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Welcome to the course on error control coding, an introduction to linear block codes. So today

we will discuss about some very simple block codes.
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& Duial code

@ E'fqrrlpll--l af linear block ¢odes
& Repetition code
& Single parity check code
# Hamming code

So this is the outline of today’s talk. Before I discuss some examples of linear block code, I will
first describe what do I mean by dual of a code. And then I will move on and describe some very

simple linear block codes such as repetition code, single parity check code, hamming code.
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Dual code
@ Two m-tuples i and ¥ are q_'rr'lhullur:ﬂ.l if the wner product (W, o) 15
zero, e, o
{uv) =% (0 w)=0

So before I discuss what is dual code, I would like to define what do I mean by two vectors u and
v being orthogonal. So two vectors u and v are orthogonal if their inner product which is defined

like this, so component wise dot product if that inner product is zero we call these n-tuples u and

v as orthogonal.
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@ Two n-tuples u and v are orthogonal if their inner product [u, ) is

IerG, Le,
n

{wv)= 3 (w-w)=0

# For a binary linear (n. k) block code €. the (a,n — k) dual code, &5
i5 dafined a5 set of all codewords ¥ that are arthogonal 1o all the
codewords u = L

So for a binary linear (n, k) code its dual has the parameter n and n-k and it has the following
properties. So a dual code has — is defined such that its set of code words v are orthogonal to the
set of code words of the original code C. So if v is the code word which belongs to the dual of a

code C then v would be orthogonal to code words u which belongs to the original code C.
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@ Two n-tuples u and v are arthoganal if their inner product {u, v) is
zero, e,

fwv)=3 (o w)=0
ya= ]

# For a binary linear (n, k) block code C, the (n. 7 — k) dual code, Ty
is dafined as set of all codewords, w that are orthogonal to all the
codewords w & C

& [(n.n— k) dual code. Ty is also a inear code

We can show that for a linear block code C the dual code is also a linear code.
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@ Two n-tuples u and w are orthogonal if their inner product (u, v} is

Eero. e,

[
[, w) El’u. v =0

@ For a binary linear (n, k) block code C, the (. 7 — k) dual code, C;
i dafinad as sat of all codewords, ¥ that are arthagonal to all the
codewords m € C

@ [ — k) dual code, Ty 15 also a inear code .
® Proof: Let x, y € . thenx-n—y-o—=0foreveryues C ==
= T F1ef s
Ca I:* I

So let us take x and y, two code words which belong to this dual code of C which we are
denoting by Cd somewhere — sometimes people use this notation also for the dual. Now if x and
y belongs to the dual code then we know that any code words belonging to the dual code they are
orthogonal to the code words in the original code C. So if u belongs to C and x belongs to dual

code Cq then x.u will be 0, because the code word x is orthogonal to code word u.

Similarly code word y which belongs to the dual code and code word u which belongs to the
original code u, since they are orthogonal their dot product will be 0. So we can write x.u=y.u=0
this follows from the property that a code which belongs to the dual code is orthogonal to the

code words in the original code C.
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@ Two n-tuples u and v are orthogonal if their inner product (uw, v) is
rero, e,

fuw)=3 (w-w)=0

@ For a hinary linear (n. k) block code C, the (o, n — k) dual code. &;
is dafined as set of all codewords, w that are arthogonal to all the

codewords uw & C
# [(n. n — k) dual code. Ty is alio a inear code
® Proof: Let x, y€ Gy, thenx-u—y-u =0 foreveryn e C

& [hus,
(s + piy) - = Alx-u) + jily-u) =0

for every u & € . ; 2

So then for some binary A and p we can write this Ax+ p(y. u) as AX. p)+ pw(A. u). Now what is
x.u? x.u is 0, because x belongs to the dual code and u belongs to the original code C. So they are
orthogonal that is why x.u is 0. Similarly y.u is also 0, hence we can write Ax+ py.u=0. So we
have shown basically this is — this belongs to the dual code. So we have shown that if our

original code linear block code is original block (n, k) code is linear the dual code is also linear.
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@ Two n-tuples u and v are orthogonal if their inner product (uw, ¥) is

rero, e,
n
(v} L[u, vi}=0

# For a binary linear (n. k) block code C, the (n. n — k) dual code, Cy
is dafined a5 set of all codewords, w that are arthaganal to all the
codewords u © L

& [nn— k) dual code, Ty 8 also 3 hinear code

# Proof: Letx, y€ Gy, thenx o=y u—-Dforeveryn e C

e [Thus,

[ A= —Lj'l .= Mx-u) 4+ uly-u)=0

for every u & C €Ch £°F

# This implies Ax + py © Oy

And why does this belong to the dual code that is because this is orthogonal to the code word
which belongs to the — u belongs to C and since this is orthogonal to a code word which belongs

to C, so this must belong to dual code.



(Refer Slide Time: 05:08)

—=

FACEEY | TTTTTTT [een g

Dual code

& ey {: b_eilﬂﬁ’ code with generator mato E Then x = f_-_.l. of amd
only iflaG* =0 | =
|

The next property that we are going to show is, if we have a linear block code we denote it by C,
whose generator matrix is given by this capital G and if x belongs to the dual code of this
original code C. So the claim that we are making is, if x belongs to the dual code then this
relation holds and if this relation holds x belongs to the dual code. That is what we mean by if

and only if.

So if x belongs to the dual code then xG" should be 0 and if xG is 0 x should belong to the dual
code. So we are going to prove that if x belongs to dual code, then this relation holds and further

we will show if this condition holds then x will belong to the dual code.
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@ Let C be 3 linear code with generator matrix . Then x = Cy if and
anly if GT = 0 =

@& Lot G ba given by

G=| ®

where {go} & some basis of G

@ Also, I_G.' (= go. - g—1)

So let us write the generator matrix of a linear block code C as you know, this is a k x n matrix
and this go, g1, g2, gk-1 are these k generators each of length up to 1, these are length 1. So this g is
k x n matrix and any code word can be generated using these generators go, g1, g2, gk-1. Now xGT
is basically given by inner product of x with go, x with g1, x with g2 up to x with gk-1. Now what

happens if x belongs to the dual code.

If x belongs to the dual code, then the set of code words which belongs to the dual code, they are

orthogonal to the set of code words which belongs to the original code C.
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Dual code

@ Let T be 3 linesr code with generator matnx G, Then x = O if and
only if #GY = 0

@ Lot G be given by

where {go} 5 some basis of G
# Alzo, =GT ~ (x - gy, X 1)
@ M= 'f-... than % - g 0 for BTy |, 50 ®GT 0

Now we know that if x belongs to the dual code then x inner product of x with gi should be 0,
why? because the original code is generated using these generator sequence is gi, g2, gk-1 any
linear combination of this go, g1, g2, gk-1 will give me my coded sequence, v is — you can write go,

gt ...... +uk-1, gk-1 right. So if x belongs to the dual code then inner product of x with gi’s would

And hence xG" will be 0. So what we have shown is, if x belongs to the dual code from the
property that the code words in the dual code and code words in the original codes they are
orthogonal to each other, from that property we get this condition that, that inner product of x
with gi’s will be 0 or in matrix form we can then write, because x, the inner product of x with
gi’;s is nothing but Xg". So then xG™ would be 0. Next we are going to show if xG' is 0, then x

must belong to the dual code.
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and thus = = Ly

Now if XxG' is 0, then this condition holds, that inner product of x with gi is 0 for i=02k.1. Now
what is a code word? A code word is obtained by linear combinations of these generators go, g1,
22, gk-1. So if C belongs to the linear block code C, then C is essentially generated from my linear
combinations of these generator sequences, where this Ai’s are zeros and ones, because we are

talking about binary codes.



(Refer Slide Time: 09:49)

& i = plo el 34 & -
[ —=1] [TTT7717Ise0 I

SNET L

]
s

Dual code

# Let C be 3 linear code with geneérator matrix . Then x & O, if and
anly if xG" =~ 0 -

& Let G be given by

where {gn} is some basis of G
@ Also, xGT ~ [z ga, X Eg)
e IFx e O, than x A 0 for every |, 50 =GT 0

Now note what do we want to show, we want to show if xGT is 0, then x must belong to the dual
code. And when will x belongs to dual code, we have to show that a code word which belongs to
original linear block code C and set of code words which belong to the dual code they are

orthogonal to each other or in other words their dot product is zero.
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3 If|:|:-'l:3'Ir = g& then x -Iu:.—ﬂ forevery i. Ifce C.thenc=3_, L

for some binary A;, 30

-t
f'E.—x'{E'\'E‘] = E \il%i-m) =0

and thus x € Cy

So let us take a dot product this is x which you want to show that it belongs to the dual code and
C is a code word in original code C. So what is X.c, X.c can be written x.X Aigi this, I can write as
i Aixi.gi. And what do I know from this condition that xG™ is 0 I know from this condition that
inner product of x with gi is 0. So that means this term is equal to 0, then what I have shown that

X.c is equal to zero that means x and c are orthogonal to each other.

So if ¢ belongs to the original code this C then x must belong to the dual code of this code C so

hence we have show that x belongs to the dual code of C
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@ fx-GT =0, then x- g=0 for every i. If c= C, then c = AR
for some binary A;, so

x-e=x-(3Ag)=3 Mn-g)=0

and thus x € Cy

@ Thus the generator matrix G of a linear (n, k) block code, is the
parity check matrix H of its dual code and vice-versa

Now we also know that if x belongs to particular code let us say
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Dual code

@ lfx-GY =0, then x - g;=0 for every i. e C, then € = SAm
for some binary A;, so =

xe=x-(3 Ag)=Y Mx-g)=0

-
X\ =0
and thus x € Cy —B‘

@ Thus the generator matrix G of a linear (n. k) block code. is the
parity check matrix H of its dual code and vice-versa

A dual code then we know the condition that if for any valid code word we know that let us say x
is a valid code word then we know this property holds, that a code word parity check matrix
transform is basically equal to 0 so if we compare this form with this you can immediately guess
that the generator matrix for the dual code is given by the parity check matrix of the original
linear block code C and the parity check matrix of the dual code is given by this generator matrix
of the original code C, so this is what I am saying here the generator matrix G of a linear block

code is the parity check matrix for the dual code and vice-versa.
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@ A linear block code C that is equal to its dual code Cy is called
self-dual code

Okay now what is a self dual code, if a linear block code
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@ A linear block code C that is equal to its dual code G is called
self-dual code —_—

Is same is equal to its dual code then it is called a self dual code
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@ A linear block code C that is equal to its dual code Cy is called
selfdual code

@ The code rate of self-dual code, R = 1/2

So as you can make out the rate for a self dual code should be half because k should be n/2
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@ A linear block code C that is equal to its dual code Cy is called
self-dual code

@ The code rate of self-dual code, R = 1/2

@ Code length of self-dual code n is even, and dimension k of the code
is nl2 T

So n is always even for a self dual code and the dimension of the code is always n/2
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@ A linear block code C that is equal to its dual code Cy is called
self-dual code

@ The code rate of self-dual code, R = 1/2

@ Code length of self-dual code n is even, and dimension k of the code
is n/2.

@ (24,12) Golay code is a self-dual code

An example of self dual code is
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24, 12 Golay code

@ A linear block code C that is equal to its dual code Cy is called
self-dual eode

@ The code rate of self-dual code, F = 1/2

@ Code l:ngth of self-dual code 7 8 even, and dimension k of the code
is mf2.

@ (24,12) Golay code is 3 self-dual code
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@ A repetition code of length n is a linear (#, 1) block code

Okay now that we have defined dual code let us now come to the other topic which is some

examples of linear block codes. So a very simple example is a repetition code so if
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@ A repetition code of length a s a linear (7, 1) block code

For repetition code k is 1 and let us say we have a rate 1/ n repetition code, so the code word

length is n this one input bit and n outputs.



(Refer Slide Time: 13:57)

Repetition code

@ A repetition code of length i a linear (n. 1) block code

@ It consists of two codewords, all zero codeword 0 = (0.0, --- .0) and
all one codeword 1 = (1,1,.--- 1)

And how is repetition codes generated so we repeat the same information n times, so for a binary
repetition code it will have two code words 0 and 1 so if the information sequence information

bit is 0 the output will.
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@ A repetition code of length n is a linear (n, 1) block code

& [t consists of two codewords, all zero codeword 0 = (0.0.-- - ,0) and

all one eodewerd 1 = (1.1,--- 1) R Emee
m fir s

Be all 0’s repeated n times and if the input is 1 this will be output will be all 1 repeated n times

so there are only two code words in our repetition code.
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Repetition «

# A repetition code of length a is a linear (A, 1) block code

@ it consists of two codewords, all zero codeword 0 = (0,0.--- .0) and
all one codeword 1 = (1,1,--- ,1)

@ Codeword is obtained by repeating the information bit n times.

& Generator matnx 15 given by

G=[11--1]

So we can then write down our generator matrix.
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Repetition code

@ A repetition code of length a5 a linear (#. 1) block code

@ |t consists of two codewords, all zero codeword 0 = (0,0.--- ,0) and
all one codeward 1 = (1,1.--- 1)

@ Codeword is obtained by repeating the information bit n times.

@ Generator matrix 15 gwen by e Gr

G-“I_']J IR

How is generator matrix if v is the coded sequence u is information sequence then generator
matrix they are related generator matrix in this particular way, so since our output is the bit

repeated n time the generator matrix for repetition code will be all ones so this is 1x n.
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# A repetition code of length n is a linear (n, 1) block code

It consists of two codewords, all zero codeword 0 = (0.0, --- ,0) and
all one codeward 1 = (1,1,--- 1)

Codeword is obtained by repeating the information bit n times.

& Generator matnx 1 Even hy
G=[11 1]

@ Decoding is based on majority decision of » coded bits

Now how do we decode a code which is n coded using repetition code, so what we do is we take
a majority decision so let us say for 0 we are sending n 0’s and for 1 we are sending n 1’s so at
the receiver when some of the bits get flipped or they are changed what do we notice as we look
at block of n bits and we see what is the majority, is it 0 or 1, if it is 0 majority of the bits are 0

we decide in favor of 0 if it is 1 we decide in favor of 1.
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A repetition code of length n is a linear (. 1) block code

It consists of two codewords, all zero codeward 0 = (0.0.--- .0) and
all ane codeward 1 = (1.1.--- 1)

L]

Codeword is obtained by repeating the information bit n times.

Generator matrix s given I'ry

G=[11-:1]

Decoding is based an majonty decision of n coded bits

Minimum distance of the code is n_ {
-l dekect

And we can see the minimum distance of this code is n, because there are only two code words
all 0 code word and all ones code word. So it can correct n-1/2 floor of that it can correct so
many errors, it can correct so many errors and it can detect n-1 errors, because any error pattern a
weight less then n would not change it into any valid code word so all error pattern up to wait n-1

can be detected by this repetition code.
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Single parity check code

@ |t is a linear (k + 1, k) block code with single parity bit.

Let us look at another example of a linear block code this single parity check code as the name

suggest we are adding one single parity check bit.
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Single parity check code

@ It is a linear (k + 1, k) block code with single parity bit
& If u = (ug. in s 1), then the panty check bit is given by

P=lUp+ g +-+ihy-

So the information sequence length is k and n here is given by k +1 and how do we generate this

single parity check bit, this is as follows.
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Single parity check code

@ [tis a linear (k + 1. k) block code with single parity bit
& [fu= (u U 1), then the parity check bit is given by

i

P=ig+ iy +- + -1

So if your information sequence is given by this so you have a k bit information sequence let us
call it uo, u1, u2, uk-1 then we generate this additional parity bit in this fashion so p is equal to uo+
uit+ u2 up to uk-1. So in other words if information sequence is even parity that means some of
them basically add ups to 0 then p will be 0 or else if the information sequence has odd parity p
will be 1. So as you can make out this single parity check code will always have even weight

code words.
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Single parity check code

@ |t is a linear (k + 1. k) block code with single parity bit
8 [fu= (ugm uk-1), then the parity check bit is given by

P=tp+int oty
a Each codeword is of the form

v=(p ty. Uy, t-)

So each cord word I can write in this particular fashion So I have these
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Single parity check code

@ |t is a linear (k + 1. k) block code with single parity bit.
@ [f u = (ug. . uy 1), then the parity check bit is given by

B =g+t + s+ ey

& Each codeword is of the form

oy bt

¥ =(p, ug. th,--- . t-1)

K information bits and 1 parity bit.
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@ |t is a linear (k + 1. k) block code with single parity bit.

& Ifw = (g, uy,«++, ux_1), then the parity check bit is given by
P =tig+ bty + oo+ U

@ Each codeword is of the form

v=(p g ty, . U-1)

The generator matrix for the single parity check code in systematic
form is given by
11000 ---0
110100 ---0
G- | 1]|0010-.-0

10000 -.-1

So I can write the same thing in the form of generator matrix.
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Single parity check code

@ It is a linear (k + 1, k) block code with single parity bit
& If u = (wo, . ug 1), then the parity check bit 1s given by

P=ug+ i+ -+ Uy
@ Each codeword is of the form
-

¥ =(p tg,th."-- . W1}

@ The generator matrix for the single pant&checl-t code in systematic
form is given by ] -
1|{j1000 ---0 e bl

1 100 0

g=| 010 ---0

i 0000 ---1

As we know our coded sequence can be written as input times generator matrix so you can see
first bit is a parity bit which is sum of all ui’s, so fist column will be all ones and then this will be
a identity matrix because the second bit is uo, third bit is ui, u2 and so on. So this is a identity

matrix okay
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Single parity check code

@ The parity check matrix for the single parity check code in
systematic form is given by

H=[11---1]

Now we can write down the parity check matrix for this also.
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@ It is 3 inear (k + 1. k) block code with single parity bt
& Ifu = (ug, i 1), then the parity check bit is given by

P=ug+uy+ -+t
@ Each codeword is of the form
-

v=(p tig.thy, -+, th1)

@ The generator matrix for the single uant&cha’k code in systematic
farm is Hiven Ery

1 v=uls
1
6|1 G-[r:1]
e [x-7"]

As you can see this is this generator matrix is in systematic form. So what would be the
corresponding -- this is of the form like this I have P: I so parity check matrix will be I: PT right.

So what I have here is
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Single parity check code

@ The parity check matrix for the single parity check code in
systematic form is given by

H=[11---1]

This is my PT and this is my L.
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It is a limear (k + 1. k) block code with single panty bit.
If u = (wg. . g -1 ), then the parity check bit is given by

p=tig+th+ -+ oy

Each codeword is of the form

-
v=(p ug. Uy, Uy-1)

The generator matrix for the single pant&:hrﬂ:h code in systematic
farm is Hiuen try F_ —
1{1000 ---0 Ve UlE
|1{0100 .0
G= | 1{potro-.- ot 2T ¢

11 DOGD_I

This part is my -- this part is my P and this part is my I, so parity check matrix will be I PT
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@ The parity check matrix for the single panty check code in
systematic form is given by

H=[11---1] .~

So that is this.



(Refer Slide Time: 19:54)

i

el - |
r-J » W v— |

@ The parity check matrix for the single parity check code in
systematic form is given by

H=[11---1]

@ All codewords of the single parity check (SPC) codes are even
weight

As I mentioned a very interesting property of single parity check codes.



(Refer Slide Time: 20:00)

Single parity check code

@ The parity check matrix for the single panty check code in
systematic form is given by

H=[11---1]

& All rndrwid*. of the single parity check (SPC) codes are ewEn
eght.

All code words of single parity check codes are of even weight.
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Single parity check code

& The parity check matrix for the single parity check code in
systematic form is given by
i

H=[11---1]

@ All codewards of the single parity check [SPC) codes are even
weight
o Minimum distance of 5PC code is 2

—

And we can see the minimum distance of the code is 2 how simple, very simple way to check is
look at the columns of the parity check matrix what is the minimum number of columns that add

up to 0 in this case 2, any 2 columns will add up to 0 so the minimum distance of this code is 2.
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@ The parity check matrix for the single panty check code in
systematic form is given by

H=[11---1]

# All codowords of the single parnity check (SPC) codes are even
weight

# Minimum distance of SPC code is 2

@ SPC code can detect all error patterns with odd number of errar

Now since all code words have even weight any odd code, any odd error pattern can be detected
by single parity check code, because any odd pattern, any odd weight pattern is not a valid code

word.
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Single parity check

& The parity check matrix for the single parity check code in
systematic form is given by

H=[11---1]

# All codewords of the single panty check (SPC) codes are cven

weight

& Minimum distance of SPC code is 2

@ SPC code can detect all error patterns with odd number of error

So a single parity check code can detect all error patterns which has even number of errors, odd
numbers of errors right. So as long as error pattern has odd weight single parity check code can

detect it.
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parity

@ The parity check matrix for the single parity check code in
systematic form is given by

H=[11---1]

All codewords of the single parity check (SPC) codes are even
weerghit

# Minimum distance of SPC code is 2
@ SPC code can datect all error patterns with ocdd number of error

@ The (. n — 1) SPC code and (0. 1) repetition code are dual to each
athar T

And it is not very difficult to see that a single parity check code and repetition codes are dual to

each other you can see basically the parity check matrix of single parity check code is same --
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Single parity che

& The parity check matrix fior the single parity check code in
systematic form is given by

H=[11---1]

# All codewords of the single panty check (SPC) codes are cven

weight

& Minimum distance of SPC code is 2

@ SPC code can detect all error patterns with odd number of error
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@ A repetition code of length a s a linear (a, 1) block code

# |t consists of two codewards. all zéro codeword O = (0.0.--- ,0) and
all one codeword 1 = (1,1 1}
& Codeword 15 obtained by repeating the infarmation bit n times.

@ Generator matrix is given by
=[11 - 1|

@ Decoding is based on majority decision of n coded bits

& Mimimiim distance of the code 5 n ;‘__ _J fﬂ“""‘-'
<k

B8
leke

As generator matrix of the repetition code and similarly the parity check matrix of repetition

code is same as.
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gle parity check «

@ It is a linear (k 4 1, k) block code with single parity bit

@ It u = [ug, iy g 1)), then the panty check hit s gven by

P gt oty LE L

The generator matrix of the of the single parity check code.
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Single parity check code

@ It ix 3 linear (k + 1, k) block code with single parity bit
& It u = {ug, uy g 1), then the panty check bit s grven by

P= g+ &y + T My
& Each codeword s of the form

v=(p.tp.th.-- 1)

Ff.;h, Lt
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parity check code

@ |t is a linear {k 4+ 1, k) block code with single parity bit
alfu [, 1y, . gy ), then the parity check bit = given by

B = Lg + iy + T U |

& Each codeword 5 of the form

=

v=[(p o, - 1)

@ The genarator matrix for the single p.:.nry_[:hcck code in systematic
form is given by L 3 —

11000 ﬂ P .
‘1 b1oo--of
= RS iy
G |kl 010 o ':_T='L_l'j = )
Hl'li-_-.‘l. F'T'

!t1nnnrj 1
= =
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Single parity check code

@ The parity check matrix for the single parity check code in
systematic form is given by

H=[1d ---1] .~
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parity check code

@ The parity check matrix for the single parity check code in
systermnatic form is given by

H=[11--1]

#® All codewords of the single parity check (SPC) codes are even
wesrght

# Minimum distance of 5PC code is 2

@ SPC code can detect all error patterns with odd number of error

@ The (n.n — 1) SPC code and (n, 1) repetition code are dual to each
ather =

And you can check the dimensions of the single parity check code is n — 1 and this dimension is

1. So single parity check code and repetition codes are dual to each other.
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# Hamming codes are single error correcting codes

Next we consider hamming codes, so hamming codes are single error correcting codes these are

single error correcting codes.
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Hamming code

# Hamming codes are single crror correcting codes

& For any m = 3, there exist 3 Hamming code with following
PArAMEters
Code length p=2"=1
Information bits. k=2"—-—m—1
p.‘jn!y tmts r_g = m
Error correcting capability: t=1
Mirirmum distance iy =5

And they are described by these parameters. So for any m greater than equal to 3 the code word
length is given by this the number of parity bits is equal to m, so number of information bits are
n —k, n —m so this is 2™~ ™~ ! so these my number of information bits, it has minimum distance
of 3 so it can correct single error and it can detect 2 errors. So how do we describe hamming

code.
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Hamming code

# Hamming codes are single crror correcting codes

@ For any m = 3. there exist a Hamming code with following
parameters
-
Code length n=3"-1 z =]
Information bits =2 —m—1 -4 8 I
pf'il..nl tats 1] ] m L ; ol = !
Error correcting capability: t=1 ol f‘* i
Flmmum distance Dy == 3 = i
T 7 1
He= || |
@& The parity check matrix in systematic form | !_I gl ||
¥ o
H=[l, P'

where the 2™ — m — | columns of PT consists of all m tuples of
weight 2 or morg %

We can describe the hamming code by generator matrix or the parity check matrix. So a parity
check matrix of a hamming code consist of all nonzero m-tuples. So if the number of parity bits
as I said is m, then code word length is 2™~ ! and the entries in the parity check matrix are all non
zero m-tuples. Now how may m- tuples do we have, we have total 2 ™ m-tuples and out of those,
so these are like 000, 001 and you can go on up to all ones and this m times m. Now if we

removed all zero 1, so total number of nonzero m-tuples is basically given by 2™~ !,

So the columns of the parity check matrix of hamming code are nothing but non zero m-tuples,
so they are total 2m of them 2m, 2m — 1 of them okay. And if you want to write the parity check
matrix of a hamming code in a systematic form then we can write it in this way. So parity check
matrix will have an identity and then some matrix P, since identity matrix will consist of all
patterns all m-tuples of weight 1, p' should consist of all m-tuples of weight more than 1. So it

consist of all m-tuples of weight 2, 3,4 up to m.
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a F.'.nr'_FE_'J _1£I'rhf- Hamming code s of length n =27 — 1 = 7
k=2 - 3-1 =4, that has parity check matrix H X
'u'-l-.lr.'p'l.h_ |Tt-, =l =77
1001011 | i, L
H 010;1110 " 1. G
001111 By AR
£iv - (39
: S
and generatar matriz G, e [P r\ soo -
; 3 €1 a0y
1101000 I0i010L
g1L1ploaq e i
= 1110010 R
iolpo01l |

So let us take an example, let us consider m = 3. So if m=3 we know n is 2™~ ! so length of the
block code in this case will be 7. Now how many numbers of parity bits, number of parity bits is
given by m so this will be 3. So then what is the number of information bits this is 7 — 3 that is 4.
So this is a 7, 4 code. Now as I said the parity check matrix consist of all nonzero m-tuples, so m
here is 3 so let us list all nonzero m-tuples so we can write 001, 010, 011, 100, 101, 110, 111 so

these are the 7 nonzero m-tuples right.

And if you want to write your parity check matrix in a systematic form what will you do. So this
is your I, so I am writing these patterns which are like 1, 2 and 3, I am writing these patterns and
then what I write here is the other m-tuples. So you can see this is m-tuple of weight 1, these 3
are m-tuples of weight 1, and then this is a m-tuple of weight 2, weight 2 and this is m-tuple of
weight 3. Now since this matrix is of the form I and P, I can write the generator matrix this will

be PT 1.

So we can write this, so PT so 1011 will come here as 1011, 1110 will come as 1110 and 0111
will come as 0111. And then this is the identity matrix, so this our generator matrix or this 74

hamming code. The point to be noted here is, once you will fix your m all other code parameters



are fixed, n is fixed right, because n is 2™! and number of parity bits is equal to m. So for the

hamming code once you fix m the other parameters of the code are fixed.
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@ Wa can rearrange the columns of the party check matrx of
Hamming code such that column in position i represents the integer
i

Now let us see how we can correct errors using hamming code.
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@ FnrjE'.n ._T;'rmﬁ Hamming code is of length n =27 -1 =17
k=2 -3 -1 =4, that has parity check matrix H -
d kbbb k2 =l =7
0 1] [ipogoit lﬂ_‘jm_-,
0 | £ |1-| 0101110 e e
0 | I K= ==
) 2 3_}11&1 i1 o
= 1 I rl .'I 1?_, ‘!’_'
i T .
and generator matrix G e [P s Pl 5o "
- . o By jadii.
iteaaog L= s i":’
0110100 i
& 1110010 st
| 1010001 |

As we said this has minimum distance 3 you can see here. So let us take any 3 columns let us just
take this column, column number 1, column number 2, and column number 4 you can see
column number 1, 2 and 4 they will add up to 000. So if 3 and that is the minimum number of

columns that will add up to 0 so which means the minimum distance of this code is 3.

If the minimum distance of this code is 3, what is the error correcting capability of this code it is

d-1/2 floor off that and this comes out to be 1. So hamming code can correct single error. So let

us see how we can use hamming codes to correct single error.
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Hamming i

# We can mearrange the columns of the parity check matrix of
Hamming code such that column in position i represents the integer

So first thing what we will do is we will rearrange the columns of the parity check matrix of

hamming code such that column in position i represent integer i.
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Hamming code

@ We can rearrange the columns of the panty check matnx of
Hamming eode such that eolumn in pesition | represents the integer

@ For example for m = 3. the Hamming code is of length
n E‘] l=7. &k E] i=1 Iithat has parity check matnx H,

1010101 ] = LSB
H

0110011
ooo1111

i I

So as we said the parity check matrix of hamming code are all nonzero m-tuples. So we will
arrange them in such a way such that the i column represent i bit. Now what do I mean by that,
so let us go back to our same example m=3 so in this case n=7 and k=4. Now note the way I have
arranged this, this is my MSB. And this is my LSB least significant bit and the most significant
bit.
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Hamming code

& We can rearrange the columns of the panty check matrix of
Harnrmnp; code such that column in position | represents the integer
I

@ For example for m = 3, the Hamming code is of length
n=2-1=7 k=2"-3-1=4, that has parity check matrix H,

iol0101
H 0110011
gno1111

# Here the column (x. v, 2)7 represents the number

(2% + ¥(21) + 2(2%).

So each column represents a number in this particular way.



(Refer Slide Time: 30:18)

Hamming code

@ We can rearrange the columns of the panty check matnx of
Hammung code such that column in position | represents the integer
1

@ For example for m = 3, the Hamming code is of length
n=23-1=7 k=2"-3-1=4 that has parity check matrix H.

1010101 |=
H 0110011
QOoo1111

1254547
@ Here the ealumn (x. . 2)7 represents the number
(29) + y(2Y) + 2(22)

So this is a least significant, this a least significant bit, this is the most significant bit. So this is
001 that is binary 1, so this is my column number 1, this is 010 that is 2, 011 that is 3, this is 4, 5,
6, 7. So note what I did was, I rearranged a column of the parity check matrix of hamming code
such that now i column represent i number basically, so column in i position represent the

integer i, now if I do that.
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Hamming code

@ Let r be the received vector. For decoding we compute the
syndrome rHT

Then let us see how this helps us in locating the position of the error.
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Hamming code

@ Let r be the received vector. For decoding we compute the
syndroma HT

So let us say r is my receive sequence receive vector this is my received n bit vector, and I am
interested in knowing whether r is an error, and if r is an error let us -- because the single error
correcting code, let us say a single error has happened then I am interested in correcting this

single error, so what do we do?
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Hamming code

@ Let r be the received vecior. For decoding we compute the
syndrnme rHT

The first thing to find out whether error has occurred or not, the first thing that we do is
recompute the syndrome, how do you compute the simple syndrome? We take rH' and what is

our H?
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Hamming code

@ We can rearrange the columns of the parity check matrix of
Hamming, code such that column in position | represents the integer
k

@ For example for m = 3, the Hamming code is of length
n=2 - 1=7 k=2"-3-1=4 that has parity check matrix H,

1010101 |-
H 0110011
gad1111
12354547
# Here the column (x.y.z)" represents the number
x(2%) + ¢(2V) + 2(2%)

H is our matrix this matrix which is arranged where their columns are arranged in such a way

such that column in i position represent integer i.
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Hamming code

@ Let r be the received vector. For decoding we compute the
synd rome rHT
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Hamming c

@ Let r be the received vector. For decoding we compute the
syndrome rHT

@ [f atmost one ertor has occurred, the syndrome would be either the
zero vector or a column of H

So since is a single error correcting code it can only correct atmost one error.
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Hamming code

@ Let r be the received vector. For decoding we compute the
synidrome rHT

# If atmost one error has occurred, the syndrome would be either the
zero vector or a column of H
e -;...1}: el

So we assume let us say atmost one error has occurred, atmost of course if there is no error then
syndrome would be an all zero vector and if a single error has happened the syndrome would
have been a nonzero vector. Now what you will observe is, if a single error happens then that
single error will be basically whatever is a syndrome from there we can find out which bit

location is in error.

So in case of hamming code if single error has happened and you have arranged your parity
check matrix in such a way such that column in position i represent integer i, then the syndrome
would be either zero vector in case there is no error or otherwise in case of single error it would

be a column of this parity check matrix.
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Hamming code

@ Let r be the received vector. For decoding we compute the
syndmma rl'I-Ir

@ If atmost one error has occurred, the syndrome would be either the
zero vector or a column of H

@ When one error has happened. the number represanted by the
column of the calculated syndrome is the position in codeword which
15 in error, and since we considered binary code. it can be comrected
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Hamming code

@ Let r be the received vector. For decoding we compute the
syndrmme rHT

@ |f atmost one error has occurred, the syndrome would be either the
rero vector or a column of H

@ When one error has happened, the number represented by the
column of the calculated syndrome is the position in codeword which
15 in error, and since we considered binary code. it can be corrected

So when single error happens the number represented by the column of the calculated syndrome
is the position in the code word where the error has happened. So see it so nice, so by looking at
the syndrome and comparing it with the column of the parity check matrix that our reordered
parity check matrix we can find out the location where the error has happened. And since for a
binary code basically if we can locate the error, so the bit can be either zero and one so whatever

the bit is we just flip that bit and get our corrected code word.
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Hamming c

@ Let r be the received vector. For decoding we compute the
gyndrnmn rHT

# If atmost one error has occurred, the syndrome would be either the
rero vector or a column of H

@ When one error has happened, the number represented by the

column of the calculated syndrome is the position in codeword which
15 in error, and since we considered binary code, it can be corrected
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Hamming code

@ Let 0101010 be a codeword in [7, 4] Hamming code. Suppose
we received the vector 0001010

So let us take an example.
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Hamming code

@ ler 0101010 be a codeword in |7, 4] Hamming code. Suppose
we received the vector DjCI_]EI 1010 -

So let us say this is a code word for this [7, 4] hamming code. And let us assume that there is a
single error has happened and this bit got change from 1 to 0, now given this received sequence I
am interested in finding out what is my estimated code word first of all I am interested in finding
out whether an error has happened or not, and if the error has happened I am interested in

correcting that error.
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Hamming code

@ Let0101010 be a codeword in [7. 4] Hamming code. Suppose
we received the vector 0001010

@ Syndrome is given by

s=H"=/0 0D 01010 =(010)

= B — R =
e e T e I e BT T e |

— e e e O O D
L i

So as I said the first thing that I am going to do is.
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Hamming code

@ Let 0101010 beacodeword in [7, 4] Hamming code. Suppose
we received the vector 000 lgi 0.

@ Syndrome is given by

=(010)

wn

]

=

b 4

Il

=

=

=

—

=

L

=
el = Rl = N
e DT e e O
el el = N~ = |

I am going to compute the syndrome so what is my r? This is my r, and what is my H?
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Hamming code

#Ller0101010 bea codeword in [7. 4] Hamming code. Suppose
we received the vector DjO]U 1010 —
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Hamming code

@ Let r be the received vector. For decoding we compute the
syndrome rHT

# If atmaost one error has occurred, the syndrome would be either the
rero vectar or a column of H

@ When one error has happened, the number represented by the
column of the calculated syndrome is the position in codeword which
15 in error, and since we considered binary code, it can be corrected
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Hamming code

@ Let r be the received vector. For decoding we compute the
syndroma rHT

# If atmost one error has occurred, the syndrome would be either the

zero vector or a column of H
L R R1us c,..a]: arred

H matrix is basically my parity check matrix.
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Hamming code

@ Let r be the received vector. For decoding we compute the
synirmoma HT
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Hamming code

@ Wa can rearrange the columns of the panty check matrix of

Hamming code such that column in position | represents the integer
i

@ For example for m = 3, the Hamming code is of length
n=2-1=7 k=2"-3-1=4, that has parity check matrix H,

1010101 |e T | ==

H-| 0110011 Al

= Loo01111 oa |

1234547 | @ i

@ Here the calumn (x. v, 2)7 represents the number & | 1
x(2°) + y{21) + 2(2%)

{ ¢ 1

Of the hamming code where the columns are arranged in such a way that column in i position

represents i™ integer, so if we take H so we will get 100, 010, 110, 001, 101, 011, 111 right?
And that is what I get here.
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Hamming code

@ Let r be the received vector. For decoding we compute the
syndrome rl'IT

# If atmost one error has occurred, the syndrome would be either the

zero vector or a column of H
M e -;.p.1_k et
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Hamming code

@ Let r be the received vector. For decoding we compute the
synimme rHT

# If atmast ane error has occurred, the syndrome would be either the
rera vector or a column of H

@ When one srror has happened, the number reprasented by the
column of the calculated syndrome is the position in codeword which
15 in error, and since we considered binary code, it can be corrected
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Hamming code

o let0101010bea cardemd in [7. 4] Hamming code. Suppose
we received the vector {J[Q}G 1010 ==
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Hamming ¢

@ Let 0101010 be a codeword in [7, 4] Hamming code. Suppose
we received the vector 0001010.

@ Syndrome is given by

[1 0 0]
g1a0
110
s=rH'=[{0001010]|00 14=(010)
+ éj Il... :m+.:|11|
-]_ 1 ]_- .'(Lﬂ'.d‘l
" T

So this is my r, this is my H' now H' so this is 1, 2, 3 this row will participate this row. So my
syndrome will be this plus this, this row plus this row, so this will be 001+011 which is 010. So

my syndrome here is 010 now what do I do? I go back and check which column is 010.
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Hamming code

@ Let0101010 be a codeword in [7, 4] Hamming code. Suppose
we received the vector Qo101 e

So if I go back to my parity check matrix I notice that.
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Hamming code

& We can rearrange the columns of the panty check matnx of
Hamming, code such that column in position | represents the integer
i

@ For example for m = 3, the Hamming code is of length
n=2P-1=7k=2

4. that has parity check matrix H.

3-1

o101} g 1ee
H-| 010011 ' oee
= Lo

o

I ; &

op1111 8a |

1f 54547 | & ¢

# Here the column (x.y.2)" represents the number & | I
(2%) + ¥(21) + 2{27) (A

010 is this second column of my parity check matrix, right? So what does it indicate then? It
indicates that the second bit of my code word is in error.
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Hamming code

@ Let 0101010 be a codeword in [7, 4] Hamming code. Suppose
we received the vector 0001010

@ Syndrome is given by

1 0 0]
010
I 1 0
s=rH'=[0 0 0 1 O li] U_E_l" =(010)
+ é_?- ]lb_ dei+ol |l
: 1 1) =(0 | a)
'|'iT

So then I can go ahead and correct this error.
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Hamming code

@ LletD 101010 be a codeword in [7, 4] Hamming code. Suppose

we received the vector 0001010
@ Syndrome is given by

s=rH'=|(0 D 0 1 0 1 0|

- TR

el = I = B |

- D2

= (010)

@ The number represented by syndrome is 2. hence the error is in
second bit position. Hence estimated codeword is0101010
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Hamming code

@ Ler0101010 be a codeword in [7, 4] Hamming code. Suppose
we received the vector 0[0/01010
@ Syndrome is given by A
y= Olotolo
r1 6

-

s=H'=[0 C @ 1810 =(010)

DO
\ "

1
1
0
0
1
1

T
R

@ The number represented by syndrome is 2. hence the error is in
second bit position. Hence estimated codeword 50101010

So this second bit, from the syndrome I can find out that this syndrome is nothing but the column
in the second location. So my second bit is in error and since we are talking about binary code,
so then this zero should have been one. So my estimated code word is then 0101010 and you can
see that is what I had transmitted, this is the same code word that I have transmitted, you can
yourself verify change some other bit location, introduce some other single error and you can --

you will see from the syndrome you can find out the location of your error.
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Shortened Hamming code

@ [f we delete any | columns from the panty check matnx of a
Hamming code, we get shortened Hamming code with following

parameters
Code length a=23"_—f-1
Information bits: k=2"-—m—I-1
Parity bits n—k=m

Minimum distance: g, = 3

So it has a very simple decoding algorithm, now as I said before in case of hamming codes, once

I fix my m, my code parameters are fixed.
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Shortened Hamming code

@ If we delete any [ columns from the panty check matrix of 2
Hamming, code, we get shortened Hammlng code with Fnlluw.ng
parameters

Code fenglh p=23"—]-1
Informatian bits:  k=2"-m-/-1
Parity bits n-k=m

Minimum distance drnln >3

So for example the examples that we were dealing with, we had taken m=3.
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Shortened Hamming code

H.:rnrnrrlg code, we get shortened H.1rr|rn|ng code with rnllnwmf.
pAfIMELErs

M=
Y
Cade length a=2_]-1 h=7-=7
Infarmation bits k=2"-m—I-1 y_ 4
Parity bits n—k=m P A
Minimum distance:  diy = 3 ()
(.:4)
III-- x 3
(1,3)
{ f'-_.. :‘: F i

So once the moment I fix m=3 my n is fixed it is 2> that is 7, so k is 7-3 that is 4. So this
becomes the (7, 4) code, right? What if I am interested in designing let us say (8, 4) code or let us
say I am interested in (7, 3) codes, (6, 3) code. So there are various techniques available to twig
the parameters of the code, we are going to talk about some of them, we are not exhaustively

covering all possible ways of lengthening or shortening a code.

We just give you just few examples to illustrate this idea of changing the parameters of the code.
So the first thing that we are considering is a shortened hamming code, so how do you get a
shortened hamming code? You delete 1 columns from the parity check matrix of your hamming

code, now if I delete 1 columns that means my code word length is decreased by 1.
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Shortened Hamming code

@ If we delete any | columns from the panty check matrix of a
Hammrn'g::de, ﬂet shortened Hamming code wath fuiluwmﬁ

parameters =3
Cade length p=2"_—|—1] n= f—ﬁ =7
Infarmation s if ™ _m-—I- l %. &4
Parity bits n=k=m oL
Minimum distance: oy = 3 lrl_l". "'f,.l
'f'f:’;‘b
(1,3)
[ &32)

So my new code word length is then 2™ -1-1 so this is my code word length, now numbers of
rows are still the same that is m, so number of parity bits are still same but since I deleted 1 coded

bits so number of information bits also got decreased by 1. Now minimum distance of a hamming

code is three if I am deleting some columns.
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Shortened Hamming code

@ IF wee -r_JElFLl_- any | r_ulﬂnn?l fram the panty check matns of &
Hamming code, we get shortened Hamming code with following

parameTers

Caode length
Information bits
Parity bits:
Mirmum distance

= |_::I - @ Lg' l:lnTl.

(. & |

I|'||".:!|.5
n_-i'"'# H-l-|-T
k=2"—m-i-1 . 4
n=Kk=m L
toin =3 (7.4
(£.4)
(7,3
(6.3)

Then minimum distance cannot be less than what was the original minimum distance of the code,

why? Because you can see if I have a parity check matrix here and let us say I have these

columns let us call it a1,a2, an. Now if [ am removing some of the columns I can carefully remove

those columns which are causing the sum of let say d columns to be linearly dependent. So if I

remove some of those columns I can possibly increase my minimum distance.
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Shortened Hamming

@ 7 we -&.Jﬂll.*le any | columns frawm the panty check matnx of a
Hamming code, we get shortened Hamming code with following
paramaters

M=%
Code langth A=2"—l=1 heg-1=7
Information bits k=2"—-m—-1-1 K. &
Parity bits: n-k=m -
Misimuin distance .FTI,.",, = 3 f. I "Jl'll
R o a ¢ an | (£4)
[l = (1,3)
— - F
{ b )

And that is why I wrote by whenever you delete columns on the parity check matrix the

minimum distance is atleast what was there in the original code.



(Refer Slide Time: 40:48)

3 NG s B2
Fa - . RGO T [TTUTT bl R

@ I we delsis ary | columns Irom the panty check matrx of &
Hamming code, we get shortened Hamming code with following

parameters
Code length n=3"=1-1
Information bits k=" _ m -1
Parity bits nel=m
Mifumim diSlance  dey, = 3

@ H matrix of (7.4) Hamming coda given bry

r1 oloj1 1
H g 1{1lo o 1 3

el

pole 103
# Shartened (6,3) Hamming n‘.-dr-Jﬂh.:u: A panty chack matrix
_ e
10111 1] d= 3
Hy 01001 1|
00010 &j

This is one example of a (7, 4) hamming code, so if I delete let say I delete this if I delete this
column what do I get, I get a shortened (6, 3) hamming code. So when I delete this my n
becomes six from seven and my information bits also reduce from four to three. This code also
has minimum distance three you can see three columns will add up to zero. Let us say this

column, this column, and this column add up to zero.

So, minimum distance is still three for this code. So whenever you want a shortened code make
sure you remove those columns in a judicial way so that potentially you can increase the
minimum distance. In this particular example, if I delete one column I cannot increase the
hamming distance, but if I delete more columns from this parity check matrix I can potentially

increase the minimum distance of the code.
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yrtened Hamming code

@ I we delete any | columns from the panty check matrix of 2
Hamming code, we get shortened Hamming code with following

paramaters
Coda length A=2"=l=1
Information bits: k=2"-m—|-1
Parity bits A=k =m

Minimum distance  dhy, =3
# H matrix of (7,4) Hamming code given by

1 DjOjr 1 11
H O 1(1|l0 0 1
o n g 1 90 1

@ Shortened (6.1) Hamming T’ﬂﬂ.h“ a panty check matrix

1 &I 1 I 1 d=3
Hy 0160611
0 010

1] i

e
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Expurgated Hamming code

@ Let C be a (m &) Homming code with parity check matrix H. Let us
define a new code O with parity check matrix Hy. {all one vector as

the last row.
H
e 1 1

Another class of code is what is called expurgated codes. So what is expurgated hamming code?
So if H is the parity check matrix of hamming code then I define a new parity check matrix

which has all ones as the last row.
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& |1 we delete any | calumns fram the panty check matrx of a
Hamming code, we get shortened Hamming code with following

paramaters
Code length ne P =i=1]
Information bits k=2 —m—1—1
Parity bits: Aek=m

Minimum distance: o, = 3
@ H matriz of (7.4) Hamming code given by
1olo)1 111

H 0 1|10 0 1 1
oo 19 1 8§ 1

& Shartensd (6 1) Ilammﬁcn.rlr has a

PanTy rhrr_lnc matFi

-
1. 10F ¥ d=3
DOl 1
o1

o i

-

-
_—
(=0 =]
=R ol ~ N o

Now note the parity check matrix of a hamming code does not have all ones. So when I add an
all one row.
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@ Let C be a (n &) Hamming code with parity check matrix H. Let us
define a new code £y with parity check matrix Hy. (all one vector as

the last row. )

()

Essentially the rank of this matrix will be one more than the rank of the original matrix H.
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Expurgated Hamming co

@ Let € be a (m k) Hamming code with parity check matrix H. Lt us
define 3 new code C) with parity check matrix Hy. {(all one vector as

the last row. )
H
H; - ( i ) 4
TS |

@ Since the parity check matrix of Hamming code doesn't have an all
one yector i any ol the rows, any inear combinaton including the
last row of Hy will never yield a zero vector

@ Thus all the rows of H; are linearly independent. Hence the row
spaca of M has dimension (n — k | 1)

Because any linear combination of last row with the rows of the earlier parity check matrix H
would not be dependent. Hence the rank of this new matrix Hi is (n-k+1) and what is the number

of columns of this matrix that is n. So rank of this matrix is (n-k+1).
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Expurgated Hamming code

& The dimension af 115 null space I:_. )

r.I'ri:uI:I'-lll ={A) — [A R+1)l=~n 1
2 3

Then what is the dimension of the null space of this or what is the dimension of code sequence

here, so that is basically this is n minus dimension of H matrix so that becomes k-1.
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Expurgated Hamming code

@ Let € be a (i &) Hamming code with panty check matrix H. Let us
define a new code O with parity check matrix Hy. {all one vector as

the last row. )
H
1 i

& Since the panty check matrix of Hamming code dossn’t hawe an all
one vector in any of the rows, any linear combination including the
last row of H; will never yield a zero vector

@ Thus all the rows of My are linearly independent. Hence the row
space of My has dimansion (o - & | 1)

So the new code that we derive by adding an all one row in the parity check matrix of the

hamming code.
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Expurgated Hamming code

@ The dimension af 4 aull SpaCE {_-: s

Fl) =k —1

r.I'H.l.lI:f-ll - |:||] [ — &
3 2

We get a new code which is a (n, k-1) code.
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Expurgated Hamming code

@ The dimension of its null space {; =
dm{ly)=(n)—[(n—k+1)=k—1

@ Hence C; is an (n, & — 1) linear code. This is an expurgated
Hamming code

And this is known as expurgated Hamming code.
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Expurgated Hamming code

@ The dimension of s null space O -
dim(Cs) = (n)— (n—k+1) = k—1

@ Hence C; is an (n, & — 1) linear code, This is an expurgated
Hamming code
@ Mow, since the last row of Hy 2 an all-one vector, the inner product
of any odd weight wertor @ and all-one wector is 1| Hance for any
odd waght wactor o,
vHT 20

and so v cannol be 3 codevenrd

Now one of the interesting property of this code is, this code contains all even weight code word

it is not very difficult to prove.
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Expurgated Hamming code

@ The dimension of its null space O &
dim{Cy) =(n)—(n—k+1l=k -1

@ Hence C; 5 an (A k — 1) linear code. This is an expurgated
Hamming code
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@ The dimensian of s aull Spde I':: =

r.I'u:uI:{-” = (A] = [H— &+ '|._| = N 1
3 2 ===

If v is a valid code word.
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Expurgated Hamming code

@ Let C be a (n k) Hamming code with parity eheck matrix H. Let us
define a new code Cy with parity check matrix Hy. {all one vector as

the last row.
( : )
H; = - Fi T
[l vH, =°

& Since the panty check matrix of Hamming code dossn’t have an all
one vector in any o the rows, any lingar combination including the
last row of Hy will never yield a zemo vector

@ Thus all the rows of Hy are lineardy independent. Hence the row
space of Hy has dimension {(n - &k 4 1}

Then we know vH' should be zero. And last row of Hi has all ones, so when we take transpose
so the first column will be all ones, and when we do vHi" what we will get is let us say the

components of v are vo, vi, v2s0 vn-1 then what you will get is basically.
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@ Let C be & (n, &) Hamming code with parity check matrix H. Let us
define a new code Oy with parity check matrix Hy. {all one vector as
the last row. )

H
H; = Sk ] -
[|'1_¢) vH, =°

sinca the panty check matrix of Hammung code dossn’'t hawe an all
one yector in any of the mws, any linear combination including the
last row of Hy will never yield a zero vector.

@ Thus all the rows of H; are linearly independent. Hence the row

space of My has dimension (n -~ k 1}

Sum of these components of this code.
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Expurgated Hamming code

@& The dimension of i1 null space C;
r.I'u:JI:{-” ={n)—[A—K+1)=2K 1
4 +

Code word we should add up to zero. And this will happen only when v has even weight.
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Expurgated Hamming code

@& The dimension of i1 null space C;
r.I'u!uI:{-” ={n)—[A—K+1)=2K 1
4 +




(Refer Slide Time: 44:54)

| = N o w3 il .
A iTimas- o iflocaaNENNERED

Expurgated Hamming code

@ [he dimension of its null space £; =
dim{ly) =(n)—[p—k+1)= k-1

@ Hence O s an (n k — 1) linear code. This is an expurgated
Hamming code

So this new code that we generated expurgated code is basically has all even weight code words.
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Expurgated Hamming code

@ [he dimension of its null space (; =
dim{ly) =(n) - [n—k+1)=k—1

@ Hence C) 5 an [/, & — 1) linear code. This is an expurgated
Hamming cods,

@ Now, since the last row of Hp & an all-one vector, the inner product l
aof any odd weight vector w and all-one wector is | Hence for any |

odd waght vartar o
wHT 20

and 50 ¥ cannol be 3 codeveord

So if you have an odd weight vector then vH' cannot be 0. Because of this all ones in the parity

check matrix.
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@ The dimension of its null space ) is

dr;rrff:}—trr}— [m— k + 1)= k—1

@ Hence C; is an (n, &k — 1) linear code. This is an expurgated
Hamming code.

@ Mow, since the last row of Hy is an all-one vector, the inner product
of any odd weight vector v and all-one vector 18 1. Hence for any
odd weight vector v,

wHY =0

and so v cannot be a codeword

Of this new matrix Hi expurgated code parity check matrix okay. So vHi" cannot be zero, if v

has odd weight.
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Expurgated Hamming code

& The dimension of its null space G is
dim{G)=(n)—(r—k+1)=k-1

@ Hence & is an (n, k — 1) linear code. This is an expurgated
Hamming code.

@ Now, since the last row of M is an all-one vector, the inner product
of any odd weight vector v and all-one vector is 1. Hence for any
ol ummghr varior W,

=0
and so w cannot be a codeword

@ Thus, this expurgated Hamming code only has even weight
codewards (all odd weight codewords are expurgated)

So you can see that, this is one way of getting rid of odd code words. So by adding an additional
all one rows in the parity check matrix of the original code we actually got rid of all odd weight
code words. So the minimum distance of this expurgated hamming code would be then four
why? Original code has minimum distance three, but now we got rid of all odd weight code

words. So the minimum distance of this new code expurgated Hamming code would be four.
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Expurgated Hamminj

2 The dimension of its null space O is
dim{Ci) =(n} —(n—k+1)=k-1

@ Hence C; is an (n, k — 1) linear code. This is an expurgated
Hamming code.

@ MNow. since the last row of My is an all-one vector. the inner product
of any add weight vector v and all-one vector is 1. Henece for any
odd weight vector v,

=0
and so v cannot be a3 codeword

@ Thus, this expurgated Hamming code anly has even weight

codewords (all add weight codewords are expurgated)

The submatrix formed by the original Hamming code insures that all

nanzero codewords must have a weight of atleast three

@ The cxpurgated party check matrix defines a3 code with minimum
distance four

So minimum distance is four.
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Expurgated Hamming code

So this is an example, this is the parity check matrix of the original Hamming code.
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gated Hamming code: Example

@ H matnx of [7.4) Hamming eode given by

1 901111
H g 110011
o101 01

@ Distance-4 expurgated Hamming code has a parity check matrix H;
given by

And if we add all one rows in the parity check matrix we get the parity check matrix of a

expurgated code.
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@ Let C be a (n, k) Hamming code with parity check matrix H. Let us
detine 3 new code O with parity check matrix Hy. (all one vector as
the last row.) b

H o] '
M, (_.__”_ ].) P n-w

1 [ 1] Hie -k

Finally I will conclude this lecture with another class which is basically extension which called
extension of a code. So this is an example of an extended hamming code. So how do I generate
an extended Hamming code. So note, so this is the parity check matrix of my original Hamming
code. I add a zero so I add an additional column which is zero here. So these are all zero here,

and then I add one row which is all one.

And it is not very difficult to see that the rank of the matrix will be if the rank of H is let say n-k.
the rank of this matrix Hi1 will be n-k+1. Because the parity check matrix of the Hamming code

did not have an all one row.



(Refer Slide Time: 47:36)

o B ™

@ Let C be a (n, k) Hamming code with parity check matrix H. Let us
detine 3 new code O with parity check matrix Hy. (all one vector as
the last row.) b

H o] H
", ( s I.) -k

T_l_l ] I_| His m=kw

And then these are all zeros and this is one so any leader combination of this row with these rows
basically would not, it would not change the it will not decrease the Hamming distance

essentially.
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Extended Hamming code

# Let C be a (n. k) Hamming code with panty check matrix H. Lat us
define a new code C; wath parity check matrix Hy. (all one vector as
the last row. ) __Piideem L1

T 0 i+ i
@ )

H
H, ity
[1-1]
@ Since the parity check matrix of Hamming code doesn't have an all

one vector in any of the rows, any linear combination -nch_.dm& the
last row of Hy will never yield a zero vector

a Thus l1I| the rows of Hi are linearly independent Hence the row
space of H, has dimension (n— &k + 1) =

So this will have the rank of this matrix would be one more than the rank of the original parity
check matrix H. So what we are saying then is all rows of these parity check matrix Hi are
linearly independent. As I said that is because the original H matrix did not have all ones here.
And this is one here, this is zero here, so if we take linear combinations of this with any of the

rows of the original parity check matrix they would not be linearly dependent.

So all rows are linearly independent hence, the rank of this matrix is (n-k+1). And what is the
number of columns the original matrix had n columns, and we added one column, one more

column. So number of columns here is n+1, so this will define a code of length n+1.
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@ The dimension of its null space G is

dim{Cy) = (m+1) = (n

"
e

So then we can find out what is the dimension of null space or so this is number of coded bits,
this is the rank of the new parity check matrix. So number of coded -- so the dimension of null

space is k so this will then generate.
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@ The dimension of its null space C; is

dimlCy) = (a+ 1) =(n-hk+1)=k

# Hence ) is an (n+ 1. k) linear code. This & an extended Hamming
code = ===

An (n+1, k) linear block code, and this is known as extension code or extended Hamming code.
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@ The dimension of its null space G is

dim{Cy) = (m+1) = (n

r
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Extended Hamming code

@ Let C be a (n. k) Hamming code with parity check matrix H. Let us
define a new code € with panty check matrix Hy. {all one vector as
the last row. ) __FPishemt L&

H o n+ i
H] ( . . )
.- 1---1] | (D
@ Since the panty check matrix of Hamming code doesn’t have an all
ane vector i any of the rows, any linear combination -ncludmg the
last row of Hy will never yield a zero vector
@ Thus all the rows of Hy are linearly independent. Hence the row
space of H; has dimension (n — &k + 1)

If this H is a matrix a parity check matrix with hamming code the code described by Hi which is

given by this would be extended hamming code.
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Extended Hamming c

@ The dimension of its null space C; is
dimlCy) = (a+ 1) =(n-hk+1)=k

# Hence ) is an (n+ 1. k) linear code. This & an extended Hamming
code —— ——
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Extended Hamming code

@ The dimension of its null space C; is
dim{Cy)=(p+1)=(n=k+1)=k

@ Hence l’_'|_ is an [(n+ 1. k) linear code. This s an extended Hamming
code
# Now, since the last row of Hy 5 an all-one vector, the inner product
of any odd weight vector w and all-ane vector is 1. Hence for any
odd weight vector w
wH' %0

and s0 w cannot be a codeword

And again we can see that the extended hamming code will have only even code words that is

because the last row of the parity check matrix contains all ones. So vH' cannot be zero.
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@ The dimension of its mull space G is

dim{C) = (n+1) = (n-k+1) =k

@ Hence ) is an (n+ L. k) linear code. This i an extended Hamming
code

& Now, since the last row of Hy & an all-one vector, the inner product
of any odd weight vector w and all-ane vector is 1. Hence for any

odd weight vector v,
wvH' ¢ 0

and o v cannot be 3 codeword

If v has odd weight.
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Extended Hamming code

& The dimension of its null space G is
dm{C )= (n+l)=(n=-k+1)= ik

@ Hence O is an (n+ 1. k) linear code. This is an extended Hamming
code
& Now, since the last row of Hy % an all-one vector, the inner product
of any odd weight vector w and all-one vector is 1. Hence for any
odd weight vector v,
wHT 4 0

and s0 v cannot be a codeword

L

Thus, this extended Hamming eode only has even weight codewsords
@ The submatrix formed by the original Hamming code insures that all
nonzero codewords must have 3 weight of atleast thres

So the minimum distance of extended hamming code is four. Now please note the some of the
techniques that we mentioned here extension, shortening, expurgated that is valid for any other

linear block codes too.
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ded Hamming

@ The dimension of its null space G is
dm{C;) = [p+l)=[n=k+1)=k

@ Hence € is an (n+ 1. k) linear code. This = an extended Hamming
code

@ Now, since the last row of Hy 5 an all-one vector, the inner product
of any odd weight vector w and all-ane vector is 1. Hence for any
odd weight vector v,

wH 40

and so v cannot be a codeword

@ Thus, this extended Hammung code only has even weight codewords.
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Extended Hamming code

- Thg LIII'III;'rh,iUH uf its r|||” SpaCe -f_-: i‘j
dim{Cy) m(n+l)=[n=k+1)=k

@ Hence C; is an (n + 1. k) linear code. This & an extended Hamming
code

& MNow, since the last row of Hy & an all-one vector, the inner product
of any odd weight vector v and all-one vector is 1. Hence for any
odd weight vector v

wvH™ ¢ 10

and 5o ¥ cannot be a codeword

And these are some of the ways in which we can change the code parameters. So with this we

conclude this lecture. Thank you.
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