂﬁﬂl:ﬂﬂy”ﬂﬂy!
viv; OUL'IU'.CIIEIIIGGDD|D101-¢
vy vy ﬂﬂﬂﬂ]ﬂﬂ_ﬂqﬂiﬂilﬂlﬂl -
vyvy 0000001 4000|0001
vva 0000000O0IDOY10011

LELH GUUDHOOOD‘DDUDlllll

So and this.
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Deco :jim;_' of Reed-Muller code

& Letr = (mn ris) be the received vector. In decoding a3, we
form the following equations

Ay = m+Aa+B+h”

Ay ra+ s+ mt oy
Ay = m+m+no+r
Ay fiz + Ry + fa + Ny

Will be repeated for decoding other bits as well so let us say my receive bit is ro, 11,12, 115
corresponding to the transmitted bit bo, b1, b2, bis then I can decode ai2 , how, I will just add
these first 4 bits, then add the next 4 bits, next 4 bits, next 4 bits, so I am getting 4 independent
views about what al2 is, and then I will take a majority decision, majority of them are saying 0 I

will go for 0 otherwise I will go for 1.
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# Similarly we can decode, ay3, a7y, 14, 324, @14 For example, for a1y

we have

.-11 +n+n+K
Ay = B+l +h+n

Ay g+ Ry 4+ Ry o+

i3

As = Ho+ M+ haths

@ For a3 we have

.41 = htRt+R+R
A A+n+r+n
Ay M+ g vAzTNa
Ay = m+m+m+ns

Now the same thing exactly same way I can decode other bits.



(Refer Slide Time: 43:59)

- = 2 F -

r._l - 1'|:-_| I.I”..l fr- '-I"lilt.---.'d'i Al |

@ Similarly we can decode, 313, 373, 314, 324, @32, For example, for a3
we have

.flg M+ f v+
Ay = Bttt
Ay R+R+np+m
Ay = mot+m+hat+nAas
@ For az3 we have
.41 = BT hTh B
Ay AR+tni+K+n
Ay BT NoT T Na
Ay = m+m+m+m

So let us look at az3 if you look at azs.



(Refer Slide Time: 44:04)

@ letr=(mn ris) be the received vector. In decoding a3, we

form the following equations

Ay, = m+Ra+rtn
A u-r;-rc,-'r,v
Ay, = m+m+no+m

Ay fiz+ Ry + Na+ ARy
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@ Consider 3 2nd order Reed Muller code of length n = 16 generated
by following 11 ve-cml

7} Vi

ViV

Wiv
Wiy

— WV

I

bbby b bbby bbb bbby
11ILIIII'IILLLLL]
0101010101010101
oolliootiloot ool
00001111/00001111f=
000000001111,1111
0001000 1:0091.{1001
uuuunum:uunnrzum
00000000010[10101 ==
0000001 uOOODOO11
oooojooooloot too11

DGDD\UGOG'OUUU[IIH
+ £ &£t

Let us look at this row evaluate with a different pen, let us look this row, this row, this row and

this row so if I add bits in this row this will be 0, this will give me 0, this will give me a 1, this

will give me 0, this will give me 0, this will give me 0, so you can see all rows will give me 0

except this particular row and same thing I can repeat for
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@ letr=(mn ris) be the received vector. In decoding a3, we

form the following equations

Ay, = m+Ra+rtn
A u-r;-rc,-'r,v
Ay, = m+m+no+m

A, fiz+ Ry + Na+ ARy
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@ Similarly we can decode, 313, 373, 314, 324, @32, For example, for a3

we have
.flg M+ f v+
Ay = Bttt
Ay R+ R+ +n
Ay = mot+m+hat+nAas
@ For az3 we have
.41 = L Tl i i Bl
Ay R+ +RK+N
Ay BT NoT T Na
Ay = m+m+m+m

If I look at a 2™ row, 4" row 6™ row and 8 I will get the same information.
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@ letr=(mn ris) be the received vector. In decoding a3, we

form the following equations

A = mtna+ntn
e = ninimin
»4\, = m—r.:—r“,—ri
A, fiz+ Ry + Na+ ARy

So if I look at.
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Decoding of Re

@ Consider a 2nd order Reed Muller code of length n = 16 generated
by fulimw"&.llvecmts s b ey e bl
7} M’uliIlllll‘l]I_l'lLl‘u
L Dlﬂlﬂlﬂllﬂ]ﬂllﬂlﬂl
J V3 UUJ.J.GDII.'UCHJ-[CIUII
- ODUDIIIIODHUTlll—u
Vi DUUﬂlﬂD_UQIEI_[,Illl
iV UﬂUliUﬂﬁU I:DU'QHU 001
vV, Uunﬂ'ulﬂluunﬂlulul-n
LI Uﬂﬂﬂﬂﬂﬂﬂlﬁlﬂlﬂlﬁl -
3 — DDUU‘U‘DllLDU‘UDDDlI
viva -0000/0000l001j10011
1 ViV - UUUU'IUGUU‘UUUULJ.III

Now let us say I look at this row if I look at this row, this row, this row and this row so this will
give me 0, this, this, this will give me 0 this will give me 0, now here this is a 1, this is a 0 this a

0 and this is 0, so this will give me 1, and all other rows will give me 0.
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@ letr=(mn ris) be the received vector. In decoding a3, we

form the following equations

A = mtna+ntn
e = ninimin
»4\, = m—r.:—r“,—ri
A, fiz+ Ry + Na+ ARy

So if T add up.
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@ Similarly we can decode, ay3, 373, 314, 334, 334 For example, for a5
we have

@ For 333 we have

mEn -+t
Rt+tRt+h+n
R+Rh+n3+ns

fin+ A1+ Aa + As

F.‘-|1-r:|—rq—__ﬂ:|_

n+nn+r+n

i

T Rot Nxt e

B+ A+ A8

These bits 4 bits at a time in similar fashion I can get independent.
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@ Similarly we can decode, a1y, 313, 314, 374, 334 For example, for a3
we have

@ For F}n \-in hawe

Ay
A
'd‘a
Ay

Mo+ 4+
TR T Ty
Rp+EH+p+Em

fg + 1+ Ra T ns

TR TthThR

fo4 g4+
M+ fig+ M2 t+hNa

[T N

Information about a23, so again the point we noted.
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@ letr=(mn ris) be the received vector. In decoding a3, we

form the following equations

A = mtna+ntn
e = ninimin
»4\, = m—r.:—r“,—ri
A, fiz+ Ry + Na+ ARy

Here is.
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@ Consider a 2nd order Read Muller code of length n = 16 generated
by following 11 \'ECIDIS

i L'l
V)

V3

Vg

5 —— WV

[ I
I]lllllhl]LlLliJ
UILllﬂlﬂlJl.'JT.DI'Ellﬂl
DDLIGBIHDDILDDII
nDDDllllﬂﬁﬂﬂIlll—u
uuuucucﬂlxltx111
0001nqp1hugtmuo1
UDHWGIHIDDUDFIﬂI-.
uuunanuqu:u:nln1 -

I'JEIEIEIIﬂEIllLDDEIDElElll

A] I-n_DDI:IDfﬂDﬂB|ﬂDI 1|EIEI11
4 v:v.-DUUﬂHUDUU'DUDﬂll 111

What you need to do is you would look at this and find out.
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oding of Reed-Muller code

@ letr=(mn ris) be the received vector. In decoding a3, we
form the following equations

A = mtna+ntn
A fa+ s+ g+ 'r,v-
Ay = :H_"-'-_-"‘Il_f'll
A, fiz+ Ry + Na+ ARy

Basically like a combination of these receive bits which will give information about one

particular transmitted bit and not others and once you do that.
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# Similarly we can decode, 313, 373, 314, 334, 334. For example, for 213

we have
"."'l M+ FL + gy + M
Ay = B+R+IE+H
Ay g+ R+ +m
Ay = motmtaatns

o,
L] F-3r|:3n__\lwr_= hawve

.41 = mhtritr +
A

n+n ..r b Iy
Ay AT hNo Tzt Na
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Iia- .-I- 11

[ =]

@ For a4
Ay B B |
'4!' T RTNoT n
Ay i+ f+rp+
-'1.4, = BT ThaTARs
@ For 3;; we have
Ay = mp+a+a+i
Ay = nin+mtn
Ay s+ i+ A2+
A-I- ~ fig + fi + Fia +— RS

You can similarly do for other bits, I just listed here you can verify yourself that if you add these

bit location you will get independent formation about ai4, similarly for aza.
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# For a4 we have

Ay B+ ig+mp+n
An ATR+THRTM
Ay = B+t ot Fia
Ag atrtmtns

@ After decoding &3, a13, &3, a4, #34, d3a, we form 3 modified received
vector as e

i1 (1) {L) (1)
. (m'n - ny)

F— auVaVy — JzaVaVy — 31ViVa dzyVavy — Vv — Fav v

And as4, now once you have decoded ai2, a23, or once you have decoded all of these, again
remember the way we are decoding is so we are getting 4 independent views about the same bit
majority of them are must saying it is 0 we go for that or else the majority of them are saying that

they are one, we will go for that.
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# For 234 we have

Ay B+ g+t n
A:- "R+ +MhK +MN
A = Bt+m+hot Fia
Ag Attt

@ After decoding &3, a1y, &5y, dya, 330 334, we form 2 modified received
vector as e s e

i1} (1 _{1) {11
i (5 en " ons’)

F— JuVaVy — SxgVaWg — 314V1Va dxiVaNy — Favhvy — 33V
= i — i |_r A f"' _J-'"_.

So once we have decoded this the sequences let us just subtract the contribution of these bits
from the receive signal, so then the new receive sequence that we are calling rl is the actual rate
sequence — the contribution from these Boolean product terms subtracted, now once we do this

then what we are left with is.
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d-Muller

@ Conmider a 2nd order Reed Muller code of length n
by following 11 vectors

L
¥
L
v3
Vi
Wi
L b
LAk [t
vavy
Waw;

WiV

1111121311111113111%
0101010101010101
go011001100110011
0000111100001111
00000D00D11111111
g0o0l1000100010001
00D000101D000D0101
0000O0ODO0O01010101
go0QO001I100000011
oo000O00OODO110011
gooooO0OODOOOL1111

16 generated
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Decoding of Reed-Muller code

@ In absence of errors. we can wnte ¢! as following codeword

i 1
1 + i * v
-51”- EE b;t-,l = I-:Iu + gy + V3 + oy + ey

{1}

(8

@ We can see that sum of every two components of vg. va, v1.v2
starting from first is zero, whereas for vy it is 1

@ Therefore we can form eight independent equations for 3, given by

# hL” i b;'l. # f;l;"l'l ) h:',“

< H_*” f 'bflsu # r:'Il.ll.ll ; hILI:LI

{1} 1) 1) {1}
Eil h-t + h'S = 'bI.J T hl..'l
a b:‘“ L b:_l. = b;:l " b;l."I

Essentially we are left with this, so we are now left with decoding ao , a4 , a3, a2, and ai, so first
we try to decode the r'" order terms then we try to decode r — 1 it or it term and finally so here we

first decoded the terms related to.
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@ In absence of errors, we can write r'!! a5 following codeword

' L ' b L

L
= dgWVig + da¥g + vy + dvs + vy

1n.‘I-ILI
——
@ We can see that sum of every two components of vg. vy, w3, vz
starting from first 15 zero, whereas for vy it s 1

(1}

i
oy e By

@ Therefore we can form sight independent equations for 3, given by

# bh” i bgh 3 -b-:"I'I J t‘:‘.”
a e T 1
- hl:; i %1. a lrJll.i‘l 5 bﬂl
T

Second order, now we will try to decode these terms which are related to the first order and we

will again follow the same procedure, what we are going to do is we are again going to look at.
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o & v e e e
-
rffoan - L if:smENEEEEES -

@ Conmider a 2nd order Reed Muller code of length n = 16 generated

by following 11 vectors
T w f111iti111111111 |
\ —s¥ 0101010101010101
L5 UUllUUlluUILUUlll

‘ vi 0000111100001111
| Wy UUIJL]_UUU_L‘IIII[IIIl
T ww uuumwm—uu10!1‘0‘1_L

wiv; 00DD00I0100000101
vivga 0000000001010101
vwwy 0000001100000011
wv, 0000000000110011
wwy 0000000000001111

This G matrix and we are going to look at the bit so we are now looking at because the
contribution of these have been removed so we are now looking at this G matrix, we are only
looking at this, assuming we have correctly decoded ai2, a13 , ai4 contribution of these have been
removed so only we thing we are left with is this, now if you notice if you add up 2 rows like this

consider these 2 rows so what you would have noticed for all other except vl we will get 0.
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r‘l '""l“”ﬂl‘- i .‘ F‘ ;-ll

@ In absence of errors, we can write r''! a5 following codeword

]
(1) (1) f1 4 L ! ¥ o
(B . By " ---  Bye = JgWip + JuWa + Wy + W3 + vy
——r—r

# We can see that sum of every two components of vg. vg, v1.v2
starting from first is zemo, whersas for vy it is 1

@ Therefore we can form eight independent equations for 3, given by

> h’f_.” f J‘:P' = b1|'|“ L bh:l

a hl'” 1 'bllll. ¥ Hu:JI ' brlil
a by + by = by + by
- bul-,llr - hl_l - 'b!l:l . blll;hl

So in other words I can get 8 independent views about what al by just looking at these 2
columns of this matrix so I can I am getting 8 independent equations for a1 and again I will go
for majority logic decoding so whatever majority of them are saying I will decide in favor of that

and the same procedure can be repeated to find out.
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@ In absence of errors, we can write r''! a5 following codeword

L .

¥
.ﬂi”.--- Cye = gV + A4 + vy + V3 + vy

{1}

(8

# We can see that sum of every two components of vg. vg, v1.v2
starting from first is zero, whersas for vy it is 1

(1)

—

@ Therefore we can form eight independent equations for 3, given by

i 'h!u” f J‘:}” = b}‘“ L b,':,”

{1} {1} (1} {1)
E h_. 1 'hl ] 'hlu 1 ﬁ“_
(1) {1 (L] i1
i by '+ by’ = by + by
1} 1) {1} 1}
a by + By @ = b)) + By

What a2, a3, a4 are again.
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Deco ding 5f Read-Muller ¢

@ Similarly independent determination of 3. 3y and a; can be formed
@ We can form eight independent equations for 3z, given by

a = 6= o o
(1) {1} (1} [E %)
by by =8 + by

o+ B = )+
o + b 2y = by + B

RO

@ We can form eight independent equations for a3, given by

a = b:-_,“ ~ bil:..h _ b},“ r bl-i_-l:-:l
- B 4 1) 5 = b0 4 D
a B+ b = By + By
n = B+ = b)) + 8]

This is just a typo, this should be a2 here and similarly this is a3 here.
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& We can form eight independent equations for a,, given by

» = blqﬂ i b,'.l'.al c b:“ " blll..‘l

1 1) B 1)
iy b; "t"-la L blﬁl t Hu
n = B = B 4 o
s

= B4l = Y+

@ Eguations for decoding 4; can be written as

2 R | TUNCHE 1 | P ¢ ¢ S | (O 1
A: = f +h ..4; =g +0

| 1) [1) 1) 1) (1}
AE'I 'I* =N -"qn hg + My
{1} [ {1l al1) i) {1}
Ay A T fiz * iy
(1) () (1) alt) 23] 1}
A mota A fia Trhs

And this is a4 here, okay now this is exactly same procedure I followed for al we are using for

az, a3, a4 , ad.
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& We can form eight independent equations for a,, given by

. hijx;: i b,'.l'.al . b-IILI . blllh:l

a = b e - ny
a = BV pR =Y Y

_ ain f1} _ & {1}
% by by =0+ by,

@ Eguations for decoding 4; can be written as

AL':EI = rD|I.\l _fij.l-'qlq,“ = r;]l _ﬂsj:
.q-t-‘ll '-!Il L f'.].J.A:'ll ';:l: i ':'::
AD o 0 A g D
A = A D 4 4D

A4 and then we are getting independent equations, 8 independent equations and we take majority

decision in decoding these, now once we have decoded.
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W |

oding of Reed-Muller code

@ After decoding 3y, 32, 33, 35, we create a modified received vector rl?)

r (r, F; r“li
[ i 15

= ) — agwg — Iy — vy — By
@ In absence of errors, we have

%) = agvg = (20, 30.- -~ . a)

@ ap is decoded to be the value of majority of the bits in ¢l%)

A1, a?, a3, as we will then remove the contribution of this from the receive sequence so our
receive sequence rl we remove this so what we are now left is the term containing vo so we only
left with ao, so now we have 16 opinion about ao and again we take a majority decision and that is

how we decide in favor of ao so this in a nut shell.
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= - - L |

rl rfTaama [ ‘-th -I‘-l--'-.-u W mee—|

[}Et:t_'lrjlng of Reed-Muller code

a After decoding a3y, 33, 33, 3. we create a modified received vector rl=)
A2 f".'_f" '_IL_-‘,- -"f:'.lli
= ") — aavg — vy — S —
@ In absence of errors, we have
{1y _ = - |
r agwg = (39, 3p.- -+ , 3]

@ ay is decoded to be the value of majority of the bits in r'%!

A how we are decoding a how we are decoding a Reed-Muller code, so first we try to decode the

' thought terms then r — 1 and like that and the key is look at the generator matrix and from

there try to find out combinations of bits which will give independent opinion about a particular

transmitted bit, so with this I will conclude this discussion on Reed-Muller, code thank you.
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