
Indian Institute of Technology Kanpur 
National Programme on Technology Enhanced Learning (NPTEL) 

Course Title 
Error Control Coding: An Introduction to Linear Block Codes 

 
Lecture-6A 

Some Simple Linear Block Codes-I 
 

by 
Prof. Adrish Banerjee 

Department of Electrical Engineering, IIT Kanpur 
 

Welcome to the course on error control coding, an introduction to linear block codes. So today 

we will discuss about some very simple block codes. 
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So this is the outline of today’s talk. Before I discuss some examples of linear block code, I will 

first describe what do I mean by dual of a code. And then I will move on and describe some very 

simple linear block codes such as repetition code, single parity check code, hamming code. 
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So before I discuss what is dual code, I would like to define what do I mean by two vectors u and 

v being orthogonal. So two vectors u and v are orthogonal if their inner product which is defined 

like this, so component wise dot product if that inner product is zero we call these n-tuples u and 

v as orthogonal. 
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So for a binary linear (n, k) code its dual has the parameter n and n-k and it has the following 

properties. So a dual code has – is defined such that its set of code words v are orthogonal to the 

set of code words of the original code C. So if v is the code word which belongs to the dual of a 

code C then v would be orthogonal to code words u which belongs to the original code C. 
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We can show that for a linear block code C the dual code is also a linear code. 
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So let us take x and y, two code words which belong to this dual code of C which we are 

denoting by Cd somewhere – sometimes people use this notation also for the dual. Now if x and 

y belongs to the dual code then we know that any code words belonging to the dual code they are 

orthogonal to the code words in the original code C. So if u belongs to C and x belongs to dual 

code Cd then x.u will be 0, because the code word x is orthogonal to code word u.  

 

Similarly code word y which belongs to the dual code and code word u which belongs to the 

original code u, since they are orthogonal their dot product will be 0. So we can write x.u=y.u=0 

this follows from the property that a code which belongs to the dual code is orthogonal to the 

code words in the original code C. 
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So then for some binary λ and μ we can write this λx+ μ(y. u) as λ(x. μ)+ μ(λ. u). Now what is 

x.u? x.u is 0, because x belongs to the dual code and u belongs to the original code C. So they are 

orthogonal that is why x.u is 0. Similarly y.u is also 0, hence we can write λx+ μy.u=0. So we 

have shown basically this is – this belongs to the dual code. So we have shown that if our 

original code linear block code is original block (n, k) code is linear the dual code is also linear. 
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And why does this belong to the dual code that is because this is orthogonal to the code word 

which belongs to the – u belongs to C and since this is orthogonal to a code word which belongs 

to C, so this must belong to dual code. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



(Refer Slide Time: 05:08) 

 

 

 

The next property that we are going to show is, if we have a linear block code we denote it by C, 

whose generator matrix is given by this capital G and if x belongs to the dual code of this 

original code C. So the claim that we are making is, if x belongs to the dual code then this 

relation holds and if this relation holds x belongs to the dual code. That is what we mean by if 

and only if. 

 

So if x belongs to the dual code then xGT should be 0 and if xGT is 0 x should belong to the dual 

code. So we are going to prove that if x belongs to dual code, then this relation holds and further 

we will show if this condition holds then x will belong to the dual code.  
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So let us write the generator matrix of a linear block code C as you know, this is a k x n matrix 

and this g0, g1, g2, gk-1 are these k generators each of length up to l, these are length l. So this g is 

k x n matrix and any code word can be generated using these generators g0, g1, g2, gk-1. Now xGT 

is basically given by inner product of x with g0, x with g1, x with g2 up to x with gk-1. Now what 

happens if x belongs to the dual code. 

 

If x belongs to the dual code, then the set of code words which belongs to the dual code, they are 

orthogonal to the set of code words which belongs to the original code C. 
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Now we know that if x belongs to the dual code then x inner product of x with gi should be 0, 

why? because the original code is generated using these generator sequence is g1, g2, gk-1 any 

linear combination of this g0, g1, g2, gk-1 will give me my coded sequence, v is – you can write g0, 

g0+ ……+uk-1, gk-1 right. So if x belongs to the dual code then inner product of x with gi’s would 

be 0. 

 

And hence xGT will be 0. So what we have shown is, if x belongs to the dual code from the 

property that the code words in the dual code and code words in the original codes they are 

orthogonal to each other, from that property we get this condition that, that inner product of x 

with gi’s will be 0 or in matrix form we can then write, because x, the inner product of x with 

gi’;s is nothing but XgT. So then xGT would be 0. Next we are going to show if xGT is 0, then x 

must belong to the dual code. 
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Now if xGT is 0, then this condition holds, that inner product of x with gi is 0 for i=02k-1. Now 

what is a code word? A code word is obtained by linear combinations of these generators g0, g1, 

g2, gk-1. So if C belongs to the linear block code C, then C is essentially generated from my linear 

combinations of these generator sequences, where this λi’s are zeros and ones, because we are 

talking about binary codes. 
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Now note what do we want to show, we want to show if xGT is 0, then x must belong to the dual 

code. And when will x belongs to dual code, we have to show that a code word which belongs to 

original linear block code C and set of code words which belong to the dual code they are 

orthogonal to each other or in other words their dot product is zero.      
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So let us take a dot product this is x which you want to show that it belongs to the dual code and 

C is a code word in original code C. So what is x.c, x.c can be written x.Ʃ λigi this, I can write as 

Ʃi λixi.gi. And what do I know from this condition that xGT is 0 I know from this condition that 

inner product of x with gi is 0. So that means this term is equal to 0, then what I have shown that 

x.c is equal to zero that means x and c are orthogonal to each other.  

 

So if c belongs to the original code this C then x must belong to the dual code of this code C so 

hence we have show that x belongs to the dual code of C  
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Now we also know that if x belongs to particular code let us say  
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A dual code then we know the condition that if for any valid code word we know that let us say x 

is a valid code word then we know this property holds, that a code word parity check matrix 

transform  is basically equal to 0 so if we compare this form with this you can immediately guess 

that the generator matrix for the dual code is given by the parity check matrix of the original 

linear block code C and the parity check matrix of the dual code is given by this generator matrix 

of the original code C, so this is what I am saying here the generator matrix G of a linear block 

code is the parity check matrix for the dual code and vice-versa.          
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Okay now what is a self dual code, if a linear block code 
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Is same is equal to its dual code then it is called a self dual code  
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So as you can make out the rate for a self dual code should be half because k should be n/2  
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So n is always even for a self dual code and the dimension of the code is always n/2   
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An example of self dual code is  
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24, 12 Golay code   
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Okay now that we have defined dual code let us now come to the other topic which is some 

examples of linear block codes. So a very simple example is a repetition code so if  
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For repetition code k is 1 and let us say we have a rate 1/ n repetition code, so the code word 

length is n this one input bit and n outputs. 
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And how is repetition codes generated so we repeat the same information n times, so for a binary 

repetition code it will have two code words 0 and 1 so if the information sequence information 

bit is 0 the output will. 
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Be all 0’s repeated n times and if the input is 1 this will be output will be all 1 repeated n times 

so there are only two code words in our repetition code. 
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 So we can then write down our generator matrix. 
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How is generator matrix if v is the coded sequence u is information sequence then generator 

matrix they are related generator matrix in this particular way, so since our output is the bit 

repeated n time the generator matrix for repetition code will be all ones so this is 1x n. 
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Now how do we decode a code which is n coded using repetition code, so what we do is  we take 

a majority decision so let us say for 0 we are sending n 0’s and for 1 we are sending n 1’s so at 

the receiver when some of the bits get flipped or they are changed what do we notice as we look 

at block of n bits and we see what is the majority, is it 0 or 1, if it is 0 majority of the bits are 0 

we decide in favor of 0 if it is 1 we decide in favor of 1. 
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And we can see the minimum distance of this code is n, because there are only two code words 

all 0 code word and all ones code word. So it can correct n-1/2 floor of that it can correct so 

many errors, it can correct so many errors and it can detect n-1 errors, because any error pattern a 

weight less then n would not change it into any valid code word so all error pattern up to wait n-1 

can be detected by this repetition code. 
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 Let us look at another example of a linear block code this single parity check code as the name 

suggest we are adding one single parity check bit. 
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So the information sequence length is k and n here is given by k +1 and how do we generate this 

single parity check bit, this is as follows.  
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So if your information sequence is given by this so you have a k bit information sequence let us 

call it u0, u1, u2, uk-1 then we generate this additional parity bit in this fashion so p is equal to u0+ 

u1+ u2 up to uk-1. So in other words if information sequence is even parity that means some of 

them basically add ups to 0 then p will be 0 or else if the information sequence has odd parity p 

will be 1. So as you can make out this single parity check code will always have even weight 

code words. 
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 So each cord word I can write in this particular fashion So I have these   
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K information bits and 1 parity bit.  
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So I can write the same thing in the form of generator matrix.  
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As we know our coded sequence can be written as input times generator matrix so you can see 

first bit is a parity bit which is sum of all ui’s, so fist column will be all ones and then this will be 

a identity matrix because the second bit is u0, third bit is u1, u2 and so on. So this is a identity 

matrix okay  
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Now we can write down the parity check matrix for this also.  
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As you can see this is this generator matrix is in systematic form. So what would be the 

corresponding -- this is of the form like this I have P: I so parity check matrix will be I: PT   right. 

So what I have here is  
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This is my PT and this is my I.  
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 This part is my -- this part is my P and this part is my I, so parity check matrix will be I PT 
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So that is this.  
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As I mentioned a very interesting property of single parity check codes.  
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All code words of single parity check codes are of even weight. 
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And we can see the minimum distance of the code is 2 how simple, very simple way to check is 

look at the columns of the parity check matrix what is the minimum number of columns that add 

up to 0 in this case 2, any 2 columns will add up to 0 so the minimum distance of this code is 2. 
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Now since all code words have even weight any odd code, any odd error pattern can be detected 

by single parity check code, because any odd pattern, any odd weight pattern is not a valid code 

word. 
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So a single parity check code can detect all error patterns which has even number of errors, odd 

numbers of errors right. So as long as error pattern has odd weight single parity check code can 

detect it. 
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And it is not very difficult to see that a single parity check code and repetition codes are dual to 

each other you can see basically the parity check matrix of single parity check code is same -- 
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As generator matrix of the repetition code and similarly the parity check matrix of repetition 

code is same as. 
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The generator matrix of the of the single parity check code. 
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And you can check the dimensions of the single parity check code is n – 1 and this dimension is 

1. So single parity check code and repetition codes are dual to each other. 
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Next we consider hamming codes, so hamming codes are single error correcting codes these are 

single error correcting codes. 
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And they are described by these parameters. So for any m greater than equal to 3 the code word 

length is given by this the number of parity bits is equal to m, so number of information bits are 

n – k, n – m so this is 2m – m – 1 so these my number of information bits, it has minimum distance 

of 3 so it can correct single error and it can detect 2 errors. So how do we describe hamming 

code. 
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We can describe the hamming code by generator matrix or the parity check matrix. So a parity 

check matrix of a hamming code consist of all nonzero m-tuples. So if the number of parity bits 

as I said is m, then code word length is 2m – 1 and the entries in the parity check matrix are all non 

zero m-tuples. Now how may m- tuples do we have, we have total 2 m m-tuples and out of those, 

so these are like 000, 001 and you can go on up to all ones and this m times m. Now if we 

removed all zero 1, so total number of nonzero m-tuples is basically given by 2m – 1.  

 

So the columns of the parity check matrix of hamming code are nothing but non zero m-tuples, 

so they are total 2m of them 2m, 2m – 1 of them okay. And if you want to write the parity check 

matrix of a hamming code in a systematic form then we can write it in this way. So parity check 

matrix will have an identity and then some matrix P, since identity matrix will consist of all 

patterns all m-tuples of weight 1, pT should consist of all m-tuples of weight more than 1. So it 

consist of all m-tuples of weight 2, 3,4 up to m. 
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So let us take an example, let us consider m = 3. So if m=3 we know n is 2m – 1 so length of the 

block code in this case will be 7. Now how many numbers of parity bits, number of parity bits is 

given by m so this will be 3. So then what is the number of information bits this is 7 – 3 that is 4. 

So this is a 7, 4 code. Now as I said the parity check matrix consist of all nonzero m-tuples, so m 

here is 3 so let us list all nonzero m-tuples so we can write 001, 010, 011, 100, 101, 110, 111 so 

these are the 7 nonzero m-tuples right. 

 

And if you want to write your parity check matrix in a systematic form what will you do. So this 

is your I, so I am writing these patterns which are like 1, 2 and 3, I am writing these patterns and 

then what I write here is the other m-tuples. So you can see this is m-tuple of weight 1, these 3 

are m-tuples of weight 1, and then this is a m-tuple of weight 2, weight 2 and this is m-tuple of 

weight 3. Now since this matrix is of the form I and P, I can write the generator matrix this will 

be PT I.  

 

So we can write this, so PT so 1011 will come here as 1011, 1110 will come as 1110 and 0111 

will come as 0111. And then this is the identity matrix, so this our generator matrix or this 74 

hamming code. The point to be noted here is, once you will fix your m all other code parameters 



are fixed, n is fixed right, because n is 2m-1 and number of parity bits is equal to m. So for the 

hamming code once you fix m the other parameters of the code are fixed. 
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Now let us see how we can correct errors using hamming code.  
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As we said this has minimum distance 3 you can see here. So let us take any 3 columns let us just 

take this column, column number 1, column number 2, and column number 4 you can see 

column number 1, 2 and 4 they will add up to 000. So if 3 and that is the minimum number of 

columns that will add up to 0 so which means the minimum distance of this code is 3.  

 

If the minimum distance of this code is 3, what is the error correcting capability of this code it is 

d-1/2 floor off that and this comes out to be 1. So hamming code can correct single error. So let 

us see how we can use hamming codes to correct single error. 
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So first thing what we will do is we will rearrange the columns of the parity check matrix of 

hamming code such that column in position i represent integer i.  
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So as we said the parity check matrix of hamming code are all nonzero m-tuples. So we will 

arrange them in such a way such that the ith column represent ith bit. Now what do I mean by that, 

so let us go back to our same example m=3 so in this case n=7 and k=4. Now note the way I have 

arranged this, this is my MSB. And this is my LSB least significant bit and the most significant 

bit.  
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So each column represents a number in this particular way. 
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So this is a least significant, this a least significant bit, this is the most significant bit. So this is 

001 that is binary 1, so this is my column number 1, this is 010 that is 2, 011 that is 3, this is 4, 5, 

6, 7. So note what I did was, I rearranged a column of the parity check matrix of hamming code 

such that now ith column represent ith number basically, so column in ith position represent the 

integer i, now if I do that.  
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Then let us see how this helps us in locating the position of the error. 
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So let us say r is my receive sequence receive vector this is my received n bit vector, and I am 

interested in knowing whether r is an error, and if r is an error let us -- because the single error 

correcting code, let us say a single error has happened then I am interested in correcting this 

single error, so what do we do? 
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The first thing to find out whether error has occurred or not, the first thing that we do is 

recompute the syndrome, how do you compute the simple syndrome? We take rHT and what is 

our H? 
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H is our matrix this matrix which is arranged where their columns are arranged in such a way 

such that column in ith position represent integer i. 
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So since is a single error correcting code it can only correct atmost one error. 
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So we assume let us say atmost one error has occurred, atmost of course if there is no error then 

syndrome would be an all zero vector and if a single error has happened the syndrome would 

have been a nonzero vector. Now what you will observe is, if a single error happens then that 

single error will be basically whatever is a syndrome from there we can find out which bit 

location is in error.  

 

So in case of hamming code if single error has happened and you have arranged your parity 

check matrix in such a way such that column in position i represent integer i, then the syndrome 

would be either zero vector in case there is no error or otherwise in case of single error it would 

be a column of this parity check matrix. 
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So when single error happens the number represented by the column of the calculated syndrome 

is the position in the code word where the error has happened. So see it so nice, so by looking at 

the syndrome and comparing it with the column of the parity check matrix that our reordered 

parity check matrix we can find out the location where the error has happened. And since for a 

binary code basically if we can locate the error, so the bit can be either zero and one so whatever 

the bit is we just flip that bit and get our corrected code word.   
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So let us take an example. 
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So let us say this is a code word for this [7, 4] hamming code. And let us assume that there is a 

single error has happened and this bit got change from 1 to 0, now given this received sequence I 

am interested in finding out what is my estimated code word first of all I am interested in finding 

out whether an error has happened or not, and if the error has happened I am interested in 

correcting that error. 
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So as I said the first thing that I am going to do is. 
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I am going to compute the syndrome so what is my r? This is my r, and what is my H?  
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H matrix is basically my parity check matrix. 
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Of the hamming code where the columns are arranged in such a way that column in ith position 

represents ith integer, so if we take HT so we will get 100, 010, 110, 001, 101, 011, 111 right? 

And that is what I get here. 
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So this is my r, this is my HT now HT so this is 1, 2, 3 this row will participate this row. So my 

syndrome will be this plus this, this row plus this row, so this will be 001+011 which is 010. So 

my syndrome here is 010 now what do I do? I go back and check which column is 010. 
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So if I go back to my parity check matrix I notice that. 
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010 is this second column of my parity check matrix, right? So what does it indicate then? It 

indicates that the second bit of my code word is in error. 
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So then I can go ahead and correct this error. 
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So this second bit, from the syndrome I can find out that this syndrome is nothing but the column 

in the second location. So my second bit is in error and since we are talking about binary code, 

so then this zero should have been one. So my estimated code word is then 0101010 and you can 

see that is what I had transmitted, this is the same code word that I have transmitted, you can 

yourself verify change some other bit location, introduce some other single error and you can -- 

you will see from the syndrome you can find out the location of your error. 
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So it has a very simple decoding algorithm, now as I said before in case of hamming codes, once 

I fix my m, my code parameters are fixed. 
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So for example the examples that we were dealing with, we had taken m=3. 
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So once the moment I fix m=3 my n is fixed it is 23-1 that is 7, so k is 7-3 that is 4. So this 

becomes the (7, 4) code, right? What if I am interested in designing let us say (8, 4) code or let us 

say I am interested in (7, 3) codes, (6, 3) code. So there are various techniques available to twig 

the parameters of the code, we are going to talk about some of them, we are not exhaustively 

covering all possible ways of lengthening or shortening a code.  

 

We just give you just few examples to illustrate this idea of changing the parameters of the code. 

So the first thing that we are considering is a shortened hamming code, so how do you get a 

shortened hamming code? You delete l columns from the parity check matrix of your hamming 

code, now if I delete l columns that means my code word length is decreased by l. 
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So my new code word length is then 2m -1-l so this is my code word length, now numbers of 

rows are still the same that is m, so number of parity bits are still same but since I deleted l coded 

bits so number of information bits also got decreased by l. Now minimum distance of a hamming 

code is three if I am deleting some columns. 
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Then minimum distance cannot be less than what was the original minimum distance of the code, 

why? Because you can see if I have a parity check matrix here and let us say I have these 

columns let us call it a1,a2, an. Now if I am removing some of the columns I can carefully remove 

those columns which are causing the sum of let say d columns to be linearly dependent. So if I 

remove some of those columns I can possibly increase my minimum distance. 
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And that is why I wrote by whenever you delete columns on the parity check matrix the 

minimum distance is atleast what was there in the original code.   
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This is one example of a (7, 4) hamming code, so if I delete let say I delete this if I delete this 

column what do I get, I get a shortened (6, 3) hamming code. So when I delete this my n 

becomes six from seven and my information bits also reduce from four to three. This code also 

has minimum distance three you can see three columns will add up to zero. Let us say this 

column, this column, and this column add up to zero.  

 

So, minimum distance is still three for this code. So whenever you want a shortened code make 

sure you remove those columns in a judicial way so that potentially you can increase the 

minimum distance. In this particular example, if I delete one column I cannot increase the 

hamming distance, but if I delete more columns from this parity check matrix I can potentially 

increase the minimum distance of the code. 
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Another class of code is what is called expurgated codes. So what is expurgated hamming code? 

So if H is the parity check matrix of hamming code then I define a new parity check matrix 

which has all ones as the last row. 
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Now note the parity check matrix of a hamming code does not have all ones. So when I add an 

all one row.   
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Essentially the rank of this matrix will be one more than the rank of the original matrix H.     
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Because any linear combination of last row with the rows of the earlier parity check matrix H 

would not be dependent. Hence the rank of this new matrix H1 is (n-k+1) and what is the number 

of columns of this matrix that is n. So rank of this matrix is (n-k+1).  
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Then what is the dimension of the null space of this or what is the dimension of code sequence 

here, so that is basically this is n minus dimension of H matrix so that becomes k-1.  
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So the new code that we derive by adding an all one row in the parity check matrix of the 

hamming code. 
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We get a new code which is a (n, k-1) code. 
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And this is known as expurgated Hamming code.  
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Now one of the interesting property of this code is, this code contains all even weight code word 

it is not very difficult to prove. 
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If v is a valid code word. 
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Then we know vHT should be zero. And last row of H1 has all ones, so when we take transpose 

so the first column will be all ones, and when we do vH1
T what we will get is let us say the 

components of  v are v0, v1, v2 so vn-1 then what you will get is basically. 
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Sum of these components of this code. 
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Code word we should add up to zero. And this will happen only when v has even weight. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



(Refer Slide Time:  44:54) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



(Refer Slide Time:  44:54) 

 

 

 

So this new code that we generated expurgated code is basically has all even weight code words. 
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So if you have an odd weight vector then vHT cannot be 0. Because of this all ones in the parity 

check matrix. 
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Of this new matrix H1 expurgated code parity check matrix okay. So vH1
T cannot be zero, if v 

has odd weight.  
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So you can see that, this is one way of getting rid of odd code words. So by adding an additional 

all one rows in the parity check matrix of the original code we actually got rid of all odd weight 

code words. So the minimum distance of this expurgated hamming code would be then four 

why? Original code has minimum distance three, but now we got rid of all odd weight code 

words. So the minimum distance of this new code expurgated Hamming code would be four. 
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So minimum distance is four.    
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So this is an example, this is the parity check matrix of the original Hamming code.  
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And if we add all one rows in the parity check matrix we get the parity check matrix of a 

expurgated code.    
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Finally I will conclude this lecture with another class which is basically extension which called 

extension of a code. So this is an example of an extended hamming code. So how do I generate 

an extended Hamming code. So note, so this is the parity check matrix of my original Hamming 

code. I add a zero so I add an additional column which is zero here. So these are all zero here, 

and then I add one row which is all one.  

 

And it is not very difficult to see that the rank of the matrix will be if the rank of H is let say n-k. 

the rank of this matrix H1 will be n-k+1. Because the parity check matrix of the Hamming code 

did not have an all one row. 
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And then these are all zeros and this is one so any leader combination of this row with these rows 

basically would not, it would not change the it will not decrease the Hamming distance 

essentially. 
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So this will have the rank of this matrix would be one more than the rank of the original parity 

check matrix H. So what we are saying then is all rows of these parity check matrix H1 are 

linearly independent. As I said that is because the original H matrix did not have all ones here. 

And this is one here, this is zero here, so if we take linear combinations of this with any of the 

rows of the original parity check matrix they would not be linearly dependent. 

 

So all rows are linearly independent hence, the rank of this matrix is (n-k+1). And what is the 

number of columns the original matrix had n columns, and we added one column, one more 

column. So number of columns here is n+1, so this will define a code of length n+1.        
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So then we can find out what is the dimension of null space or so this is number of coded bits, 

this is the rank of the new parity check matrix. So number of coded -- so the dimension of null 

space is k so this will then generate. 
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An (n+1, k) linear block code, and this is known as extension code or extended Hamming code.   
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If this H is a matrix a parity check matrix with hamming code the code described by H1 which is 

given by this would be extended hamming code.  
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And again we can see that the extended hamming code will have only even code words that is 

because the last row of the parity check matrix contains all ones. So vHT cannot be zero. 
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If v has odd weight.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



(Refer Slide Time:  49:56) 

 

 

 

So the minimum distance of extended hamming code is four. Now please note the some of the 

techniques that we mentioned here extension, shortening, expurgated that is valid for any other 

linear block codes too. 
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And these are some of the ways in which we can change the code parameters. So with this we 

conclude this lecture. Thank you. 
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