
Indian Institute of Technology Kanpur
National Programme on Technology Enhanced Learning (NPTEL)

Course Title
Error Control Coding: An Introduction to Linear Block Codes

Lecture-6A

Some Simple Linear Block Codes-I

by
Prof. Adrish Banerjee

Department of Electrical Engineering, IIT Kanpur

Welcome to the course on error control coding, an introduction to linear block codes. So today

we will discuss about some very simple block codes.

(Refer Slide Time: 00:25)

(Refer Slide Time: 00:27)

So this is the outline of today’s talk. Before I discuss some examples of linear block code, I will

first describe what do I mean by dual of a code. And then I will move on and describe some very

simple linear block codes such as repetition code, single parity check code, hamming code.

(Refer Slide Time: 00:50)

So before I discuss what is dual code, I would like to define what do I mean by two vectors u and

v being orthogonal. So two vectors u and v are orthogonal if their inner product which is defined

like this, so component wise dot product if that inner product is zero we call these n-tuples u and

v as orthogonal.

(Refer Slide Time: 01:19)

So for a binary linear (n, k) code its dual has the parameter n and n-k and it has the following

properties. So a dual code has – is defined such that its set of code words v are orthogonal to the

set of code words of the original code C. So if v is the code word which belongs to the dual of a

code C then v would be orthogonal to code words u which belongs to the original code C.

(Refer Slide Time: 02:05)

We can show that for a linear block code C the dual code is also a linear code.

(Refer Slide Time: 02:15)

So let us take x and y, two code words which belong to this dual code of C which we are

denoting by Cd somewhere – sometimes people use this notation also for the dual. Now if x and

y belongs to the dual code then we know that any code words belonging to the dual code they are

orthogonal to the code words in the original code C. So if u belongs to C and x belongs to dual

code Cd then x.u will be 0, because the code word x is orthogonal to code word u.

Similarly code word y which belongs to the dual code and code word u which belongs to the

original code u, since they are orthogonal their dot product will be 0. So we can write x.u=y.u=0

this follows from the property that a code which belongs to the dual code is orthogonal to the

code words in the original code C.

(Refer Slide Time: 03:40)

So then for some binary λ and μ we can write this λx+ μ(y. u) as λ(x. μ)+ μ(λ. u). Now what is

x.u? x.u is 0, because x belongs to the dual code and u belongs to the original code C. So they are

orthogonal that is why x.u is 0. Similarly y.u is also 0, hence we can write λx+ μy.u=0. So we

have shown basically this is – this belongs to the dual code. So we have shown that if our

original code linear block code is original block (n, k) code is linear the dual code is also linear.

(Refer Slide Time: 04:46)

And why does this belong to the dual code that is because this is orthogonal to the code word

which belongs to the – u belongs to C and since this is orthogonal to a code word which belongs

to C, so this must belong to dual code.

(Refer Slide Time: 05:08)

The next property that we are going to show is, if we have a linear block code we denote it by C,

whose generator matrix is given by this capital G and if x belongs to the dual code of this

original code C. So the claim that we are making is, if x belongs to the dual code then this

relation holds and if this relation holds x belongs to the dual code. That is what we mean by if

and only if.

So if x belongs to the dual code then xGT should be 0 and if xGT is 0 x should belong to the dual

code. So we are going to prove that if x belongs to dual code, then this relation holds and further

we will show if this condition holds then x will belong to the dual code.

(Refer Slide Time: 06:17)

So let us write the generator matrix of a linear block code C as you know, this is a k x n matrix

and this g0, g1, g2, gk-1 are these k generators each of length up to l, these are length l. So this g is

k x n matrix and any code word can be generated using these generators g0, g1, g2, gk-1. Now xGT

is basically given by inner product of x with g0, x with g1, x with g2 up to x with gk-1. Now what

happens if x belongs to the dual code.

If x belongs to the dual code, then the set of code words which belongs to the dual code, they are

orthogonal to the set of code words which belongs to the original code C.

(Refer Slide Time: 07:24)

Now we know that if x belongs to the dual code then x inner product of x with gi should be 0,

why? because the original code is generated using these generator sequence is g1, g2, gk-1 any

linear combination of this g0, g1, g2, gk-1 will give me my coded sequence, v is – you can write g0,

g0+ ……+uk-1, gk-1 right. So if x belongs to the dual code then inner product of x with gi’s would

be 0.

And hence xGT will be 0. So what we have shown is, if x belongs to the dual code from the

property that the code words in the dual code and code words in the original codes they are

orthogonal to each other, from that property we get this condition that, that inner product of x

with gi’s will be 0 or in matrix form we can then write, because x, the inner product of x with

gi’;s is nothing but XgT. So then xGT would be 0. Next we are going to show if xGT is 0, then x

must belong to the dual code.

(Refer Slide Time: 09:02)

Now if xGT is 0, then this condition holds, that inner product of x with gi is 0 for i=02k-1. Now

what is a code word? A code word is obtained by linear combinations of these generators g0, g1,

g2, gk-1. So if C belongs to the linear block code C, then C is essentially generated from my linear

combinations of these generator sequences, where this λi’s are zeros and ones, because we are

talking about binary codes.

(Refer Slide Time: 09:49)

Now note what do we want to show, we want to show if xGT is 0, then x must belong to the dual

code. And when will x belongs to dual code, we have to show that a code word which belongs to

original linear block code C and set of code words which belong to the dual code they are

orthogonal to each other or in other words their dot product is zero.

(Refer Slide Time: 10:15)

So let us take a dot product this is x which you want to show that it belongs to the dual code and

C is a code word in original code C. So what is x.c, x.c can be written x.Ʃ λigi this, I can write as

Ʃi λixi.gi. And what do I know from this condition that xGT is 0 I know from this condition that

inner product of x with gi is 0. So that means this term is equal to 0, then what I have shown that

x.c is equal to zero that means x and c are orthogonal to each other.

So if c belongs to the original code this C then x must belong to the dual code of this code C so

hence we have show that x belongs to the dual code of C

(Refer Slide Time: 11:33)

Now we also know that if x belongs to particular code let us say

(Refer Slide Time: 11:33)

A dual code then we know the condition that if for any valid code word we know that let us say x

is a valid code word then we know this property holds, that a code word parity check matrix

transform is basically equal to 0 so if we compare this form with this you can immediately guess

that the generator matrix for the dual code is given by the parity check matrix of the original

linear block code C and the parity check matrix of the dual code is given by this generator matrix

of the original code C, so this is what I am saying here the generator matrix G of a linear block

code is the parity check matrix for the dual code and vice-versa.

(Refer Slide Time: 12:50)

Okay now what is a self dual code, if a linear block code

(Refer Slide Time: 12:50)

Is same is equal to its dual code then it is called a self dual code

(Refer Slide Time: 12:50)

So as you can make out the rate for a self dual code should be half because k should be n/2

(Refer Slide Time: 13:15)

So n is always even for a self dual code and the dimension of the code is always n/2

(Refer Slide Time: 13:22)

An example of self dual code is

(Refer Slide Time: 13:25)

24, 12 Golay code

(Refer Slide Time: 13:27)

Okay now that we have defined dual code let us now come to the other topic which is some

examples of linear block codes. So a very simple example is a repetition code so if

(Refer Slide Time: 13:42)

For repetition code k is 1 and let us say we have a rate 1/ n repetition code, so the code word

length is n this one input bit and n outputs.

(Refer Slide Time: 13:57)

And how is repetition codes generated so we repeat the same information n times, so for a binary

repetition code it will have two code words 0 and 1 so if the information sequence information

bit is 0 the output will.

(Refer Slide Time: 14:17)

Be all 0’s repeated n times and if the input is 1 this will be output will be all 1 repeated n times

so there are only two code words in our repetition code.

(Refer Slide Time: 14:36)

 So we can then write down our generator matrix.

(Refer Slide Time: 14:41)

How is generator matrix if v is the coded sequence u is information sequence then generator

matrix they are related generator matrix in this particular way, so since our output is the bit

repeated n time the generator matrix for repetition code will be all ones so this is 1x n.

(Refer Slide Time: 15:07)

Now how do we decode a code which is n coded using repetition code, so what we do is we take

a majority decision so let us say for 0 we are sending n 0’s and for 1 we are sending n 1’s so at

the receiver when some of the bits get flipped or they are changed what do we notice as we look

at block of n bits and we see what is the majority, is it 0 or 1, if it is 0 majority of the bits are 0

we decide in favor of 0 if it is 1 we decide in favor of 1.

(Refer Slide Time: 15:48)

And we can see the minimum distance of this code is n, because there are only two code words

all 0 code word and all ones code word. So it can correct n-1/2 floor of that it can correct so

many errors, it can correct so many errors and it can detect n-1 errors, because any error pattern a

weight less then n would not change it into any valid code word so all error pattern up to wait n-1

can be detected by this repetition code.

(Refer Slide Time: 16:33)

 Let us look at another example of a linear block code this single parity check code as the name

suggest we are adding one single parity check bit.

(Refer Slide Time: 16:48)

So the information sequence length is k and n here is given by k +1 and how do we generate this

single parity check bit, this is as follows.

(Refer Slide Time: 17:04)

So if your information sequence is given by this so you have a k bit information sequence let us

call it u0, u1, u2, uk-1 then we generate this additional parity bit in this fashion so p is equal to u0+

u1+ u2 up to uk-1. So in other words if information sequence is even parity that means some of

them basically add ups to 0 then p will be 0 or else if the information sequence has odd parity p

will be 1. So as you can make out this single parity check code will always have even weight

code words.

(Refer Slide Time: 17:50)

 So each cord word I can write in this particular fashion So I have these

(Refer Slide Time: 17:54)

K information bits and 1 parity bit.

(Refer Slide Time: 18:06)

So I can write the same thing in the form of generator matrix.

(Refer Slide Time: 18:11)

As we know our coded sequence can be written as input times generator matrix so you can see

first bit is a parity bit which is sum of all ui’s, so fist column will be all ones and then this will be

a identity matrix because the second bit is u0, third bit is u1, u2 and so on. So this is a identity

matrix okay

(Refer Slide Time: 18:48)

Now we can write down the parity check matrix for this also.

(Refer Slide Time: 18:54)

As you can see this is this generator matrix is in systematic form. So what would be the

corresponding -- this is of the form like this I have P: I so parity check matrix will be I: PT right.

So what I have here is

 (Refer Slide Time: 19:25)

This is my PT and this is my I.

(Refer Slide Time: 19:34)

 This part is my -- this part is my P and this part is my I, so parity check matrix will be I PT

(Refer Slide Time: 19:48)

So that is this.

(Refer Slide Time: 19:54)

As I mentioned a very interesting property of single parity check codes.

 (Refer Slide Time: 20:00)

All code words of single parity check codes are of even weight.

(Refer Slide Time: 20:07)

And we can see the minimum distance of the code is 2 how simple, very simple way to check is

look at the columns of the parity check matrix what is the minimum number of columns that add

up to 0 in this case 2, any 2 columns will add up to 0 so the minimum distance of this code is 2.

(Refer Slide Time: 20:31)

Now since all code words have even weight any odd code, any odd error pattern can be detected

by single parity check code, because any odd pattern, any odd weight pattern is not a valid code

word.

(Refer Slide Time: 20:54)

So a single parity check code can detect all error patterns which has even number of errors, odd

numbers of errors right. So as long as error pattern has odd weight single parity check code can

detect it.

(Refer Slide Time: 21:15)

And it is not very difficult to see that a single parity check code and repetition codes are dual to

each other you can see basically the parity check matrix of single parity check code is same --

(Refer Slide Time: 21:32)

(Refer Slide Time: 21:35)

As generator matrix of the repetition code and similarly the parity check matrix of repetition

code is same as.

(Refer Slide Time: 21:43)

The generator matrix of the of the single parity check code.

(Refer Slide Time: 21:44)

(Refer Slide Time: 21:44)

(Refer Slide Time: 21:45)

(Refer Slide Time: 21:45)

And you can check the dimensions of the single parity check code is n – 1 and this dimension is

1. So single parity check code and repetition codes are dual to each other.

(Refer Slide Time: 22:01)

Next we consider hamming codes, so hamming codes are single error correcting codes these are

single error correcting codes.

(Refer Slide Time: 22:13)

And they are described by these parameters. So for any m greater than equal to 3 the code word

length is given by this the number of parity bits is equal to m, so number of information bits are

n – k, n – m so this is 2m – m – 1 so these my number of information bits, it has minimum distance

of 3 so it can correct single error and it can detect 2 errors. So how do we describe hamming

code.

(Refer Slide Time: 22:55)

We can describe the hamming code by generator matrix or the parity check matrix. So a parity

check matrix of a hamming code consist of all nonzero m-tuples. So if the number of parity bits

as I said is m, then code word length is 2m – 1 and the entries in the parity check matrix are all non

zero m-tuples. Now how may m- tuples do we have, we have total 2 m m-tuples and out of those,

so these are like 000, 001 and you can go on up to all ones and this m times m. Now if we

removed all zero 1, so total number of nonzero m-tuples is basically given by 2m – 1.

So the columns of the parity check matrix of hamming code are nothing but non zero m-tuples,

so they are total 2m of them 2m, 2m – 1 of them okay. And if you want to write the parity check

matrix of a hamming code in a systematic form then we can write it in this way. So parity check

matrix will have an identity and then some matrix P, since identity matrix will consist of all

patterns all m-tuples of weight 1, pT should consist of all m-tuples of weight more than 1. So it

consist of all m-tuples of weight 2, 3,4 up to m.

(Refer Slide Time: 25:01)

So let us take an example, let us consider m = 3. So if m=3 we know n is 2m – 1 so length of the

block code in this case will be 7. Now how many numbers of parity bits, number of parity bits is

given by m so this will be 3. So then what is the number of information bits this is 7 – 3 that is 4.

So this is a 7, 4 code. Now as I said the parity check matrix consist of all nonzero m-tuples, so m

here is 3 so let us list all nonzero m-tuples so we can write 001, 010, 011, 100, 101, 110, 111 so

these are the 7 nonzero m-tuples right.

And if you want to write your parity check matrix in a systematic form what will you do. So this

is your I, so I am writing these patterns which are like 1, 2 and 3, I am writing these patterns and

then what I write here is the other m-tuples. So you can see this is m-tuple of weight 1, these 3

are m-tuples of weight 1, and then this is a m-tuple of weight 2, weight 2 and this is m-tuple of

weight 3. Now since this matrix is of the form I and P, I can write the generator matrix this will

be PT I.

So we can write this, so PT so 1011 will come here as 1011, 1110 will come as 1110 and 0111

will come as 0111. And then this is the identity matrix, so this our generator matrix or this 74

hamming code. The point to be noted here is, once you will fix your m all other code parameters

are fixed, n is fixed right, because n is 2m-1 and number of parity bits is equal to m. So for the

hamming code once you fix m the other parameters of the code are fixed.

(Refer Slide Time: 28:00)

Now let us see how we can correct errors using hamming code.

(Refer Slide Time: 28:07)

As we said this has minimum distance 3 you can see here. So let us take any 3 columns let us just

take this column, column number 1, column number 2, and column number 4 you can see

column number 1, 2 and 4 they will add up to 000. So if 3 and that is the minimum number of

columns that will add up to 0 so which means the minimum distance of this code is 3.

If the minimum distance of this code is 3, what is the error correcting capability of this code it is

d-1/2 floor off that and this comes out to be 1. So hamming code can correct single error. So let

us see how we can use hamming codes to correct single error.

(Refer Slide Time: 29:13)

So first thing what we will do is we will rearrange the columns of the parity check matrix of

hamming code such that column in position i represent integer i.

(Refer Slide Time: 29:32)

So as we said the parity check matrix of hamming code are all nonzero m-tuples. So we will

arrange them in such a way such that the ith column represent ith bit. Now what do I mean by that,

so let us go back to our same example m=3 so in this case n=7 and k=4. Now note the way I have

arranged this, this is my MSB. And this is my LSB least significant bit and the most significant

bit.

(Refer Slide Time: 30:15)

So each column represents a number in this particular way.

(Refer Slide Time: 30:18)

So this is a least significant, this a least significant bit, this is the most significant bit. So this is

001 that is binary 1, so this is my column number 1, this is 010 that is 2, 011 that is 3, this is 4, 5,

6, 7. So note what I did was, I rearranged a column of the parity check matrix of hamming code

such that now ith column represent ith number basically, so column in ith position represent the

integer i, now if I do that.

(Refer Slide Time: 31:08)

Then let us see how this helps us in locating the position of the error.

(Refer Slide Time: 31:18)

So let us say r is my receive sequence receive vector this is my received n bit vector, and I am

interested in knowing whether r is an error, and if r is an error let us -- because the single error

correcting code, let us say a single error has happened then I am interested in correcting this

single error, so what do we do?

(Refer Slide Time: 31:42)

The first thing to find out whether error has occurred or not, the first thing that we do is

recompute the syndrome, how do you compute the simple syndrome? We take rHT and what is

our H?

(Refer Slide Time: 31:56)

H is our matrix this matrix which is arranged where their columns are arranged in such a way

such that column in ith position represent integer i.

(Refer Slide Time: 32:09)

(Refer Slide Time: 32:11)

So since is a single error correcting code it can only correct atmost one error.

(Refer Slide Time: 32:17)

So we assume let us say atmost one error has occurred, atmost of course if there is no error then

syndrome would be an all zero vector and if a single error has happened the syndrome would

have been a nonzero vector. Now what you will observe is, if a single error happens then that

single error will be basically whatever is a syndrome from there we can find out which bit

location is in error.

So in case of hamming code if single error has happened and you have arranged your parity

check matrix in such a way such that column in position i represent integer i, then the syndrome

would be either zero vector in case there is no error or otherwise in case of single error it would

be a column of this parity check matrix.

(Refer Slide Time: 33:19)

(Refer Slide Time: 33:22)

So when single error happens the number represented by the column of the calculated syndrome

is the position in the code word where the error has happened. So see it so nice, so by looking at

the syndrome and comparing it with the column of the parity check matrix that our reordered

parity check matrix we can find out the location where the error has happened. And since for a

binary code basically if we can locate the error, so the bit can be either zero and one so whatever

the bit is we just flip that bit and get our corrected code word.

(Refer Slide Time: 34:06)

(Refer Slide Time: 34:08)

So let us take an example.

(Refer Slide Time: 34:13)

So let us say this is a code word for this [7, 4] hamming code. And let us assume that there is a

single error has happened and this bit got change from 1 to 0, now given this received sequence I

am interested in finding out what is my estimated code word first of all I am interested in finding

out whether an error has happened or not, and if the error has happened I am interested in

correcting that error.

(Refer Slide Time: 34:48)

So as I said the first thing that I am going to do is.

(Refer Slide Time: 34:51)

I am going to compute the syndrome so what is my r? This is my r, and what is my H?

(Refer Slide Time: 35:02)

(Refer Slide Time: 35:04)

(Refer Slide Time: 35:05)

H matrix is basically my parity check matrix.

(Refer Slide Time: 35:06)

(Refer Slide Time: 35:07)

Of the hamming code where the columns are arranged in such a way that column in ith position

represents ith integer, so if we take HT so we will get 100, 010, 110, 001, 101, 011, 111 right?

And that is what I get here.

(Refer Slide Time: 35:40)

(Refer Slide Time: 35:41)

(Refer Slide Time: 35:42)

(Refer Slide Time: 35:43)

So this is my r, this is my HT now HT so this is 1, 2, 3 this row will participate this row. So my

syndrome will be this plus this, this row plus this row, so this will be 001+011 which is 010. So

my syndrome here is 010 now what do I do? I go back and check which column is 010.

(Refer Slide Time: 36:25)

So if I go back to my parity check matrix I notice that.

(Refer Slide Time: 36:27)

010 is this second column of my parity check matrix, right? So what does it indicate then? It

indicates that the second bit of my code word is in error.

(Refer Slide Time: 36:47)

So then I can go ahead and correct this error.

(Refer Slide Time: 36:50)

(Refer Slide Time: 36:52)

So this second bit, from the syndrome I can find out that this syndrome is nothing but the column

in the second location. So my second bit is in error and since we are talking about binary code,

so then this zero should have been one. So my estimated code word is then 0101010 and you can

see that is what I had transmitted, this is the same code word that I have transmitted, you can

yourself verify change some other bit location, introduce some other single error and you can --

you will see from the syndrome you can find out the location of your error.

(Refer Slide Time: 37:40)

So it has a very simple decoding algorithm, now as I said before in case of hamming codes, once

I fix my m, my code parameters are fixed.

(Refer Slide Time: 37:57)

So for example the examples that we were dealing with, we had taken m=3.

(Refer Slide Time: 37:59)

So once the moment I fix m=3 my n is fixed it is 23-1 that is 7, so k is 7-3 that is 4. So this

becomes the (7, 4) code, right? What if I am interested in designing let us say (8, 4) code or let us

say I am interested in (7, 3) codes, (6, 3) code. So there are various techniques available to twig

the parameters of the code, we are going to talk about some of them, we are not exhaustively

covering all possible ways of lengthening or shortening a code.

We just give you just few examples to illustrate this idea of changing the parameters of the code.

So the first thing that we are considering is a shortened hamming code, so how do you get a

shortened hamming code? You delete l columns from the parity check matrix of your hamming

code, now if I delete l columns that means my code word length is decreased by l.

(Refer Slide Time: 39:17)

So my new code word length is then 2m -1-l so this is my code word length, now numbers of

rows are still the same that is m, so number of parity bits are still same but since I deleted l coded

bits so number of information bits also got decreased by l. Now minimum distance of a hamming

code is three if I am deleting some columns.

(Refer Slide Time: 39:54)

Then minimum distance cannot be less than what was the original minimum distance of the code,

why? Because you can see if I have a parity check matrix here and let us say I have these

columns let us call it a1,a2, an. Now if I am removing some of the columns I can carefully remove

those columns which are causing the sum of let say d columns to be linearly dependent. So if I

remove some of those columns I can possibly increase my minimum distance.

(Refer Slide Time: 40:37)

And that is why I wrote by whenever you delete columns on the parity check matrix the

minimum distance is atleast what was there in the original code.

(Refer Slide Time: 40:48)

This is one example of a (7, 4) hamming code, so if I delete let say I delete this if I delete this

column what do I get, I get a shortened (6, 3) hamming code. So when I delete this my n

becomes six from seven and my information bits also reduce from four to three. This code also

has minimum distance three you can see three columns will add up to zero. Let us say this

column, this column, and this column add up to zero.

So, minimum distance is still three for this code. So whenever you want a shortened code make

sure you remove those columns in a judicial way so that potentially you can increase the

minimum distance. In this particular example, if I delete one column I cannot increase the

hamming distance, but if I delete more columns from this parity check matrix I can potentially

increase the minimum distance of the code.

(Refer Slide Time: 42:02)

(Refer Slide Time: 42:02)

Another class of code is what is called expurgated codes. So what is expurgated hamming code?

So if H is the parity check matrix of hamming code then I define a new parity check matrix

which has all ones as the last row.

(Refer Slide Time: 42:28)

Now note the parity check matrix of a hamming code does not have all ones. So when I add an

all one row.

(Refer Slide Time: 42:37)

Essentially the rank of this matrix will be one more than the rank of the original matrix H.

(Refer Slide Time: 42:47)

Because any linear combination of last row with the rows of the earlier parity check matrix H

would not be dependent. Hence the rank of this new matrix H1 is (n-k+1) and what is the number

of columns of this matrix that is n. So rank of this matrix is (n-k+1).

(Refer Slide Time: 43:20)

Then what is the dimension of the null space of this or what is the dimension of code sequence

here, so that is basically this is n minus dimension of H matrix so that becomes k-1.

(Refer Slide Time: 43:37)

So the new code that we derive by adding an all one row in the parity check matrix of the

hamming code.

(Refer Slide Time: 43:44)

We get a new code which is a (n, k-1) code.

(Refer Slide Time: 43:46)

And this is known as expurgated Hamming code.

(Refer Slide Time: 43:55)

Now one of the interesting property of this code is, this code contains all even weight code word

it is not very difficult to prove.

(Refer Slide Time: 44:06)

(Refer Slide Time: 44:08)

If v is a valid code word.

(Refer Slide Time: 44:10)

Then we know vHT should be zero. And last row of H1 has all ones, so when we take transpose

so the first column will be all ones, and when we do vH1
T what we will get is let us say the

components of v are v0, v1, v2 so vn-1 then what you will get is basically.

(Refer Slide Time: 44:42)

Sum of these components of this code.

(Refer Slide Time: 44:45)

Code word we should add up to zero. And this will happen only when v has even weight.

(Refer Slide Time: 44:54)

(Refer Slide Time: 44:54)

So this new code that we generated expurgated code is basically has all even weight code words.

(Refer Slide Time: 45:03)

So if you have an odd weight vector then vHT cannot be 0. Because of this all ones in the parity

check matrix.

(Refer Slide Time: 45:19)

Of this new matrix H1 expurgated code parity check matrix okay. So vH1
T cannot be zero, if v

has odd weight.

(Refer Slide Time: 45:35)

So you can see that, this is one way of getting rid of odd code words. So by adding an additional

all one rows in the parity check matrix of the original code we actually got rid of all odd weight

code words. So the minimum distance of this expurgated hamming code would be then four

why? Original code has minimum distance three, but now we got rid of all odd weight code

words. So the minimum distance of this new code expurgated Hamming code would be four.

(Refer Slide Time: 46:16)

So minimum distance is four.

(Refer Slide Time: 46:23)

So this is an example, this is the parity check matrix of the original Hamming code.

(Refer Slide Time: 46:30)

And if we add all one rows in the parity check matrix we get the parity check matrix of a

expurgated code.

(Refer Slide Time: 46:39)

Finally I will conclude this lecture with another class which is basically extension which called

extension of a code. So this is an example of an extended hamming code. So how do I generate

an extended Hamming code. So note, so this is the parity check matrix of my original Hamming

code. I add a zero so I add an additional column which is zero here. So these are all zero here,

and then I add one row which is all one.

And it is not very difficult to see that the rank of the matrix will be if the rank of H is let say n-k.

the rank of this matrix H1 will be n-k+1. Because the parity check matrix of the Hamming code

did not have an all one row.

(Refer Slide Time: 47:36)

And then these are all zeros and this is one so any leader combination of this row with these rows

basically would not, it would not change the it will not decrease the Hamming distance

essentially.

(Refer Slide Time: 47:49)

So this will have the rank of this matrix would be one more than the rank of the original parity

check matrix H. So what we are saying then is all rows of these parity check matrix H1 are

linearly independent. As I said that is because the original H matrix did not have all ones here.

And this is one here, this is zero here, so if we take linear combinations of this with any of the

rows of the original parity check matrix they would not be linearly dependent.

So all rows are linearly independent hence, the rank of this matrix is (n-k+1). And what is the

number of columns the original matrix had n columns, and we added one column, one more

column. So number of columns here is n+1, so this will define a code of length n+1.

(Refer Slide Time: 48:53)

So then we can find out what is the dimension of null space or so this is number of coded bits,

this is the rank of the new parity check matrix. So number of coded -- so the dimension of null

space is k so this will then generate.

(Refer Slide Time: 49:11)

An (n+1, k) linear block code, and this is known as extension code or extended Hamming code.

(Refer Slide Time: 49:21)

(Refer Slide Time: 49:22)

If this H is a matrix a parity check matrix with hamming code the code described by H1 which is

given by this would be extended hamming code.

(Refer Slide Time: 49:34)

(Refer Slide Time: 49:35)

And again we can see that the extended hamming code will have only even code words that is

because the last row of the parity check matrix contains all ones. So vHT cannot be zero.

(Refer Slide Time: 49:53)

If v has odd weight.

(Refer Slide Time: 49:56)

So the minimum distance of extended hamming code is four. Now please note the some of the

techniques that we mentioned here extension, shortening, expurgated that is valid for any other

linear block codes too.

(Refer Slide Time: 50:13)

(Refer Slide Time: 50:15)

And these are some of the ways in which we can change the code parameters. So with this we

conclude this lecture. Thank you.

Acknowledgement
Ministry of Human Resource & Development

Prof. Satyaki Roy

Co-ordinator, NPTEL IIT Kanpur

NPTEL Team
Sanjay Pal

Ashish Singh
Badal Pradhan
Tapobrata Das
Ram Chandra
Dilip Tripathi

Manoj Shrivastava
Padam Shukla
Sanjay Mishra

Shubham Rawat
Shikha Gupta
K. K. Mishra

Aradhana Singh
Sweta

Ashutosh Gairola
Dilip Katiyar

Sharwan
Hari Ram

Bhadra Rao
Puneet Kumar Bajpai

Lalty Dutta
Ajay Kanaujia

Shivendra Kumar Tiwari

an IIT Kanpur Production

©copyright reserved

