
Indian Institute of Technology Kanpur
National Programme on Technology Enhanced Learning (NPTEL)

Course Title
Error Control Coding: An Introduction to Linear Block Codes

Lecture-5C

Distance Properties of Linear Block Codes-II

by
Dr. Adrish Banerjee

Department of Electrical Engineering, IIT Kanpur

Welcome to the course on error control coding, an introduction to linear block codes.

(Refer Slide Time: 00:19)

So, so far we have studied what are linear block codes, how do we describe linear block codes

using generator matrix and parity check matrix. We talked about how we can use error correcting

codes for error detection and error correction and we discussed the distance properties of linear

block codes. Today we will spend some time solving some problems for linear block codes.

(Refer Slide Time: 00:51)

So today’s session will be on problem solving.

(Refer Slide Time: 00:57)

So the first problem that we will look at is let C be a linear code with both even and odd weight

codewords. Prove that the number of even bit codewords is equal to number of odd weight

codewords.

(Refer Slide Time: 01:10)

So let us denote the set of even code words in C by Ce and set of odd code words in C by Co.

(Refer Slide Time: 01:26)

Now let us consider an odd weight code word x which is taken from the set Co, and let us add x

to each of the code words which are there in the set Co. So if we add a odd weight code word to

another odd weight code word what we will get is a even weight code word. For example, let us

say I add 111000 and I add 101010 so this first code word, this is odd weight code word, its

weight is 3, similarly this code word also has weight 3.

If I add both of them what do I get, I get 010010 and this is a even weight code word. So when I

add x which is an odd weight code vector and I add x to each of the elements in this set Co what I

get is a set of even code words vectors. And let us denote that set by Ce׳.

(Refer Slide Time: 02:58)

Now the number of code vectors in Ce׳ is going to be equal to number of vectors in Co, why,

because how did we get this Ce׳? We added an odd vector x to the set Co.

(Refer Slide Time: 03:19)

So number of vectors in this set is going to be equal to number of vectors in Co. Hence number

of elements in Ce׳ is going to be same as number of elements in Co and since we know that this

set of even vectors Ce׳ is the subset of set of even vectors. We can write from this that number of

elements in the set of number of odd code words is going to be a subset of number of even code

words.

(Refer Slide Time: 04:08)

Next let us add the same odd weight code word now to all the vectors in the set Ce. So if we add

an odd weight code word to set off even weight code words what we will get is a set of odd code

words.

(Refer Slide Time: 04:34)

So the number of vectors in Co׳ is going to be equal to number of vectors in number of even

vectors. Why? Because this set was generated by adding an odd vector x to the set of even code

words.

(Refer Slide Time: 05:03)

So we can then write that Co׳ is equal to this okay. The set of code words here is same as set of

code words here. Now we know that C-׳ is a subset of set of odd code words. So then from this

relation and this relation we can write that set of even code words is a subset of set of number of

elements in this is a subset of number of is basically less than number of elements in this set.

(Refer Slide Time: 05:48)

Now from this relation and this relation both of them can be true only if number of elements in

Co is same as number of elements in Ce

(Refer Slide Time: 05:59)

So this relation let us call it 1 and let us call it 2. These two relations are satisfied only if we have

set of even code words to be same as set of odd code words. Hence we prove that in a linear code

with both even and odd code words, the number of even weight code words is same as number of

odd weight code words.

(Refer Slide Time: 06:31)

So I repeat, this condition and this condition will be simultaneously satisfied only when the set of

number of even code words is same as set of number of odd code words. And this proves our

result.

(Refer Slide Time: 06:54)

The next problem that we will look at is as follows. Let us consider a linear (n, k) code C whose

generator matrix contains no zero column. Now arrange all code words of this linear code C as

rows of 2k/n array.

(Refer Slide Time: 07:22)

So what we are doing is we are arranging the 2k code words like this in an array. So this array

has dimension 2kxn because total number of code words are 2k for a (n, k) binary code and they

are all n bit.

(Refer Slide Time: 07:43)

The first result that we are going to show is no columns of this array contains zero.

(Refer Slide Time: 07:52)

Now please note that we have been given that the generator matrix G does not contain any zero

column okay. So from the given condition on G we can see that for any position of any bit

position there is a row in G which has a non zero component at that particular bit location.

(Refer Slide Time: 08:21)

And if this is true, what are the rows of, how do we generate the code words? We generate the

code words by linear combination of these rows of this generator matrix.

(Refer Slide Time: 08:35)

And since the generator matrix does not contain any zero column, so each of these rows can be

looked up as code word in C. So when we generate the code words using this generator matrix in

this code array each column will have at least one non zero entry.

(Refer Slide Time: 08:57)

So this follows from the fact that our generator matrix G does not contain any zero column, and

hence no column in this code array will have zeros.

(Refer Slide Time: 09:13)

The next result that we are

(Refer Slide Time: 09:15)

 Going to show is in this array in this 2k x n array each column consists of.

(Refer Slide Time: 09:27)

 Equal numbers of zeros and ones there are total 2k-1 zeros and2k-1 ones

(Refer Slide Time: 09:42)

So to prove this what we will do is we show that number of code of words that have 1 at l-th

location is same as number of code words that have 0 at l-th location and in this way we will

prove that this array has same number of zeros and ones.

(Refer Slide Time: 10:07)

So in this code array we know that each column will have at least one non zero entry that we

proved in the earlier result so consider the l-th column of this code array.

(Refer Slide Time: 10:18)

Let us denote by

(Refer Slide Time: 10:22)

S0 the set of code words that have 0 at the l-th location and let us denote by S1 the set of code

words that have one at the l-th location

(Refer Slide Time: 10:41)

Now we pick up an a code word x from the set S1 that means x has 1 at l-th location now if we

add this

(Refer Slide Time: 10:58)

Code word x to all the elements in the set S0 what do we get, what we will get is a set containing

1 at l-th location, why because S0 is a set that has 0 at the l-th location and x has x is taken from

the set S1 so x has 1 at l-th location, so if we add x to S elements in S0 what we will get is there

will be a I at the l-th bit location, so we denote this class of code word by S1´ and this S1´ will

have 1 at the l-th location and since this S1´ is generated by adding x to this set of vectors in S0

so number of elements in S0 is going to be same as number of elements in S1´ and S1´ is a sub set

of S1 which is the set of all code words which has 1 at l-th location.

(Refer Slide Time: 12:20)

So from this we get this condition that set of code words which has 0 at l-th location is less than

equal to set of

(Refer Slide Time: 12:33)

Code word which has 1 at l-th location, now add this same vector x which has 1 at l-th location

to all the elements in S1. When we do that what we get is a new set of vectors which has 0 at l-th

location

(Refer Slide Time: 12:58)

We denote this set by S0 ´ so S0 ´ is a set of code words which are obtained by adding x to the set

of vectors set of odd vectors which have 1 at l-th location, so then we can write thus the set of

vectors in S0 ´ is same as set vectors in S1 and since S0 ´ is a subset of S0 what we can write

(Refer Slide Time: 13:32)

Then is from this relation

(Refer Slide Time: 13:33)

And this relation we can write set of code words which have 1 at l-th location it is less than set of

code words which has 0 at l-th location. Now equation 1 and 2 they are going to be

simultaneously satisfied only when this is satisfied with equality, so then what it shows

(Refer Slide Time: 14:03)

Here is that at any l-th location number of code words which have 0 at l-th location is same as

number of code words which have 1 at l-th location so basically each column will then have

(Refer Slide Time: 14:22)

Same number of zeros and same number of ones.

(Refer Slide Time: 14:26)

Now we prove another result, we showed that minimum distance of the code is upper bounded

by this quantity and to prove this result we are just going to use the result we just proved in the

previous section.

(Refer Slide Time: 14:47)

So in the previous section what we did was we arranged this 2k code words in an array, 2k x n

array and we showed that each column of this array has 2k-1 ones and 2k-1 zeros, so in this whole

array which has n columns total number of ones.

(Refer Slide Time: 15:160

Is given by this, n times 2k-1, now since each non zero code word will have minimum distance at

least dmin and how many total code words we have, 2k one of them is all zero code word so how

many non zero code words we have, that is given by 2k-1 and each of these non zero code words

have minimum distance at least dmin, so total number of non zero code word multiplied by dmin

must be less the equal to

(Refer Slide Time: 16:01)

Total number of ones in this code array which is given by n times 2k-1 2k-1, so from this relation

then we can then

(Refer Slide Time: 16:15)

Write that minimum distance of a code is upper bounded by this relationship.

(Refer Slide Time: 16:23)

So next problem that we will look at is what is a minimum distance of a linear block code C that

can simultaneously correct μ errors and e erasures? Now just recall what do we mean by error

correction and error erasure correction. Basically so erasure is basically some of the bits are

getting erased, so you send n bits if e bits are getting erased what you are receiving is n-e bits,

and error correction you are familiar with basically we want to correct errors that have happened

in so many bit locations.

(Refer Slide Time: 17:08)

So the question is what should be the minimum distance of a linear block code that can

simultaneously correct μ errors as wells as e- erasures? Now if the minimum distance of a code is

at least 2μ + e + 1 then it can simultaneously correct μ errors and e-erasures, we are going to next

prove this result. So delete from all code words e components which got erased, if we delete

these e components what we are left is n – e length shortened code word, so this deletion of e-

component results in a shortened code of length n – e.

(Refer Slide Time: 18:05)

Now we know that if we want to correct t errors what should be the minimum distance of the

code, it should be at least 2t + 1 so this code.

(Refer Slide Time: 18:18)

Basically if we want to correct μ errors the minimum distance of the code after this e-erasures

should be greater than equal to 2μ + 1, so if minimum distance of the code after this e-erasures

the minimum distance is still larger than 2μ + 1 then this code can correct μ errors, so we want

our minimum distance of the code to be at least 2μ + e + 1. Now since this μ errors are in the un-

erased positions can be corrected it this condition holds, so as a result basically we would be able

to correct μ errors, now remember we have to simultaneously.

(Refer Slide Time: 19:17)

Also be able to basically it would be not only simultaneously correct μ errors but we have to

correct e-erasures also. Now what is the condition on minimum distance such that e-erasures can

be also corrected? The minimum distance of the code should be at least greater than number of

erasures + 1, so if the minimum distance of the code.

(Refer Slide Time: 19:46)

Is greater than e + 1 then there is only 1 code word in the original code that maps to the

shortened codes, so as long as minimum distance of the code is greater than e + 1 there is only

one 1 code word, the original code that agrees with the un-erased component so this as long as

minimum distance of the code is greater than e + 1 there is only 1 code that maps from erased

shortened code to the original code, and since in this case the d minimum is already 2μ + e + 1

which is greater than e + 1.

This code would be able to correct e-erasures as well, so if we choose our minimum distance of

the code to be greater than equal to 2μ + e+ 1 it would be able to correct μ errors as well as e-

erasures.

(Refer Slide Time: 20:59)

The next problem that we are going to solve is as follows. Prove that linear block code is capable

of correcting λ pr fewer errors and simultaneously detecting L where L is greater than λ or fewer

errors if the minimum distance of the code is at least λ + l + 1. Please pay attention to the word

simultaneously, so we want not only to correct μ errors along with that we should be able to

detect l errors as well, that is what we mean by simultaneous error.

(Refer Slide Time: 21:47)

Detection and correction, so let us prove this result. Now note λ is less than l so if minimum

distance is λ + l + 1 this is basically greater than 2 λ + 1, and if the minimum distance is greater

than 2 λ + 1 it would be able to correct λ , so from this given condition that dmin is at least λ +

1 + 1 where l is greater than λ we know that the minimum distance is greater than 2 λ + 1 so it

should be able to correct λ errors.

(Refer Slide Time: 22:41)

Now note we want to in addition to correcting λ or fewer errors we also want to simultaneously

detect l errors. Now if we want to simultaneously detect those l or fewer errors we have to ensure

thus those error patterns of weight l or less are not in the same coset as the error patterns.

(Refer Slide Time: 23:09)

That we are trying to correct, now since λ errors can be corrected we can put all error patterns of

λ or fewer errors as coset leader in our standard array and they can be correctable. Next to

simultaneously detect l errors we have to show that none of these error patterns of weight l or

less are in the same coset as these.

(Refer Slide Time: 23:44)

Error patterns of λ or less error, so we need to show that no error pattern x of length l or fewer

errors are in the same coset as error pattern Y of λ or fewer errors. If they are in the same coset

because we are using those coset leaders for error correction we would not be able to detect those

error patterns, so it is important that those error patterns of weight l or less if we want to detect

them they should not be in the same coset as the correctable.

(Refer Slide Time: 24:23)

Error patterns, so we are now going to use method of contradiction to show that it is not possible

to have these error pattern x of l of fewer errors in the same coset as these error patterns y of λ

of fewer errors which we are trying to correct. So how does this the method of contradiction

work? We will first assume that they are in the same coset and then we will show that this is not

possible, hence our assumption that they are in the same coset is wrong.

(Refer Slide Time: 25:01)

So we start our proof by saying these error pattern x of weight l or less and error pattern y of

weight λ or less they are in the same coset, now if x and y are in the same coset we know from

our standard array.

(Refer Slide Time: 25:25)

That x + y should be a non – zero code word, if you recall the entries our standard array we had

in the first column an all zero code word and then we had other code word.

(Refer Slide Time: 25:33)

v2, v3… and then what we had was error pattern e2 and then we had basically this was e2+v2 like

that we had and if you add any two elements of a coset or a row what you will notice is sum of

them is a valid code word, so if x and y are in the same coset x + y must be a non – zero code

word. Now let us look at what is the weight of x + y? So wt(x + y) is less than equal to wt(x) +

wt(y) because it is possible that there are some common elements between x and y.

(Refer Slide Time: 26:33)

That is why the wt(x + y) is less than equal to wt(x) + wt(y) and what is weight of x? x are the

error pattern of weight l or less, so the maximum weight of x is l, similarly maximum weight of y

is λ, so weight of x + y is then less than equal to λ + l and what is the minimum distance?

Minimum distance of code is atleast λ + l + 1, so weight of x + y is then less than dmin.

So what we have shown is, the weight of x + y, x + y should have been a code word is a code

word if they are in the same coset, if x and y are in the same coset x + y is a valid non – zero

code word, but what we have shown here is weight of x + y is less than dmin. So if x + y is a valid

code word, its minimum weight should be atleast dmin.

(Refer Slide Time: 27:48)

So from here basically what we get is, it is not possible to have x + y in the same coset because if

they were in the same coset x + y would have been a valid code word and its weight of x + y

should have been more than dmin, but here in this case it is coming out to be less than dmin , hence

our assumption that x and y are in the same coset is wrong.

(Refer Slide Time: 28:23)

(Refer Slide Time: 28:25)

Now if x and y are not in the same coset then we can always put those error patterns of y and x in

different cosets and hence we can simultaneously.

(Refer Slide Time: 28:39)

Detect and correct errors, so we can simultaneously correct λ errors while detecting also l errors,

okay. So again to recap basically we prove this result by showing that if we want to

simultaneously correct and detect errors those error patterns should be in the different cosets.

(Refer Slide Time: 29:11)

And hence we can simultaneously correct and detect those error patterns.

(Refer Slide Time: 29:16)

The next problem that we are going to solve is as follows. Let Ci be a binary linear code with

code parameters given by (n, ki) with generator matrix Gi and minimum distance di and let us

consider a new code C, a new binary code linear code of length 2n and message bit length k1+k2

whose generator matrix is given by this expression. Now what is the minimum distance of this

new code C?

(Refer Slide Time: 30:04)

So to find out the minimum distance so let us consider, let u and v are two binary n – tuples and

we form a 2n tuples as follows, if you look at this code word v, how is this code word generated?

So it is one n – bit code word, another n – bit code word, first n – bit code word is generated

using u times t1 and second one you get basically u times G1 plus v times G2 so essentially the

way you are generating this code word.

(Refer Slide Time: 30:42)

The first part contains n – bit code word u and the second part is n – bit code word which is u +

v, so this 2n length code word will be of the form like this where the first n - bits are u0, u1, u2,

un-1 and the next n – bits are of the form u0+v0, u1+v1 and like that.

(Refer Slide Time: 31:13)

So as I said our linear block code C the new code of length 2 and can be written as this form

where you have a code u of length n will belongs to C1 and then the second part, the n - bit part is

u + v where u belongs to C1 and v belongs to C2.

(Refer Slide Time: 31:39)

Now we will show that minimum distance of the code is minimum of 2d1 or d2 where d2 is a

minimum distance of the code nk2 and d1 is a minimum distance of a code nk1.

(Refer Slide Time: 31:57)

So let us consider two distinct code word x and y, so x we denote as concatenation of u and u + v

and this is u prime plus u prime plus v prime, let x and y be two distinct code words in C, now

what is the hamming distance between x and y?

(Refer Slide Time: 32:29)

We can write down the hamming distance between x and y as the hamming weight between u

plus u prime plus hamming weight between u + v + u' + v' so the hamming distance between x

and y can be written as hamming weight of u + u' plus hamming weight of u + u' + v + v'.

(Refer Slide Time: 32:58)

Now note x and y are distinct code words so let us consider two scenarios, in first case we will

consider v is same as vʹ in second case we will consider v is not same as vʹ. So if we consider v

as same as vʹ since x and y are distinct code word what we will have is u is not same as uʹ. So in

this case.

(Refer Slide Time: 33:32)

The hamming distance between x and y will be given by hamming weight of (u+uʹ)+. Now since

v and vʹ are same this will be zero so this will be same as hamming weight of (u+uʹ). So then in

this case when v is same as vʹ we can write the hamming distance between x and y as hamming

weight of (u+uʹ)+ hamming weight of (u+uʹ). And since what is u+uʹ, u and uʹ are two code

words belonging to C1 so sum of two code words for a linear block code is another valid code

word.

(Refer Slide Time: 34:23)

So u+uʹ is going to be another valid code word. So then, then what would be the minimum

distance of u+uʹ it would be atleast the minimum distance of the code C1 which is d1. So then

hamming distance between x and y.

(Refer Slide Time: 34:42)

Would be greater than equal to two times d1. So for the case when v=vʹ, we have shown that

minimum distance should be atleast two times d1. Now let us consider the case.

(Refer Slide Time: 35:04)

When v ≠ vʹ.

(Refer Slide Time: 35:11)

So before that we will just state again the triangular inequalities that we are going to use, so from

the triangular inequality we know that hamming distance between x and y is greater than equal to

hamming distance between x and z minus hamming distance between y and z, and we know the

hamming distance is nothing but hamming weight of x+y, hamming weight of x+y and hamming

weight of x+z minus hamming weight of y+z. So we can write this expression in terms of

hamming distance or we can write in terms of hamming weight.

(Refer Slide Time: 35:53)

Now let us take x+z to be equal to v+vʹ and y+z as u+uʹ, and we put.

(Refer Slide Time: 36:04)

This values of x and x+y and x+z and y+z.

(Refer Slide Time: 36:11)

We put these values.

(Refer Slide Time: 36:13)

In this expression. So what is x+y?

(Refer Slide Time: 36:18)

x+y would be v+vʹ+u+uʹ. So x+y is basically u+uʹ + v+vʹ.

(Refer Slide Time: 36:33)

So from here w(x+y).

(Refer Slide Time: 36:36)

Is given by this.

(Refer Slide Time: 36:42)

Next what we had was w(x+z) what is w(x+z)?

(Refer Slide Time: 36:46)

W(x+z) is w(v+vʹ) and similarly w(y+z) is given by this okay. So this is upper bounded, this is

lower bounded by this quantity, this is lower bounded by this quantity.

(Refer Slide Time: 37:12)

Now go back and see what is our minimum distance between x and y, minimum distance

between x and y is given by this expression, it is the hamming weight between u and uʹ + plus

hamming weight of u+uʹ.

(Refer Slide Time: 37:32)

Plus v+vʹ, and what we did just now is we lower bounded this, so then hamming distance

between x and y.

(Refer Slide Time: 37:46)

(Refer Slide Time: 37:48)

Can be, so this basically this we lower bounded by this quantity. So if you plug that in here what

we get here is greater than equal to. So what we can write is the hamming distance between x

and y is then greater than or equal to this term comes from here.

(Refer Slide Time: 38:11)

This term, and this term is lower bounded by.

(Refer Slide Time: 38:15)

This term here, so we write it here, now this can be further written as hamming weight of v+vʹ

because these two cancel out. So what we have shown is when v is not same as vʹ the hamming

distance between x and y is greater than equal to.

(Refer Slide Time: 38:42)

Hamming weight of v+vʹ. And what is v+vʹ, v and vʹ are valid code words in linear block code

C2 with minimum distance d2. So v+vʹ will be another valid code word in C2 whose minimum

distance is d2.

(Refer Slide Time: 39:04)

So then we can write this as hamming distance between x and y is greater than equal to d2. So we

look comparing equation number four and.

(Refer Slide Time: 39:17)

Equation number three, if we compare these two equations we can write that minimum distance

of the code is minimum of 2d1 or d2 okay.

(Refer Slide Time: 38:33)

Now let us show that there exists a code with.

(Refer Slide Time: 39:42)

Minimum distance of code is in d equal to minimum of 2d1 or d2.

(Refer Slide Time: 39:49)

So let us take two minimum weight code words in C1 and C2 let us call them u0 and v0.

(Refer Slide Time: 39:58)

Now this is a valid code word in C and what is its minimum distance, it is two times d1 so if we

take v0 to be all zero code word what we get is u0 and u0 this is a valid code word in C and its

minimum distance is two times d1. Similarly, if we take u0 to be all zero code word then what we

get is this code word 0 and u0 whose minimum distance is d2. So hence we have shown that there

basically there minimum distance of code of this code new code C is indeed minimum of 2d1 0r

d2 okay.

(Refer Slide Time: 40:46)

 Thank you.

Acknowledgement
Ministry of Human Resource & Development

Prof. Satyaki Roy

Co-ordinator, NPTEL IIT Kanpur

NPTEL Team
Sanjay Pal

Ashish Singh
Badal Pradhan
Tapobrata Das
Ram Chandra
Dilip Tripathi

Manoj Shrivastava
Padam Shukla
Sanjay Mishra

Shubham Rawat
Shikha Gupta
K. K. Mishra

Aradhana Singh
Sweta

Ashutosh Gairola
Dilip Katiyar

Sharwan
Hari Ram

Bhadra Rao
Puneet Kumar Bajpai

Lalty Dutta
Ajay Kanaujia

Shivendra Kumar Tiwari

an IIT Kanpur Production

©copyright reserved

