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Welcome to the course on error control coding, an introduction to linear block codes.
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So, so far we have studied what are linear block codes, how do we describe linear block codes
using generator matrix and parity check matrix. We talked about how we can use error correcting
codes for error detection and error correction and we discussed the distance properties of linear

block codes. Today we will spend some time solving some problems for linear block codes.
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Lecture #5C: Problem solving session

So today’s session will be on problem solving.
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& Prablom # 1: Lat C be a linear code with bath swen and odd
weight codewords. Show that the number of sven weight codewords
iz equal to the number of odd weight codewards

So the first problem that we will look at is let C be a linear code with both even and odd weight
codewords. Prove that the number of even bit codewords is equal to number of odd weight

codewords.
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Linear ble

& Problain 3 1: Lot € e o linesr code with both eawen and odd
weight codewords. Show that the number of evon weight codewords
iz cqual to the number of odd weight codewards

@ Solutions: Let O be the set of code words in C with sven weight
and ket O, be the set of code words in C with odd weight

So let us denote the set of even code words in C by C. and set of odd code words in C by Co.



(Refer Slide Time: 01:26)

Linear block code

& Prablam # 1: Lat L be & linedr cods wnth both sven and odd
weoight codewords. Show that the number of oven weight codewords
is equal to the number of odd-weight codewords

@ Solutions: Let C, ba the set of code words in © with sven weight

and ket C; be the set of code words in C with odd weight oo
¥-10-AT-]

# Let x be any odd-weight code vector from £, Adding = to E"r'rﬁ.l_ﬂ-ﬂl_ﬂ-
vector in ,, we obtain a set of C of even weight vector

Now let us consider an odd weight code word x which is taken from the set Co, and let us add x
to each of the code words which are there in the set Co. So if we add a odd weight code word to
another odd weight code word what we will get is a even weight code word. For example, let us
say I add 111000 and I add 101010 so this first code word, this is odd weight code word, its

weight is 3, similarly this code word also has weight 3.

If I add both of them what do I get, I get 010010 and this is a even weight code word. So when I
add x which is an odd weight code vector and I add x to each of the elements in this set Co what I

get is a set of even code words vectors. And let us denote that set by Ce'.
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Linear black code

@ Problam # 1: Let C be a hinear code with both even and add
woight codewords. Show that the number of sven weight codewaords
is equal to the number of odd weight codewords

@ Solutions: Let O, be the set of code words in C wnth aven weight
and ket O, be the set of code words in C with odd weight

@& Let = be any odd-weight code vector from £, Adding x to sach
vector in O, we obtain a set of O of even weight vector

& The number of vectors in O] 5 equal to the number ol vectors in
. im |3 Gl Ao ] © || Thus 6] = |6

Now the number of code vectors in Ce' is going to be equal to number of vectors in Co, why,

because how did we get this Ce'? We added an odd vector x to the set Co.
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Lirear block code

& Problam o 1: Let © be a linear code wath both éven and odd
woight codewords. Show that the number of ovan weight codewords
is equal o the number of odd weight codewords

# Solutions: Lat £ he the et of code words in C with sven weight
amd ket &y be the set of code words in C with odd weight

& Let ® be any odd-weight code vector from £, Adding x to sach
vector in £, we abtain a set of O of cven weight vector

@ The number of wsctors in E'LH:. equal to the number of vectors in
O b [El] = ] Ak |CT] < [ ] Thus |C] £ |E

- — — — —

So number of vectors in this set is going to be equal to number of vectors in Co. Hence number
of elements in C¢’ is going to be same as number of elements in Co and since we know that this
set of even vectors Ce' is the subset of set of even vectors. We can write from this that number of
elements in the set of number of odd code words is going to be a subset of number of even code

words.
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@& Problam # 1: Let C he a linear code with both even and odd
welght codewords. Show that the number of aven weight codewords
is equal to the number of odd-weight codewards

@ Solutions: Let O, be the sef of code words in C wath ven weight
and let O, be the set of code words in C with odd weight

@ Let = be any odd-weight code vector from £, Adding = to sach
vector in Oy, we obtain a set of C of even weight vector

& The number ol vectors i T is equal to the number of vectors in
G ba [ = | ). Aka |CI] C || Ths [G] € |E

& Mow adding = to each vector in Gy, we obtain a set C; of odd
weight code wards

Next let us add the same odd weight code word now to all the vectors in the set Ce. So if we add

an odd weight code word to set off even weight code words what we will get is a set of odd code

words.
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& Prablam 3 1: Lot © biw a linear code with bath ewen and odd
weight codewords. Show that the number of even weight codewords
is equal to the number of odd-weight codewards.

# Solutions: Let O be the saf of code words in O with sven weight
and let O, be the set of code words in C with odd weight

@ Let = be any odd-weight code vector from ;. Adding = to each
vector in &, wie abtain a set of C of cven weight vector

@& The number of vectors in T 1= equal to the number of vectors in
G, e |C] = |C,)- Ako |Cl| C [C ). Thus |G| C |E

& MNow adding = to each vector in O, we obtain a s=t T of odd
weight Code words -

@ The number of vectors in ll!_:;_i: equal to the number of vectors in
arvel I'L'| C el Hemie L] C [, Y

So the number of vectors in Co’ is going to be equal to number of vectors in number of even
vectors. Why? Because this set was generated by adding an odd vector x to the set of even code

words.
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Linear black code

@& Prablam # 1: Let C be a linear code with bath even and odd
woight codewords. Show that the aumber of even weight codewords
is equal to the number of odd-weight codewaords

@ Solutlons: Let O, be the et of code words in C wath sven weight
and let O be the set of code words in C with odd weight

@ Let x be any odd-weight code vector from C,. Adding = to sach
vector in C;, we obtain a set of O of even weight vector

& The nurnber of vectors i O is equal to the number of vectors in
G ke |E2] = |C,). Ao [C]] € |C)- Thus [E] € |E
@ Now adding x to each vector in O, we obiain a ==t T of odd

W € i
weight code words . N h: 1 'T'Ct. .
# The number of vectors in £ is equal to the number of vectors in G
arvil !',I.',i C|{g| Hemte L | T [Cgl el

So we can then write that Co is equal to this okay. The set of code words here is same as set of
code words here. Now we know that C- is a subset of set of odd code words. So then from this
relation and this relation we can write that set of even code words is a subset of set of number of

elements in this is a subset of number of is basically less than number of elements in this set.
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# Prablom #* 1: Lat © be a linear code with both aven and odd
woight codewords. Show that the number of sven weight codewords
is equal to the number of odd weight codewards

@ Solutions: Let ©, be the cet of code words in C with swen weight
and let C, be the set of code words in C with odd weight

@ Let x be any odd-weight code vector from . Adding = to sach
vector in C,, we obtain a set of C) of even weight vector

The number of vectors in £ 15 equal to the number of vectors in
C,. e |Cl] = |G- Ako |C] C |G| Ths |&] |G

@& Mow adding x to each vector in O, we obtain a ==t T of odd

# = ]
weight code waords . h‘:l | = [{e

@ The number of vectors in £ i= equal to the number of vectors in G,
ariel !'I-'I| C gl Hente L] C |Lg) s

Now from this relation and this relation both of them can be true only if number of elements in

Co 1s same as number of elements in Ce
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& Problem # 1: Lot © be & linear code with bath swen and odd
woight codewords. Show that the number of sven weight codewords
iz equal to the number of odd weight codewards

@ Solutions: Let O be the sof of code words in C with sven weight
and let O, be the set of code words in C with odd weight

@ Let = be any odd-weight code vector from C,. Adding x to each
vector in &, we obtain a set of C of even weight vector

@ The number of vectors n £ 15 equal to the number of vectors in
C.ia |Cl = |G| ARa || < |G T |G T 1G] —(D)

@ Now adding = to each vector in (, we obtain a set T of odd

weight code words h: '1 FTCt.
@ The number of vectors in j_:;_ia egual to the number of vectors in
arvel !'I-'II C el Hence L. C [, ..@ ey
b s e 8

So this relation let us call it 1 and let us call it 2. These two relations are satisfied only if we have
set of even code words to be same as set of odd code words. Hence we prove that in a linear code
with both even and odd code words, the number of even weight code words is same as number of

odd weight code words.
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Linear bloc

a Problom # 1: Lat C ba a linear code with bath avan and odd
wreight codewords. Show that the number of oven weight codewords
iz equal to the number of odd weight codewards.

# Solutions: Let O, be the set of code words in C with even weight
and let C; be the set of code words in C with odd weight

# Lot = b any odi-wegght code vector from . Adding = to each
vector in , we obtain a s=t of C of even weight vector

@ [he numbssr of veciors in E.; is Bgual to the number of vectors in
.. ie (O] — |C- Ao |C] © [C) Thos [ Cl

@ Now adiding = o each veclor m O we chitain o sel ) ol odd
WRIENT code wards

@ The number of vectors in K-.,I. is egual to the number of vectors in C,

and || C || Hance |[C.] C |,
& Both these conditions are true only when || = 0

So I repeat, this condition and this condition will be simultaneously satisfied only when the set of
number of even code words is same as set of number of odd code words. And this proves our

result.
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Linear bl

@ Probiem ¢ 2: Consider an (0. k) linear code C whose genermtor
matrix & contains no zero column. Arrange all the codewords of C
a= rows of 3 2* by n array

The next problem that we will look at is as follows. Let us consider a linear (n, k) code C whose

generator matrix contains no zero column. Now arrange all code words of this linear code C as

rows of 2/n array.
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Linear bl

@ Problem # 2: Consider an (n. k) linear code C whose genemator
matrix & contains no zero column. Arrange all the codewords of C

as rows of 3 2* by n array

I

So what we are doing is we are arranging the 2* code words like this in an array. So this array

has dimension 2¥xn because total number of code words are 2* for a (n, k) binary code and they

are all n bit.
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@ Problem g 2: Consider an (n. k) linear code C whose generator
matrix G contains no zero column. Arrange all the codewords of C
as rows of a 2* by n array

a) Show that no column of the array contains only zeros

The first result that we are going to show is no columns of this array contains zero.
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Linear bl code

@ Problem ¢ 2: Consider an (n. k) linaar code C whose generator
matrix G contains no zero column. Arrange all the codewords of C
as rows of a 2 by n array

Show that no column of the array contains aonly zeros

a

# Solution: From tha gven condition on G, wa sea that, for any digit
positson, there is 2 row in G with a nonzero component at that
pOSition.

Now please note that we have been given that the generator matrix G does not contain any zero
column okay. So from the given condition on G we can see that for any position of any bit

position there is a row in G which has a non zero component at that particular bit location.
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@ Problem # 2: Considar an (n. k) linear code C whosa genarator
matrix & contains no zero column. Arrange all the codewords of €
a5 rows of a 2* by n array

E]

Show that no column of the array contains only zeros
# Solution: From the given condition an G, wa see that, for any digit
position, there is 2 row in G with a nonzero component at that
PO o,
@ This row is a code word in C. Hence in the code array, each column
contains at least one nonzero ontry

And if this is true, what are the rows of, how do we generate the code words? We generate the

code words by linear combination of these rows of this generator matrix.
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@ Problem ¢ 2: Consider an (n. k) linear code C whose generator
matrix &z contams no zero column. Arrange all the codewords of C
as rows of 3 2* by n array

a

Show that no column of the array contains only zeros

@ Solution: From the given condition on G, wa sae that, for any digit
position, there is a row in G with 3 nonzero companent at that
st

@ This row is a code word in C. Hence in the code array, each column

CONCAINS At least one nONZero entry

And since the generator matrix does not contain any zero column, so each of these rows can be
looked up as code word in C. So when we generate the code words using this generator matrix in

this code array each column will have at least one non zero entry.
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@ Problem # 2: Consider an (n. k) linear code C whose generator
matrix G contains no zero column. Arrange all the codewords of C
as rows of a 2* by n array

a) Show that no column of the array contains only zeros.

@ Solution: From the given condition on G, we see that, for any digit
position, there is a row in G with a nonzero component at that
position

@ This row is a code word in C. Hence in the code array, each column
contains at least one nonzero entry.
@& Therefore no column in the code array contains only zeros

So this follows from the fact that our generator matrix G does not contain any zero column, and

hence no column in this code array will have zeros.
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Linear block code

@ Problem 2 (contd.): Consider an (n. k) linear cade C whose
generator matrix G contains no zero column. Arrange all the
codewords of C as rows of a 2% by n array

The next result that we are
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@ Problem 2 (contd.): Consider an (n, k) linear code C whose
generator matrix G contains no zero column. Arrange all the
codewords of C as rows of a 2% by n armay

b) Show that each column of the array consists of 2* ! zeros and 2% !

anes

Going to show is in this array in this 2¥x n array each column consists of.
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Linear blc

@ Problem 2 (contd.): Consider an (n, k) linear code C whose
generator matrix G contains no zero column. Arrange all the

codewords of C as rows of a 2* by n array
b) Show that each column of the array consists of 2" ! zeros and 2% !

Ones,
——

Equal numbers of zeros and ones there are total 2! zeros and2*"! ones
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@ Problem 2 (contd.): Consider an (n, k) linear code C whose
generator matrix G contains no zero column. Arrange all the
codewords of C as rows of a 2* by n array

b) Show that each column of the array consists of 2* 1 zeros and 241

anes

@ Solution: To prove that each column of this array has 2! zeros
and 27! ones, we will show that the number of codewords that “1”
at the /-th position is same as number of codewords that have "0"
at the /-th position.

So to prove this what we will do is we show that number of code of words that have 1 at I-th
location is same as number of code words that have 0 at I-th location and in this way we will

prove that this array has same number of zeros and ones.
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Linear

@ Problem 2 (contd.): Consider an (n, k) linear code C whose
generator matrix G contains no zero column. Arrange all the
codewords of C as rows of a 2* by n array

b) Show that each column of the array consists of 2* ! zeros and 2% !
anes

@ Solution: To prove that each column of this array has 25! zeros
and 2°~! ones, we will show that the number of codewords that “1”
at the /-th position is same as number of codewords that have “07
at the I-th position.

@ In the code array, each column contains at least one nonzero entry.
Consider the /—th column of the code array.

So in this code array we know that each column will have at least one non zero entry that we

proved in the earlier result so consider the 1-th column of this code array.
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@ Problem 2 (contd.): Consider an (n, k) linear code C whose
generator matrix G contains no zero column. Arrange all the
codewords of C as rows of 3 2* by n array

b) Show that each column of the array consists of 2" ! zeras and 2% 1
anes

@ Solution: To prove that each column of this array has 2! zeros
and 2! ones, we will show that the number of codewords that 1"
at the /-th position is same as number of codewords that have “0”
at the [-th position.

@ In the code array, each column contains at least one nonzero entry.
Consider the /—th column of the code array.

@ Let 5 be the codewords with a “0” at the /—th pesition and 5; be
the codewords with a "1" at the /—th position.

Let us denote by
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@ Problem 2 (contd.): Consider an (n, k) linear code C whase
generator matrix G contains no zero column. Arrange all the
codewords of C as rows of a 2% by n armay

b) Show that each column of the array consists of 2* ! zeros and 2%-1

Oneés

2 Solution: To prove that each column of this array has 2! zeros
and 2*~! anes, we will show that the number of codewords that “1"
at the /-th position is same as number of codewords that have 0"
at the [-th paosition.

@ In the code array, each column contains at least one nonzero entry.
Consider the /—th column of the code array.

@ Let 5 be the codewords with a “0" at the /—th position and 5, be
the codewords with a "1" at the /—th position. -

So the set of code words that have 0 at the I-th location and let us denote by Si the set of code

words that have one at the 1-th location
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@ Problem 2 (contd.): Consider an (n. k) linear code C whose
generator matrix G contains no zero column. Arrange all the
codewords of C as rows of a 2% by n array

Show that each column of the array consists of 2! zeros and 2% !

anes,

@ Solution: To prove that each column of this array has 2%~ zeros
and 2! ones, we will show that the number of codewords that "1”
at the /-th position is same as number of codewords that have "0"
at the /-th position.

@ In the code array, each column contains at least one nonzero entry.

Consider the /—th column of the code array.

Let Sp be the codewords with a “0" at the /—th position and 5; be

the codewords with a "1" at the /—th position

@ Let x be a codeword from 5;. Adding x to each vector in 5y, we
obtain a set 5] of codewords with a 1" at the /—th position.

S5i|=15%]| and 5] C 5

b

Now we pick up an a code word x from the set S that means x has 1 at I-th location now if we
add this



(Refer Slide Time: 10:58)

AGMH 4 FBed TR

FTGoEE ok -F---I-I-IIIII' [

@ Problem 2 (contd.): Consider an (n, k) linear code C whose
generator matrix G contains no zero column. Arrange all the
codewords of C as rows of a 2* by n array

b) Show that each column of the array consists of 2% 1 zeros and 2*

1

anes

@ Solution: To prove that each column of this array has 25! zeros
and 2! ones, we will show that the number of codewords that “1"
at the I-th position is same as number of codewords that have “0”
at the I-th position.

@ In the code array, each column contains at least one nonzero entry.

Consider the I—th column of the code array.

Let 5 be the codewords with a 0" at the /—th position and 5; be

the codewords with a "17 at the /—th position.

@ Let x be a codeword from 5. Adding x to each vector in 5, we
obtain a set §; of codewords with 3 1" at the /—th position.

Sl =% and 5 C 5

— ——

Code word x to all the elements in the set So what do we get, what we will get is a set containing
1 at 1-th location, why because So is a set that has 0 at the 1-th location and x has x is taken from
the set S1 so x has 1 at I-th location, so if we add x to S elements in So what we will get is there
will be a I at the I-th bit location, so we denote this class of code word by Si1” and this Si1” will
have 1 at the I-th location and since this Si” is generated by adding x to this set of vectors in So
so number of elements in So is going to be same as number of elements in S1” and S1” is a sub set

of S1 which is the set of all code words which has 1 at I-th location.
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Linear block code

@ Problem 2 (contd.): The above condition implies that

S =[5 (1)

So from this we get this condition that set of code words which has 0 at 1-th location is less than

equal to set of
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Linear block code

@ Problem 2 (contd.): The above condition implies that
5| =[5 (1)

@ Adding x to each vector in 5;, we obtain a set 5] of codewords with
a "0" at the /-th position

Sl=|5] and 5C 5

Code word which has 1 at I-th location, now add this same vector X which has 1 at I-th location
to all the elements in S1. When we do that what we get is a new set of vectors which has 0 at 1-th

location
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Linear block code

@ Problem 2 (contd.): The above condition implies that
Sl = |5 (1)

& Adding x to each vector in 5;, we obtain a set 5] of codewords with
a "0" at the /-th position -

Sl=|%| and 5 C S

We denote this set by So " so So " is a set of code words which are obtained by adding x to the set
of vectors set of odd vectors which have 1 at I-th location, so then we can write thus the set of

vectors in So " 1s same as set vectors in S1 and since So * is a subset of So what we can write
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@ Problem 2 (contd.): The above condition implies that

Sl =15 (1)

@ Adding x to each vector in 5,, we abtain a set 5] of codewords with
a "0" at the |—th position

[Sp]l = || and 55 C 50
@ The above condition implies that

5| = |5 (2)

Then is from this relation
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Linear block code

@ Problem 2 (contd.): The above condition implies that
S| = |5: (1)

@ Adding x to each vector in 5;, we obtain 2 set 5 of codewords with
a "0" at the [—th position

5|=|5%] and 55C 5

@ The above condition implies that

51| = |50 (2)

And this relation we can write set of code words which have 1 at I-th location it is less than set of
code words which has 0 at I-th location. Now equation 1 and 2 they are going to be

simultaneously satisfied only when this is satisfied with equality, so then what it shows
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Linear block code

@ Problem 2 (contd.): The above condition implies that
5| = |5 (1)

@ Adding x to each vector in 5;, we obtain a set 5] of codewords with
a "0" at the /—th position

IS5l = |5:] and S5 C So
@ The above condition implies that
51| = |5 (2)

@ From (1) and (2), we get |5;| = |5;|. Therefore /—th column
contains 2! zeros and 2! ones

Here is that at any I-th location number of code words which have 0 at I-th location is same as

number of code words which have 1 at I-th location so basically each column will then have
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@ Problem 2 (contd.): The above condition implies that

S0l < |51 (1)

@ Adding x to each vector in 5;, we obtain a set 5] of codewords with
a "0" at the /—th position

|Sgl = |5:| and i—; _ 59
@ The above condition implies that
5 < |5 (2)

@ From (1) and (2), we get [5| = |5;|. Therefore /—th column
contains 2* ! zergs and 2* ! ones
e ORES

Same number of zeros and same number of ones.
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c) Problem 2 (contd.): Show that the minimum distance dy,, of C
satisfies the following inequality

- 2% 1

e < S

Now we prove another result, we showed that minimum distance of the code is upper bounded
by this quantity and to prove this result we are just going to use the result we just proved in the

previous section.
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c) Problem 2 (contd.): Show that the minimum distance dy,, of C
satishes the following inequality

”.'2!! i

dllﬂr. &
- 2k _1

@ Solution: The total number of ones in the array is n- 2. Each
nonzero codeword has weight atleast d.... Hence,

(?* =1)- dpy < n-2*?

So in the previous section what we did was we arranged this 2X code words in an array, 2X x n
array and we showed that each column of this array has 25! ones and 2*! zeros, so in this whole

array which has n columns total number of ones.
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c) Problem 2 (contd.): Show that the minimum distance dy,, of C
satisfies the following inequality

- 2% 1

drmrl - k
2 -1

@ Solution: The total number of ones in the array is n-2*~'. Each
nonzero codeword has weight atleast d..... Hence,

Ezh 1} dl'l'llﬂ =n 2& \

Is given by this, n times 2¥" now since each non zero code word will have minimum distance at
least dmin and how many total code words we have, 2% one of them is all zero code word so how
many non zero code words we have, that is given by 2*-1 and each of these non zero code words
have minimum distance at least dmin, SO total number of non zero code word multiplied by dmin

must be less the equal to



(Refer Slide Time: 16:01)

l—_

o i -F!.I=-l-ll;lll" Tl .

Linear block code

c) Problem 2 {contd.): Show that the minimum distance dyy, of C
satisfies the fullwing im:qual.ily

m- 2|i| 1

2% _ 1

Omin <

@ Solution: The total number of ones in the array is n- 2" ' Each
nonzero codeword has weight atleast d,,. Hence,

(2* =1)- dpin < 0+ 21

Total number of ones in this code array which is given by n times 2%-1 2!, so from this relation

then we can then
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Linear block «

c¢) Problem 2 (contd.): Show that the minimum distance dy, of C
satisfies the following inequality

n-E"' 1

i < =
iR Z‘—l

@ Solution: The total number of ones in the array is n-2°~'. Each
nonzero codeword has weight atleast d..,.. Hence,

(2* = 1) dyin < -2

& This implies that

C'|-|-|||-| =

Write that minimum distance of a code is upper bounded by this relationship.
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Minimum distance of a code

@ Problem # 3 What should be the minimum distance of a linear
block code € so that it can simultaneously correct » errors and e
erasures. Prove your result

So next problem that we will look at is what is a minimum distance of a linear block code C that
can simultaneously correct p errors and e erasures? Now just recall what do we mean by error
correction and error erasure correction. Basically so erasure is basically some of the bits are
getting erased, so you send n bits if e bits are getting erased what you are receiving is n-e bits,
and error correction you are familiar with basically we want to correct errors that have happened

in so many bit locations.
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2@ Problem # 3 What should be the minimum distance of a linear
block code € so that it can simultancously correct » errors and e
erasures. Prove your result.

@ Solution: The minimum distance d,., should be

=
win = 20+ &+ 1

o
@ Delete from all the codewords the & components where the receiver
has declared erasures
@ This deletion results in a shortened code of length n — &

So the question is what should be the minimum distance of a linear block code that can
simultaneously correct p errors as wells as e- erasures? Now if the minimum distance of a code is
at least 21 + ¢ + 1 then it can simultaneously correct p errors and e-erasures, we are going to next
prove this result. So delete from all code words e components which got erased, if we delete
these e components what we are left is n — e length shortened code word, so this deletion of e-

component results in a shortened code of length n —e.
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a Problem # 3 What should be the minimum distance of a linear
block code C so that it can simultancously correct & errors and ¢
erasures. Prove your result.

@ Solution: The minimum distance dpn should be

B = 260+ @+ 1

@ Delete from all the codewords the & components where the receiver
has declared erasures

@ This deletion results in a shortened code of length n - e

@ The minimum distance of this shortened code should be atleast
Oin — 22+ L

Now we know that if we want to correct t errors what should be the minimum distance of the

code, it should be at least 2t + 1 so this code.
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a Problem # 3 What should be the minimum distance of a linear
block code C so that it can simultaneously correct » errors and ¢
erasures. Prove your result.

@ Solutlon: The minimum distance d,., should be

Oy = 22+ &+ 1

a Delete fraom all the codewords the & components where the receiver
has declared arasures

# This deletion results in a shortened code of length n — ¢

@ The minimum distance of this shortened code should be atleast
Ooin — 8 = 210 + 1.

@ Hence, the v errors in the unerased positions can be comected. As a
result the shortened code with & components erased can be
recovered.

Basically if we want to correct p errors the minimum distance of the code after this e-erasures
should be greater than equal to 2p + 1, so if minimum distance of the code after this e-erasures
the minimum distance is still larger than 2 + 1 then this code can correct p errors, so we want
our minimum distance of the code to be at least 2 + e + 1. Now since this p errors are in the un-
erased positions can be corrected it this condition holds, so as a result basically we would be able

to correct p errors, now remember we have to simultaneously.
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@ Problem # 3 What should be the minimum distance of a linear
block code € so that it can simultanegusly correct 1+ errors and ¢
erasures. Prove your result.

@ Solution: The minimum distance d,.. should be

i = 20 + & + 1

a Delete fram all the codewords the & components where the receiver
has declared erasures

@ This deletion results in a shortened code of length n — ¢

@ The minimum distance of this shortened code should be atleast
O — 22220+ 1

# Hence, the » errors in the unerased positions can be cormected. As a
result the shortened code with & companents erased can be
recovered.

Also be able to basically it would be not only simultaneously correct p errors but we have to
correct e-erasures also. Now what is the condition on minimum distance such that e-erasures can
be also corrected? The minimum distance of the code should be at least greater than number of

erasures + 1, so if the minimum distance of the code.
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Minimum distance of a code

= Problem # 3 What should be the minimum distance of a linear
block code C =o that it can simultancously correct i errors and ¢
erasures. Prove your result.

@ Solutlon: The minimuom distance dep., should be

Oin = 20 + 2+ 1

@ Delete from all the codewords the & companents where the receiver
has declared erasures

@ This deletion results in a shortened code of length n — e

@ The minimum distance of this shortened code should be atleast
Guin — &>+ 1.

@ Hence, the » errors in the unerased positions can be cormected. As a
result the shortened code with & components erased can be
recoversd.

@ Finally, since dyy = ¢ 4 1. there is only one and only one codeword
in the onginal code that agress with the unerased components
Hence, the entire codeword can be recovered.

Is greater than e + 1 then there is only 1 code word in the original code that maps to the
shortened codes, so as long as minimum distance of the code is greater than e + 1 there is only
one 1 code word, the original code that agrees with the un-erased component so this as long as
minimum distance of the code is greater than e + 1 there is only 1 code that maps from erased
shortened code to the original code, and since in this case the d minimum is already 2p +e + 1

which is greater than e + 1.

This code would be able to correct e-erasures as well, so if we choose our minimum distance of
the code to be greater than equal to 2 + e+ 1 it would be able to correct p errors as well as e-

crasurcs.
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Minimum distance of a code

2 Problem # 4 Prove that a linear code is capable of correcting A or
fewer errors and simultancously detecting /(/ > A) or fower errors it
its minimum distance d.y, = A+ [+ 1.

The next problem that we are going to solve is as follows. Prove that linear block code is capable
of correcting A pr fewer errors and simultaneously detecting L where L is greater than A or fewer
errors if the minimum distance of the code is at least A + 1 + 1. Please pay attention to the word
simultaneously, so we want not only to correct pu errors along with that we should be able to

detect | errors as well, that is what we mean by simultaneous error.
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Minimum distance of 3 code

@ Problem # 4 Prove that a linear code is capable of correcting A or
fewer errors and simultanecusly detecting I{/ = A) or foewer errors if
its minirmum distance dyy = A +1+1. 7 22 %1

& Solutions: From the given condition, we ses that A < ‘:—‘“—L

Detection and correction, so let us prove this result. Now note A is less than | so if minimum
distance is A +1+ 1 this is basically greater than 2 A + 1, and if the minimum distance is greater
than 2 A + 1 it would be able to correct A, so from this given condition that dmin is at least A +
1 + 1 where | is greater than A we know that the minimum distance is greater than 2 A + 1 so it

should be able to correct A errors.
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Minimum distance of a code

@ Problem # 4 Prove that a linear code is capable of correcting A or
fower orrors and simultancously detecting I{/ = A) or fower orrors if
its minimum distanee dy, = A+ 1+ 1

@ Solutions: From the E,ivun condition, we see that A < E'-“j,—l |

& |t means that all the error patterns of A or fewer errors can be used
as coset leaders in a standard array. Hence, they are correctable

Now note we want to in addition to correcting A or fewer errors we also want to simultaneously
detect I errors. Now if we want to simultaneously detect those | or fewer errors we have to ensure

thus those error patterns of weight 1 or less are not in the same coset as the error patterns.
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@ Problem 3 4 Prove that 3 linear code is capable of correcting A or
fewer errors and simultancously detecting I{/ = A) or fewer errors if
its minimum distance gy = A+ 1+ 1

2 Solutions: From the given condition, we see that A =

@ |t means that all the error patterns of A or fower crrors (;-II'I- be used
as coset leaders in a standard array. Henee, they are correctable

@ In order to show that any error pattern of | or fewer arrors is
detectable, we need to show that no error pattern x of | or fewer

=1 |
z 4

errors can be in the same coset as an error pattern y of A or fewer
EfTOHS.

That we are trying to correct, now since A errors can be corrected we can put all error patterns of
A or fewer errors as coset leader in our standard array and they can be correctable. Next to
simultaneously detect 1 errors we have to show that none of these error patterns of weight 1 or

less are in the same coset as these.
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@ Problem 3 4 Prove that 3 linear code is capable of correcting A or
fewer errors and simultancously detecting I{/ = A) or fewer errors if
its minimum dStance due = A+ 1+ 1

2 Solutions: From the given condition, we see that A =

@ |t means that all the error patterns of A or fower crrors (;II'I- be used
as coset leaders in a standard array. Henee, they are correctable

@ In order to show that any error pattern of | or fewer arrors is
detectable, we need to show that no error pattern x of | or fewer

oy — 1
5 )

errors can be in the same coset as an error pattern y of A or fewer
EITOS.

Error patterns of A or less error, so we need to show that no error pattern x of length 1 or fewer
errors are in the same coset as error pattern Y of A or fewer errors. If they are in the same coset
because we are using those coset leaders for error correction we would not be able to detect those
error patterns, so it is important that those error patterns of weight 1 or less if we want to detect

them they should not be in the same coset as the correctable.
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2 Prablem w4 Prove that a linear code = capable of cormcting A or
fewer errors and simultaneously detecting /(! = A) or fewer errors if
its minimum distance dye = A+ 7+ 1

@ Solutions: From the given condition, we see that A <

@ |t means that all the crror patterns of A or fewer crrors qarl- be used
a5 coset leaders in a standard array. Henee, they are correctable

& |n order to show that any error pattern of | or fewer arrors is
detectable, we need to show that no error pattern x of | or fewer
errors can be in the same coset as an efror pattern y of A or fewer
ErTs

@ Suppose that x and y are in the same coset. Then x + y s a
nonzero code word. The weight of this code word satshes

e
)

wt(x + y) < wt(x) + wt{y) <1 + X < doin

Error patterns, so we are now going to use method of contradiction to show that it is not possible
to have these error pattern x of 1 of fewer errors in the same coset as these error patterns y of A
of fewer errors which we are trying to correct. So how does this the method of contradiction
work? We will first assume that they are in the same coset and then we will show that this is not

possible, hence our assumption that they are in the same coset is wrong.
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Minimum distance of a code

@ Problem # 4 Prove that a linear code is capable of correcting A or
fewer errors and simultaneously detecting I{/ = ) or fewer errors if
its minimum distance dpin = A+ 1+ 1

# Solutions: From the given condition, we see that A < | '-’“E‘.—'-! |

@ |t means that all the error patterns of A or fewer errors can be used
as coset leaders in 3 standard array. Hence, they are correctable

@ In order to show that any error pattern of | or fewer errors is
detectable, we need to show that no error_pattern x of / or fewer
errors can be in the same coset as an error pattern y of A or fewer
ErTors,

@ Suppose that x and y are in the same coset. Then x +y s a
nunzere code word, The weight of this code word satishies

wi{x + y) < wi{x) + wily]) < [ + A < duin

So we start our proof by saying these error pattern x of weight 1 or less and error pattern y of
weight A or less they are in the same coset, now if x and y are in the same coset we know from

our standard array.
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& Problem # 4 Prove that a linear code is capable of correcting \ or
fewer errars and simultaneously detecting /(] = A) or fewer errors if
its minimum distance dp, = A+ 1+ 1

@ Solutions: From the given condition, we see that A < _'éﬂ.‘h'-' f.

@ It means that all the error patterns of A or fewer crrors can be used
as coset leaders in a standard array. Hence, they are correctable

@ |n order to show that any error pattern of | or fewer errors is
detectable, we need to show that no effor pattern x of | or fewer
errors can be in the same coset as an error pattern v of A or fewer
Errors.

@ Suppose that x and y are in the same coset, Then x + vy 5 a
nonzero code word, The weight of this code word satishes

wi(x + y) < wi(x) + we(y) < [+ A < duin

That x + y should be a non — zero code word, if you recall the entries our standard array we had

in the first column an all zero code word and then we had other code word.
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Minimum distance of a code

@ Problem # 4 Prove that a linear code is capable of correcting A or
fewer errors and simultanesusly detecting /{/ = A) or fewer errors if
its minimum distance dy, = A+ 1+ L

@ Solutions: From the given condition, we see that A < _d='!l,- I_i

# It means that all the error patterns of A or fewer errors can be used
as coset leaders in a standard array. Hence, they are correctable

@ |n order to show that any error pattern of | or fewer errors is
detectable, we need to show that no error pattern x of | or fewer
errors can be in the same coset as an error pattern y of A or fewer
errors

& Suppose that x and y are in the same coset. Thenx +y m a
nonzero code word. The weight of this code word satisfies 0 ¥ Vg -- -

wt(x + y) < wtlx) + wi(y) <1 4 A < duia 22

v2, v3... and then what we had was error pattern ez and then we had basically this was ex+v2 like
that we had and if you add any two elements of a coset or a row what you will notice is sum of
them is a valid code word, so if x and y are in the same coset x + y must be a non — zero code
word. Now let us look at what is the weight of x + y? So wt(x + y) is less than equal to wt( x) +

wt(y) because it is possible that there are some common elements between x and y.
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Minimum distance of a code

@ Problem # 4 Prove that a linear code is capable of correcting A or
fewer errors and simultaneously detecting I{/ = A) or fewer errors if
its minimum distance dy, = A+ 1+ 1

@ Solutions: From the given condition, we see that \ < | Aa "_I

@ It means that all the error patterns of A or fewer errors can be used
as coset |leaders in a standard array. Hence, they are correctable

@ In order to show that any error pattern of | or fewer errors is
detectable, we need to show that no error pattem x of / or fewer
erfors can be in the same coset as an error pattern v of \ or fewer
BITOrs.

@ Suppose that = and y are in the same coset. Then x + v s a
nonzero cotde word. The weight of this code word satisfies 0 ¥ V5 ---.

wtx+y) < wt(x) + wtly) < 1 + A < de 22

That is why the wt(x + y) is less than equal to wt( x) + wt(y) and what is weight of x? x are the
error pattern of weight 1 or less, so the maximum weight of x is 1, similarly maximum weight of y
is A, so weight of x + y is then less than equal to A + 1 and what is the minimum distance?

Minimum distance of code is atleast L + 1+ 1, so weight of x + y is then less than dmin.

So what we have shown is, the weight of x + y, x + y should have been a code word is a code
word if they are in the same coset, if x and y are in the same coset x + y is a valid non — zero
code word, but what we have shown here is weight of x + y is less than dmin. So if x + y is a valid

code word, its minimum weight should be atleast dmin.



(Refer Slide Time: 27:48)

|"-.'1i n Il mum l:|i

& Problem # 4 Prove that a linear code is capable of correcting A or
fewer errors and simultaneously detecting I{/ > A) or fewer errors if
its minimum distance dpn = A+ 1+ L

# Seolutions: From the given condition, we see that A < _‘-'-‘"_:—-’ |

& It means that all the error patterns of A or fewer orrors can be used
as coset leaders in 3 standard array. Hence, they are correctable

@ In order to show that any error pattern of / or fewer errors is
detectable, we need to show that no error pattern x of [ or fewer
errars can be in the same coset as an error pattern y of A or fewer
Errors.

# Suppose that x and y are in the same coset. Then x +y s a
nonzero code word. The weight of this code word satisfies 0% V5 ----

*’f(.l + _i'] = Wﬂ!; + Wf[_b':l <l4A= ﬂ'i'|'||r| E"‘r‘.!.

So from here basically what we get is, it is not possible to have x + y in the same coset because if
they were in the same coset x + y would have been a valid code word and its weight of x +y
should have been more than dmin, but here in this case it is coming out to be less than dmin , hence

our assumption that x and y are in the same coset is wrong.
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Minimum

@ Problem # 4 Prove that a linear code is capable of correcting A or
fewer arrors and simultaneously detscting /{/ = A) or fewer errars if
its minimum distance dy, = A+ 1+ 1

@ Solutions: From the given condition, we see that A < ‘i-"-'ﬁ -’_I

@ |t means that all the error patterns of A or fewer arrors can be used
as coset leaders in a standard array. Hence, they are correctable

@ In order to show that any error pattern of | or fewer errors is
detectable, we need to show that no error patiern x of [ ar fewer
errars can be in the same coset as an error pattern y of A or fewer
EITars,

@ Suppose that x and y are in the same coset. Then x +y s a
nonzero code word. The weight of this code word satisfies O ¥ Vo -- -

wilx + y) < wi(x) + wit{y) < 1+ A < dnin G259
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Minimum

a Problem % 4 Prove that a linear code s capable of correcting A or
fewer errors and simultaneously detecting /(! = A) or fewer errors if
its minimum distance dpp = A+ 1+ 1

@ Solutions: From the given condition, we see that A < | ]

@ [t means that all the error patterns of A or fewer errors can be used
as coset |eaders in a standard array. Hence, they are correctable

@ In order to show that any error pattern of | or fewer errors is
detectable, we need to show that no error pattern x of / or fewer
erfrors can be in the same coset as an error pattern v of A or fewer
&rrors.

@ Suppose that x and y are in the same coset. Then x+y 5 a
nonzero code word. The weight of this code word satishes

W‘[‘{.‘ - _h'] - Wﬂ:}l} E WTL\'] <f4+A< dlﬂl'ﬂ

@ This is impassible since the minimum weight of the code is dy,-
Henee x and y are in different cosets. As a3 result, when x occurs, it
will not be mistaken as y. Therefore x is detectable.

Now if x and y are not in the same coset then we can always put those error patterns of y and x in

different cosets and hence we can simultaneously.
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Minimum distance of a

2 Problem # 4 Prove that a linear code is capable of correcting A or
fewer errors and simultaneously detecting /(1 = A) or fewer errors if
its minimum distance dpm = A=+ L

@ Solutions: From the given condition, we see that \ < _i'lgf—J_I

@ |t means that all the error patterns of A or fewer crrors can be used
as coset leaders in a standard array. Hence, they are correctable

@ [n order to show that any error pattern of / or fewer errors is
detectable, we need to show that no error pattern x of [ or fewer
errors can be in the same coset as an error pattern y of A or fewer
Errars.

@ Suppose that x and y are in the same coset, Then x +y s a
nonzero code word, The weight of this code word satishes

WT{;‘ ¥ _'n"] = M(KJ L M{_VJ <+ A< doin

@ This is impossible since the minimum weight of the code is dy,-
Henee x and y are in different cosets. As a result, when x accurs, it
will not be mistaken as v Therefore x is detectable.

Detect and correct errors, so we can simultaneously correct A errors while detecting also 1 errors,
okay. So again to recap basically we prove this result by showing that if we want to

simultaneously correct and detect errors those error patterns should be in the different cosets.



(Refer Slide Time: 29:11)

Minimum d

@ Problem # 4 Prove that a linear code is capable of correcting A or
fewer errors and simultaneously detecting /([ = A) or fewer errors if
its minimum distance dmn = A+ 1+ L

@ Solutions: From the H.'ru‘en condition, we s8s that A\ < _'5“.}-'—"‘!.

@ lt means that all the error patterns of A or foewer errors can be used
as coset leaders in a standard array. Hence, they are correctable

& In order to show that any error pattern of | or fewer errors is
detectable, we need to show that no error pattern x of | or fewer
erfrors can be in the same coset as an error pattern y of A or fewer
errars.

@ Suppose that x and y are in the same coset, Then x + v s a
nonzero code word, The weight of this code word satishes

we(x-+ y) < we(x) + wely) < 14X < doiy

@ This is impossible since the minimum weight of the code is dmin-
Henee x and y are in different cosets. As a result, when x eccurs, it
will not be mistaken as y. Therefore x is detectable.

And hence we can simultaneously correct and detect those error patterns.
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Minimum distance

@ Problem # 5 Let C; be the binary (n, k;) linear code with generator
matrix G; and minimum distance g, respectively. Let C be the
binary (2n, ky + k3] linear code with generator matrix

G G|

0 G

where 0 i5s 3 k» = n zero matrix. Calculate the minimum distance of
C. Prove your result.

G

The next problem that we are going to solve is as follows. Let Ci be a binary linear code with
code parameters given by (n, ki) with generator matrix Gi and minimum distance di and let us
consider a new code C, a new binary code linear code of length 2n and message bit length ki+ka
whose generator matrix is given by this expression. Now what is the minimum distance of this

new code C?
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Minimum distance of a code

@ Problem # 5 Let {; be the binary (n, k;) linear code with generator
matrix G; and minimum distance &), respectively. Let C be the
binary (2n, ky + k;) linear code with generator matrix

G} G|

0. & |
where 0 is 3 kx = n zero matrix. Calculate the minimum distance of
C. Prove your result

@ Solution: Let u = (wy, . -+, tp—q) and ¥ = (v, ¥y, --- . va—y) be
two binary n-tuples. We form 2n-tuple from u and v a3 follows

G=

w4+ v = (U, Uy, Uy, Uy W Uy Y g V)

So to find out the minimum distance so let us consider, let u and v are two binary n — tuples and
we form a 2n tuples as follows, if you look at this code word v, how is this code word generated?
So it is one n — bit code word, another n — bit code word, first n — bit code word is generated
using u times t1 and second one you get basically u times G1 plus v times G2 so essentially the

way you are generating this code word.
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Minimum distance aof a code

@ Problem # 5 Let  be the binary (n. k;} linear code with generator
matrix G; and minimum distance ), respectively. Let C be the
binary (2n, ky + k2] linear code with generator matrix

[&aia]
0,6 |
where 0 is a kx = 7 zero matrix. Calculate the minimum distance of
C. Prove your result.
@ Solution: Let u = (uwy, uy, -+ ,up—1) and ¥ = (wy, vy, --- , va—y ) be
twa binary n-tuples. We form 2n-tuple from u and v as follows

G

uju v = (g, 1, ooty Uy Wty g g V)

The first part contains n — bit code word u and the second part is n — bit code word which is u +

v, so this 2n length code word will be of the form like this where the first n - bits are uo, ui, u,

un-1 and the next n — bits are of the form uo+vo, uitvi and like that.
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Minimum distance of a code

@ Problem # 5 Let C; be the binary (n. k;) linear code with generator
matrix G; and minimum distance 4, respectively. Let C be the
binary (2n, ky + k7 ) linear eode with generator matrix

G G ]

0 G |
where 0 is 3 kx x n zero matrix. Calculate the minimum distance of
C. Prove your result.

@ Solution: Let u = (g, vy, - , un—y) and v = (v, vy, --- , va—1) be
two binary n-tuples. We form 2n-tuple from u and v a5 follows

G=

ufur v = (ug. by, oo gy by Wy Yy, g V)
@ The linear block code C is

C | €y |y + C3

= {|juju+v :ue §.andv € G}

So as I said our linear block code C the new code of length 2 and can be written as this form

where you have a code u of length n will belongs to Ci and then the second part, the n - bit part is

u + v where u belongs to Ci and v belongs to Co.
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Minimum distance of a code

2 Problem #5 (contd.): The minimum distance of C is
iy = min{ 2dhy. )

Now we will show that minimum distance of the code is minimum of 2d; or d2 where d2 is a

minimum distance of the code nk2 and di 1s a minimum distance of a code nki.
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Minimum distance of a code

@ Problem #5 (contd.): The minimum distance of C is
thyie = min{ 2dy, e}
@ Letx = [uju+vandy u’|u +v'] be two distinct codewords in C

dlz.y) = wlu+ o)+ wlu+u +vev)

where w(z) is the Hamming weight of z.

So let us consider two distinct code word x and y, so X we denote as concatenation of uand u + v
and this is u prime plus u prime plus v prime, let x and y be two distinct code words in C, now

what is the hamming distance between x and y?
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Minimum distance of a code

@ Problem #5 (contd.): The minimum distance of C is
die = min{2ck, 1)
@ Let x = [uju+v| and y = |u|u’ + v'| be two distinct codewords in €
dx.y)=wlu+u)+wlu+u +v+v)

where w(z) is the Hamming weight of z.

We can write down the hamming distance between x and y as the hamming weight between u
plus u prime plus hamming weight between u + v + u' + v' so the hamming distance between x

and y can be written as hamming weight of u + u' plus hamming weight of u +u'+ v+ v'.
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Minimum distance of a code

@ Problem #5 (contd.): The minimum distance of € is
diyin = mind 24y, )
@ Let x = |uju+v| and y = |u'|u’ + | be two distinct codewords in C
dix.y) = wlu+u') + wiun+u +v+v)

where w(z) is the Hamming weight of z.
2 Consider two cases v=w and v =v_ Ifv=v_ since x =y, we
mist have u = . In this case

d{x.¥) = wlu+u') + wiu+u)

Now note x and y are distinct code words so let us consider two scenarios, in first case we will
consider v i1s same as v’ in second case we will consider v is not same as v'. So if we consider v

as same as v’ since x and y are distinct code word what we will have is u is not same as u’. So in

this case.
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Minimum distance of a code

@ Problem #5 (contd.): The minimum distance of C is
i = min{2dy, dx }
@ Let x = juju+v| and y = |u'|u’ +v'| be two distinet codewards in C
dix.y) = wiu+u')+ wu+u +v+v)

where w(z) is the Hamming weight of z.
@ Consider twocasesv = v and v # v If v = v since x # y. we
must have u # u'. In this case

diz.y)=wlo+u)+wlu+u)
@ Since w+ o' is a nonzero codeword in G, wiu +u’) > d). Therefore

d(x.y) = 2a) (3)

The hamming distance between x and y will be given by hamming weight of (u+u’)+. Now since
v and v’ are same this will be zero so this will be same as hamming weight of (u+u’). So then in
this case when v is same as v’ we can write the hamming distance between x and y as hamming
weight of (u+u’)+ hamming weight of (u+u'). And since what is u+u’, u and u’ are two code
words belonging to Ci so sum of two code words for a linear block code is another valid code

word.
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@ Problem #5 (contd.): The minimum distance of C is
d"r'l"l mmllrdl' dz]

@ Let x = |uju+w| and y = |u'|u’ +v'| be two distinet codeweords in C
diz.y) = wiu+u') + wlu+u' +v+v')

where w(z) is the Hamming weight of z
@ Consider twocasesv = v and v # v’ If v = v, since x # y, we
must have uw # u'. In this case

dix,y) = wiu+u') + wiu +u')
@ 5ince u + o' is a nonzero codeword in G, wiu 4+ u') = dy. Therefore
d(x.y) = 2d, (3)

So utu’ is going to be another valid code word. So then, then what would be the minimum
distance of u+u’ it would be atleast the minimum distance of the code Ci which is di. So then

hamming distance between x and y.
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Minimum distance of a

@ Problem #5 (contd.): The minimum distance of C is
i = mind{ 2dy, b }
@ Let x = ufju+ vl and y = [u'|u’ + v'| be two distinet codewards in C
dix.y) = wio+u') + wlu+u +v+v)

where w(z) is the Hamming weight of z.
@ Consider twocasesv = v and v £ v'. v = v/ since x # y, we
J 5 e
must have u # u . In this case

dix. y) = wiu+u') + wiu+u)
@ Since u + u’ is a nonzero codeword in 5, wie +u') = dy. Therefore
dix.y) = 2d, (3)

Would be greater than equal to two times di. So for the case when v=v’, we have shown that

minimum distance should be atleast two times di. Now let us consider the case.
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@ Problem #5 (contd.): The minimum distance of C is
dn'm """""wdldﬂ

@ Let x = wju+v| and y = |u'|u’ +v'| be two distinet codewards in C
dix.y) = wio+u') + wiu+u +v+v')

where w(z) is the Hamming weight of z.
@ Consider wocasesv v andv # v fw = v sincex # y. we
» ¥ P —— T ——
must have uw # u'. In this case

d{x. y) = wiu + I.I'J + i+ w')
@ Since w+ o' is a nonzero codeword in Gy, wiu+ ') = dy. Therefore
d(x y) = 2ay (3)

Whenv #vV'.
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Minimum distance of a o

@ Problem #5 (contd.): The minimum distance of € is
dha == w205, b}
@ Let x = |u|u+ v and y = |u'ju’ + v'| be two distinct codewards in C
dix.y)=wu+u')+wlv+u +viv)

where w(z) is the Hamming weight of z.
@ Consider twocases v = v and w # w'. If v = v, since x # y. we
must have u # u'. In this case

dix.y) = win +u') + wiu+u')
@ Since u + u' is a nonzero codeword in GG, wiu 4 u') = d;. Therefore
d(x.¥) = 2dh (3)
@ From triangle inequality, we have
diz.y) > dx.z)—d(y.2)
wix+yl = whix+z)— wily +z)

So before that we will just state again the triangular inequalities that we are going to use, so from
the triangular inequality we know that hamming distance between x and y is greater than equal to
hamming distance between x and z minus hamming distance between y and z, and we know the
hamming distance is nothing but hamming weight of x+y, hamming weight of x+y and hamming
weight of x+z minus hamming weight of y+z. So we can write this expression in terms of

hamming distance or we can write in terms of hamming weight.
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Minimum distance of a code

@ Problem #5 (contd.): Let x4 z=viv andytz=u+ v,
then we get

wiu+u' +v+v) > wiv+v') — wiu+u)

Now let us take x+z to be equal to v+v’ and y+z as u+u’, and we put.
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Minimum distance of a co

@ Problem #5 (contd.): The minimum distance of € is
s = il 2d. ]
@ Let x = |u|u+ v| and ¥y = |u'|u’ +v'| be two distinet codewards in C
dix. y) = wiu+u') + wiu+u +v+v)

where w(z) is the Hamming weight of z.
@ Consider twocases v = v and v # v’ If v = v since x # y, we
must have u # u'. In this case

dix.¥) = wlu +u') + wiu+u)
@ Since u+ u' is a nonzero codeword in Gy, wiu + u') = d,. Therefore
dix. y) = 2y (3)
# From triangle inequality, we have
dixy) > d(x.z2)—d(y.2)
wix+y]l = wilx+z)— wily+z)

This values of x and x+y and x+z and y+z.
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Minimum distance of a code

@ Problem #5 (contd.): Let x4 z=viv andytz=u+ v,
then we get

wiu+u' +v+v) > wiv+v') — wiu+u)

We put these values.
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Minimum distance of a c

@ Problem #5 (contd.): The minimum distance of C is
diis = min{2dy, da )
@ Let x = |uju+v| and y = |u'|u’ +v'| be twa distinet codewords in C
dix.y) = wn+u)+ wlut+u +v+v)

where w(z) is the Hamming weight of z.
@ Consider twocases v = v and v # v'. If v = v', since x # y. we
must have u # u’. In this case

dix.¥) = wiu+u') + wlu+wu')

@ Since u + o' is a nonzero codeword in G, wlu+ u') = dy. Therefore

dx.y) = 2dh (3)
@ From triangle inequality, we have
diz.y) = d(x.z)-d(y.2)

wix+y) = wi(x+z)— wily +z)

In this expression. So what is x+y?
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Minimum distance of a code

@ Problem #5 (contd.): Letx + z=vivandy +z=u + 0,
then we get

wio+u +v+v) = wiv+v')— wiu+u)

x+y would be v+v'+u+u’. So x+y is basically u+u’ + v+v'.
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Minimum distance of a code

@ Problem #5 (contd.): The minimum distance of C is
O = rmin{2ch, o)
@ Let x = |uju+w| and y = |u'|u’ +v'| be two distinet codewards in C
dix.y) = wiu+u') + wiu+u +v+v)

where w(z) is the Hamming weight of z.
@ Consider twocasesv = v and v £ v'. If v = v/, since x # y, we
must have u # u'. In this case

d{l.j] = w(u + u'j + wfu + ll']
@ Since u + u' is a nonzero codeword in G, w(u+u’) = dy. Therefore
d(x.y) = 24, (3)
@ From triangle inequality, we have
dixy) > d{xz)—dyz)
wix+y) = wi{x+z)— wily+z)

So from here w(x+y).
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Minimum distance of a code

@ Problem #5 (contd.); Letx 4 z=v i+ v andy+z=u+ 0,
then we get

wiu+u' +v+v') > wiv+v) — wlu+u)

Is given by this.
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Minimum distance of a code

@ Problem #5 (contd.): The minimum distance of C is
O = rmin{2ch, o)
@ Let x = |uju+w| and y = |u'|u’ +v'| be two distinet codewards in C
dix.y) = wiu+u') + wiu+u +v+v)

where w(z) is the Hamming weight of z.
@ Consider twocasesv = v and v £ v'. If v = v/, since x # y, we
must have u # u'. In this case

dix. y) = wiu+ I.I':| + wriun + w')
@ Since u + u' is a nonzero codeword in G, w(u+u’) = dy. Therefore
d(x.y) = 24, (3)
@ From triangle inequality, we have
dixy) > d{xz)—dyz)
wix+y) = wi{x+z)— wily+z)

Next what we had was w(x+z) what is w(x+z)?
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Minimum distance of a code

@ Problem #5 (contd.): Letx fz=vivandytz=u+w,
then we get

win+u +v+v') > wiv+v')— wiot+u)

W(x+z) is w(v+v’) and similarly w(y+z) is given by this okay. So this is upper bounded, this is

lower bounded by this quantity, this is lower bounded by this quantity.
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@ Problem #5 (contd.): The minimum distance of C is
Chssivs min{2d;, ok}

@ Let x = |u|u+v| and y = |u'|u’ +v'| be twe distinet codewords in C

dix.y)=wiu+u')+ wlu+o +v+v)

—

where w(z) is the Hamming weight of 2.
@ Consider twocasesv=v andv# v’ Ifv=v sincex &y we
must have u # u’, In this case

dix.y) = wiu + u') + wiu+u’)

@ Since uw+ u' is a nonzero codeword in G, wu+u') = d;. Therefore

dix.y) = 2d, (3)
@ From triangle inequality, we have
dix.y) = dx,z)—diy.z)
wix+y) = wix+z)— wily+z)

Now go back and see what is our minimum distance between x and y, minimum distance
between x and y is given by this expression, it is the hamming weight between u and u’ + plus

hamming weight of u+u’.
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@ Problem #5 (contd.): The minimum distance of C is
Oipins = rin{ 2chy, b}

@ Let x = |u|u+v| and y = |u'|u’ +v'| be twe distinet codewords in C

dix.y)=wiu+u')+ wlu+o +v+v)

—

where w(z) is the Hamming weight of 2.
Consider twocases v = v and v # v If v = v since x # y, we
must have u # u’, In this case

dix.y) = wiu + u') + wiu+u’)

@ Since uw+ u' is a nonzero codeword in G, wu+u') = d;. Therefore

dix,y) = 2dy (3)
@ From triangle inequality, we have
dix.y) = dx,z)—diy.z)
wix+y) = wix+z)— wily+z)

Plus v+v', and what we did just now is we lower bounded this, so then hamming distance

between x and y.
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Minimum distance of a code

@ Problem #5 (contd.): Letx fz=vivandytz=u+w,
then we get

win+u +v+v') > wiv+v')— wiot+u)



(Refer Slide Time: 37:48)

7] =5g # Bl ol L5 TR 3
R

Minimum distance of a code

@ Problem #5 (contd.): Let x4+ z-vivandy +z = w4,
then we get

wia+u' +v+v') > wiv+v')— wlo+u)

@ If v # v, we have

d{x.,]@ w_iu-_ul +wiv +v') —wlu+u)

= wiv+v')

Can be, so this basically this we lower bounded by this quantity. So if you plug that in here what

we get here is greater than equal to. So what we can write is the hamming distance between x

and y is then greater than or equal to this term comes from here.
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@ Problem #5 (contd.): The minimum distance of C is
Oipins = rin{ 2chy, b}

@ Let x = |u|u+v| and y = |u'|u’ +v'| be twe distinet codewords in C

dix.y)=wiu+u')+ wlu+o +v+v)

—

where w(z) is the Hamming weight of 2.
@ Consider twocasesv=v andv# v’ Ifv=v sincex &y we
must have u # u’, In this case

dix.y) = wiu + u') + wiu+u’)

@ Since uw+ u' is a nonzero codeword in G, wu+u') = d;. Therefore

dix,y) = 2dy (3)
@ From triangle inequality, we have
dix.y) = dx,z)—diy.z)
wix+y) = wix+z)— wily+z)

This term, and this term is lower bounded by.
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Minimum distance of a code

@ Problem #5 (contd.): Letx + z=v4 v andy+z =w+u',
then we get

wiu+u' +v+v') = wiv+v')— wlu+u)

a If v # v, we have

d{z.y]@ M} +wiv+w) -/.:4‘4’-’:'-}

= wiv+w')

This term here, so we write it here, now this can be further written as hamming weight of v+v'
because these two cancel out. So what we have shown is when v is not same as v’ the hamming

distance between x and y is greater than equal to.
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Minimum distance of a code

@ Problem #5 (contd.): Letx + z=v4 v andy+z =w+u',
then we get

wiu+u' +v+v') = wiv+v')— wlu+u)

a If v # v, we have

d{z.y]@ M} +wiv+w) -/.:4‘4’-’:'-}

= wiv+w')

Hamming weight of v+v'. And what is v+v', v and v’ are valid code words in linear block code
C2 with minimum distance d2. So v+v’ will be another valid code word in C2 whose minimum

distance is da.
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Minimum distance of a code

@ Problem #5 (contd.): letx 1 z=wv iV andy lz=u v,
then we get

wia+u +v+v) > wiv+v) — wlu+u’)
a If vw# v, we have

dix.y) = wlu+u')+ wlv+v)—wlu+u)

= wiv+v)
L ; e
@ Since v v is 3 nonzero codeword in G, wiv 4 v') = db, we have

dix.y) = & (1)

So then we can write this as hamming distance between x and y is greater than equal to d2. So we

look comparing equation number four and.
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@ Let x = |u|u+v| and y = |u'|u’ + | be twe distinet eadeweards in C

ﬂx.}cjallu—u']w-wﬂu_-rn'—u—u';

where w(z) is the Hamming weight of z.
@ Consider twocases v v andv# v’ If v m v since x # y. we
must have u # u’. In this case

dix.y) = wio + ') + wiu+u')

@ Since u+ u' is a nonzero codeword in G, wiu +u') = dy. Therefore

dix y) = 2ay (3)
@ From triangle imequality, we have
dix.y) = dix.z)—dly.z)
wix+y) = wi(x+2)—wiy+z)

Equation number three, if we compare these two equations we can write that minimum distance

of the code is minimum of 2d; or d2 okay.
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Minimum distance of a code

r

@ Problem #5 (comtd.): let x +z=v4vandy+z=u+v',
then we get

wio+u +v+v) = wiviv)— wiu+u)
a lfv # v, we have

diz.y) = wlu+u)+wivsv)—wiu+u)
= wiv+v)

@ Since v+ v &5 a nonzero codeword in G, wiv + v') = oh, we have
dix.y) = ds (4)
@ From (3) and (4) we have

dix.y) = min{2d;. ds }

Now let us show that there exists a code with.
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Minimum distance of a
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@ Problem #5 (comtd.): let x +z=v4vandy+z=u+v',
then we get

wio+u +v+v) = wiviv)— wiu+u)
a lfv # v, we have

diz.y) = wlu+u)+wivsv)—wiu+u)
= wiv+v)

@ Since v+ v &5 a nonzero codeword in G, wiv + v') = oh, we have
dix.y) = ds (4)
@ From (3) and (4) we have

dix.y) = min{2d;. ds }

Minimum distance of code is in d equal to minimum of 2d; or da.
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Minimum distance of a code

= Problem #5 (contd.): Let uy and wy be two minimum-weight
codowords in € and G respectively

So let us take two minimum weight code words in Ci1 and Cz let us call them uo and vo.
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Minimum distance of a code

& Problom #5 (contd.): Let uy and w, be two minimum-weight
codewords in £y and (o respectively

@ The vectar |ug|ug| 18 a codeword in C with weight 2d).

@ Similarly the vector |D|wy| is a codeword in C with weight ..

Now this is a valid code word in C and what is its minimum distance, it is two times di so if we
take vo to be all zero code word what we get is uo and uo this is a valid code word in C and its
minimum distance is two times di. Similarly, if we take uo to be all zero code word then what we
get is this code word 0 and uo whose minimum distance is d2. So hence we have shown that there
basically there minimum distance of code of this code new code C is indeed minimum of 2d; Or

d2 okay.
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Minimum distance of a code

@ Problem #5 {contd.): Let up and wy be two minimum-weight
codewords in C; and G respectively

@ The vector |ug|ug| i a eodeward in T with weight 2d;.
@ Similarly the vector |D|w| is a codeward in C with weight o,

a Therefore
d{x.y) = min{2dh, dk}

Thank you.
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