
Indian Institute on Technology Kanpur
National Programme on Technology Enhanced Learning (NPTEL)

Course Title
Error Control Coding: An Introduction to Convolutional Codes

Lecture-5

Decoding of Convolutional Codes-II: BCJR Algorithm

by
Prof. Adrish Banerjee

Dept. Electrical Engineering, IIT Kanpur

Welcome to the course on error control coding, an introduction to convolutional code.

(Refer Slide Time: 00:23)

We are going to continue our discussion on decoding of convolutional codes. In the last class we

talked about Viterbi decoding and if you recall Viterbi decoding is an efficient algorithm to

compute a path to the trellis for convolutional code. Now it essentially finds out, Viterbi

algorithm essentially finds out an estimate of the code word, because any path through the trellis

of a convolutional code is basically a code word.

Now that not necessarily minimizes the bit error rate probability. In many applications we are

interested to minimize the bit error rate.

(Refer Slide Time: 01:09)

So today we are going to talk about a decoding algorithm which is basically going to minimize

bit error rate probability, symbol error rate probability.

(Refer Slide Time: 01:19)

So we are going to use a a-posteriori probability based algorithm to estimate our information

sequence.

(Refer Slide Time: 01:31)

And this algorithm which maximizes probability of û given u, given the received sequence r is

known as map decoder.

(Refer Slide Time: 01:47)

Now this is known as – also known as BCJR algorithm named after these researchers who Bahl,

Cocke, Jelinek and Raviv who introduced this algorithm in 1974. And this algorithm can be

applied to any linear code, block code or convolutional code.

(Refer Slide Time: 02:08)

Now the complicity of this algorithm was much higher than Viterbi algorithm and that is why it

was not popular in 70’s, but in late 90’s with, when this concatenated codes, turbo codes came

into picture and we required soft estimates then these algorithms became very, very popular.

(Refer Slide Time: 02:38)

So what this algorithm does, it computes the a-posteriori probability, so I define a a-posteriori

log likelihood value, I call it L-value like this. So it basically computes probability of ul being +1

given a received sequence r/P(ul) being -1 given received sequence r, take a log of that. Now if

this L-value is greater than zero, then you decide in favor of ul being +1, otherwise you decide in

favor of ul being -1.

(Refer Slide Time: 03:14)

So your decoder output will be +1 if the L-value is greater than zero, otherwise you decide in

favor of -1.

(Refer Slide Time: 03:32)

So we are going to now talk about how to compute these terms. These terms you see in

computation of APP value, how do we compute these terms and how we can exploit this

structure of the trellis of the convolutional encoder to simplify this expression.

(Refer Slide Time: 03:53)

So let us look at this probability of ul being +1 given a received sequence r, this can be written as

join probability of ul being +1 and received sequence r divided by the probability of receiving

this r. Now this probability of ul being plus one given a received sequence r can be written as

probability of r given v, multiplied probability of u some over all input sequences that belongs to

the set where ul is +1.

And this can be written as probability of r given v multiplied by probability of u some over all

input sequences.

(Refer Slide Time: 04:36)

So as I said since we are interested in joint probability of ul being +1 and r, we sum this

probability over all those set of information sequences where the bit, the corresponding bit is +1.

(Refer Slide Time: 05:40)

And our transmitted code word is v, our information sequence is u and r is the received

sequence. So probability of r given v can be computed from the channel, given channel.

(Refer Slide Time: 05:22)

Similarly we can also compute.

(Refer Slide Time: 05:25)

(Refer Slide Time: 05:26)

(Refer Slide Time: 05:26)

(Refer Slide Time: 05:27)

(Refer Slide Time: 05:28)

Now if you go back here the denominator we need to compute probability of ul being -1 given r.

(Refer Slide Time: 05:36)

 So similar to this term.

(Refer Slide Time: 05:37)

(Refer Slide Time: 05:39)

(Refer Slide Time: 05:41)

(Refer Slide Time: 05:42)

(Refer Slide Time: 05:43)

We can also write probability of ul being -1 given r and probability of r is a common term.

(Refer Slide Time: 05:48)

So if we do that what we get is this. So again this L-value, the APP value of ul is given by

probability of r given v multiply the probability of u where we are summing over all information

sequences where the corresponding bit is +1. And similarly for the denominator we are summing

over all information sequences where information bit is -1.

We will illustrate this with help of an example and then things will be little more clear.

(Refer Slide Time: 06:34)

Now note here, if you have very large sequences this is some over all input sequences where ul is

+1 in this somewhat all input sequences where ul is -1. So if your information sequence is large,

this is somewhat very large number of possibilities. So this is quite complex, now can we use the

structure of the convolutional code to simplify this expression.

(Refer Slide Time: 07:02)

The answer to this is yes, so we are going to basically simplify this equation for by using the

trellis structure of the convolutional code. We know all possible transitions are not possible. So

our trellis diagram what the state diagram will ensure, will tell us what are the valid transitions.

(Refer Slide Time: 07:29)

So we can simplify this expression using our valid state transitions. So what we are going to do

is we are going to make use of the trellis structure of the code to simplify our equation number 4.

(Refer Slide Time: 07:49)

So let us see how do we do it.

(Refer Slide Time: 07:54)

So again we go back and look at this probability of ul being +1 given our received sequence r as

we have written, this can be written as joint probability of ul being 1 and the probability of

receiving r divided by the probability of r. Now we are going to now look at this expression, this

is joint probability of ul being +1 and given the received sequence r has been received.

So if you look at any trellis diagram let us say this is on trellis diagram, this simple two state

code like that you have. So we are interested in where ul is +1 and where ul is -1. Let us say this

is 0/00, this is 1/11, this is – let us say 1/10, this is 0/01. So let us look at one trellis section, so

we are interested in all those transitions which belongs to ul+1. Now what are those transitions,

so in this example this is one set transition and the other is this transition okay.

So what I am writing here is then I am interested in what is the joint probability that the previous

state is Sʹ s prime, the next state is S, and the received sequence is r and I am summing over all

those state transitions that belong to the set pair where the input corresponds to this transition is

+1. So note what is my this ∑l
+ it is the set of all state pairs where the initial state is Sʹ then next

state is s, so it is a pair of states where the transitions, the input bit corresponding to a valid

transition is +1.

So in this case the set that belongs to this is given by this red line okay. So I can write the joint

probability of ul being +1 and r in terms of condition on the valid trellis transitions in this way, I

can write it as what is the probability that the initial state is sʹ next state is s given that I have

received sequence r. And I sum over all those transitions which belong to input bit being +1.

(Refer Slide Time: 11:09)

Similarly I can write exactly the way I wrote probability of ul being +1 given r, I can follow the

same procedure to write what is the probability of ul being -1 given r. So what will be the change

here, so I will compute this probability and I will sum over all those state pairs which

corresponds to input bit -1.

(Refer Slide Time: 11:39)

So if I plug these values of probabilities which are given by equation 5 and similarly I can

calculate the probability of ul being -1 given r. So instead of this thing here, I will have ∑ over

(sʹ, s) ∑ over all those pairs which corresponds to ul being -1. And I will get this same thing here.

So if I do that what I will get is equation number 6.

(Refer Slide Time: 12:15)

So note that previously.

(Refer Slide Time: 12:16)

I had this same expression equation number four in terms of this input sequence ul.

(Refer Slide Time: 12:29)

Now if our input sequence is very long this is ∑ over, so large number of terms.

(Refer Slide Time: 12:31)

Whereas I have now simplified my expression.

(Refer Slide Time: 12:37)

So this ∑ is now only over valid transitions corresponding to ul being +1 and this ∑ is over valid

transitions corresponding to ul being -1.

(Refer Slide Time: 12:52)

So I have simplified my equation number four, equation number six and I have used the state

diagram or the trellis diagram of the convolutional encoder to simplify my expression. So this

will be my a-posteriori probability log like L-value a-posteriori probability. Now how do I

compute this term?

This we will show that if we can write this term as product of three terms and two of these terms

can be computed recursively, that is what I am going to show in the subsequent slide. So let us

look at this expression, how do we compute the probability that in the current state it is in sʹ next

state is s given a received sequence r.

(Refer Slide Time: 13:44)

So as I said we are interested in this, now this can be written as, so I have this received sequence

r, so let us say this is r at time t = 1, t = 2, so this is my – let us say time instances. And I get

some bits, let us say I get some r1 corresponds to what I receive at time t = 1, r2 corresponds to

what I receive at time 2, rl corresponds to what I receive in time l and like that, rl+1 is what I

receive at time t = l+1 like that.

So this receives this whole thing is my received sequence r okay. Now what I am doing is I am

partition that received sequence into three segments. So one which corresponds to 1 is this,

which corresponds to time before l. So 1 is this portion, this portion of my received sequence,

this is rt < l. Next is this section which corresponds to rt > l and then third section is this which

corresponds to rl okay.

So what I did was I split this r into three segment, one is r corresponds to time less than l, r at

time l and r at time greater than l. Now using base rule I can write this probability as probability

of r at time greater than l given sʹ and s and these are into probability of sʹ s and r at t < l and rl.

Now subsequently I can further simplify this again apply base rule and I can write this as

probability of s and rl given sʹ and rt < l into probability of sʹ and rt < l.

So note now this term that I had here is applying base rule, essentially I broke it up into three

terms, one is this term, second is this term, and third is this term okay. Now let us look at this, so

probability of r when t > l given initial state sʹ next state s and the received sequence before l and

received sequence is l. So let us look at the trellis diagram, let us go back and look at the trellis

diagram.

At time l, let us take this example of two state code, so what I had here was 0/00, 1/11 then I had

this, 1 as 10 and this was 0/01. So this was my trellis diagram, this is all zero state, this is state

one okay. Now note – and like that you have – you have in trellis diagram you have – this is one

trellis section, you will similarly have trellis sections are there.

So this is the time l, so you are interested in what is the probability of rt greater than l, given

previous state sʹ, given next state s, given the received sequence before time t = l and given the

current received sequence. Now note that if I specify this next state so probability of rt>l given s

then I do not need information about the previous state, I do not need information about what is

the current input, I do not need information about what was the receive sequence before l,

provided I know what is the next state s, so this probability that you see here, probability of rt>l

given s prime s and this receive sequence r can be then written as probability of rt>l given only s.

Because knowing this final state s I do not need information about what was my state here, I do

not information about what my receive sequence was here, I do not need information about what

my past receive sequence was provided I know what was my next state s so this, given these

quantity will only depend on s, so I can simplify this expression like this, now same thing here

look at probability of being s rl given previous state.

And given the input before time t=l now if I specify what the pervious state is then I do not need

what was my input at time t<l, so this can be simplified into this expression and then of course

we have this third expression which is this, so what we have done is this join probability we have

now split up into three probabilities, one is this, second one is this, and third one is this, okay and

we will now show how we can compute each of these terms.

(Refer Slide Time: 20:11)

(Refer Slide Time: 20:13)

(Refer Slide Time: 20:16)

So let us call this probability by α, this probability by ɤ, and this probability by ß and now we are

going to show

(Refer Slide Time: 20:28)

Then we can write then this joint probability in terms of α, ß and ɤ.

(Refer Slide Time: 20:34)

(Refer Slide Time: 20:35)

(Refer Slide Time: 20:37)

So we can now write our equation in terms of α, ß and ɤ, okay, so let us now talk about how we

can compute α, ß and ɤ.

(Refer Slide Time: 20:55)

So this alpha’s can be computed using forward recursion as follows.

(Refer Slide Time: 21:00)

So let us look at what is α+1(s), now go back to our definition.

(Refer Slide Time: 21:07)

So probability, joint probability of being in state s prime and receive sequence at time t<l.

(Refer Slide Time: 21:18)

So α l+1 from definition can be written like this, now I can write this as, so I am adding a new

variable which is the next state s and I am adding a new variable which is next state, a previous

state s' and summing over all previous state, so what is this Σ over s' belonging to all possible

state at time l, so what I did was so I had some term probability term, probability of let us say

(a,b) and what I did was I just added a term probability(a,b,c) and I summed over all possible

values of C so that is what I did here, I introduced a new variable s prime and I summed over all

these probabilities all these possible values of s prime, now this term can be written as product of

these two terms.

(Refer Slide Time: 22:25)

(Refer Slide Time: 22:26)

This is following exactly the same procedure which we followed here.

(Refer Slide Time: 22:27)

When we wrote this we are basically using base rule.

(Refer Slide Time: 22:33)

(Refer Slide Time: 22:34)

(Refer Slide Time: 22:40)

Now using base rule basically I can write this probability as product of these two probabilities,

now again the probability of s and rl given s prime and received sequence at time t<l if I, if you

know the previous state s prime you do not need this information so then this probability can be

simplified to this probability and this is this, now what is this term? This term is basically by

definition our α.

(Refer Slide Time: 23:14)

And what is the next term? This is our ɤ.

(Refer Slide Time: 23:20)

So what I have shown you here then is alpha at next state s can be written as, can be computed

recursively from alpha’s at previous state in this particular fashion.

(Refer Slide Time: 23:36)

So again let us illustrate this with an example, let us go back to our

(Refer Slide Time: 23:40)

Two state code example, so this is two state code, this is my all zero state, this is state 1, so the

two transition let us say this is zero input, output 00, input 1, output 11, here input 1, output 10

and here input 0, and output 01, so then what would be the value of alpha so let us say this is

time equal to some l and this is time t =l+1 so how can we write let us say alpha at l+1 for the

state zero, now note here this is given by product of this Σ over all input state, right?

Now so αl
0 can be written as, then gamma this can be written as ɤl (0,0) ɤ(0, 0) is previous state

zero next state is zero, ɤ(0, 0) into αl belonging to state zero so this is ɤl (0,0) αl (0) so this is

corresponding to this transition, okay this is corresponding to this transition this term will come,

fine now there is another transition here which is called basically this so we can write this will be

plus ɤl (1, 0) so ɤl (1, 0) is a gamma corresponding to this transition when the initial state is one

and next state is zero.

Multiplied by α l (1) okay so α l+1(0) can be then written as this, now similarly we can also

compute what is the value of α l+1(1) so we repeat the same procedure so let us write it here

αL+1 when the final state is one can be written as ɤl(0,1) α l(0) plus so this is corresponding to

this transition gamma L initial state zero, final state one and alpha at time L zero plus this

another transition which is this.

So this can be written as ɤ l (1, 1) α l (1), so this these are for this particular convolutional encoder

whose trellis section is given by this, these are these two are my alpha values, this one and this.

So you can see I can recursively compute alpha at time l+1 from alpha at time l and branch

metrics gamma, now to do this recursion we need to know what is the initial condition, so what

is the initial condition?

(Refer Slide Time: 27:44)

So we need to know what is the value of α0 for different states, for state zero, for state one, we

need to know what the value of these are. Now note initially we assume that the encoder is in all

zero state so if you assume the encoder is in all zero state.

(Refer Slide Time: 28:09)

Then it is, it is going to stay in all zero state then in that case we consider this probability as one

and this all other possibility of it staying in all the state as zero, so the initial value when we

assume that the encoder is in all zero state we assume that alpha zero at zero is one and at alpha

zero at any other state is non zero.

(Refer Slide Time: 28:34)

So similarly we can compute betas recursively so from definition we can write betas in this

particular fashion.

(Refer Slide Time: 28:40)

And again we introduced a new variable s and sum over all possible values of s, so then this

becomes from here we get this, now we split this r into these two terms so we get this expression,

now using base rule I can separate out this term into two terms like this and we know that, again

let us go back to our trellis section so 0/00, 1/11 this is 1/10 and this is 0/01, this is state 0 this

state 1.

So if you are interested in probability rt>l that is r, this is your time=l so probability of rt>l given

previous state s' next state s and rl it only depends on, so if you know the next state s you do not

need information about the previous state, you do not need information about the current bits. So

I can simplify this expression in this particular fashion and if we go back this is nothing but our ß

and this is our ɤ, so let us compute ß for this particular code, so we are interested in computing

ßl(0)and ßl(1) so ßl (0)would be so ßl(0)

So we are interested in computing ß(0) so this is sum over all those transitions which are ending

at this state, so there are two transitions, one is this one another is this one, so let us write the

expression for this particular term, this we can write as ßl+1(1) times ɤl(0,1) so the contribution of

this is ßl+1 corresponding to state 1 multiplied by ɤ of this trellis section ɤl when the initial state is

zero and the next state is 1 so this, this will contribute this term, now plus is another transition

which is this, this one right? So we can write contribution of this as ßl+1(0) times ɤl(0,0) so this is

our expression of ßl for state zero, similarly we can compute ßl for state one, so what are the two

transitions which are ending at this state, one is this one, other one is this one.

So let us write down the expression for this one this one, so this will be ßl+1(0) times ɤl(1,0) this

is this term and what about this particular term, this will be given by ßl+1(1) times ɤl(1,1) so this

is our expression for ß so as you can see similar to the expression for α, now these ß can be

computed using so α can be computed using forward recursion and similarly ß can be computed

using backward recursion.

So we would require the knowledge of ß at time at end of the trellis, now how do we know the

values of ß, now if then encoder is terminated that means if the encoder is brought back to all

zero state in that case ß at end of the trellis at end of the time let us say.

(Refer Slide Time: 33:59)

Let us call ß at time k which is the end of the block at state zero will be one and for all other state

it will be for in this case there are only two states so for all other state this will be zero, this is for

the case when the convolutional encoder is brought back to all zero state, it is terminated. In case

the convolutional encoder is not terminated then we do not know in which state it has ended up

with so what we will do is in that case we will assume that it is equally likely to end up at all

zero state or any other state.

(Refer Slide Time: 34:47)

So in that case we would assume ß at the end of the block to be equal to 1 by number of states so

in this case in we would assume that ßk(0) =1/2 and ßk(1)=1/2 so this is for the case when

convolutional encoder is not terminated, that mean it is not brought back to all zero state and this

will be the initial condition when the convolutional encoder is terminated.

(Refer Slide Time: 35:16)

Now next we compute the branch metrics gamma.

(Refer Slide Time: 35:21)

Now from definition gammas can be written like this so this can be written as joint probability of

being in previous state s prime next state s given a receive sequence at time l, rl/P(s') prime. Now

this, I introduce a term this, so I add this term into numerator, I similarly add this term in the

denominator okay now this, this quantity can be written as P(s|s') and this probability can be

written as probability of rl¸ given previous state s prime and next state S which can also be

written as probability of rl given transmit sequence Vl multiplied by a-priori probability of getting

Ul, so note that this probability will be one only when there is a valid transition from state S’

prime to S otherwise this will be zero okay.

(Refer Slide Time: 36:39)

So what does gamma depends on, it depends on what is the a-priori probability of Ul and it

depends on this likelihood function probability of rl given VL.

(Refer Slide Time: 36:51)

Now if I consider an additive wide Gaussian noise channel we can write this probability of RL

given V in this particular fashion so gamma for an A w channel will then be given by this

expression, so note this depends on a-priori probability of Ul, it depends on the Euclidean

distance between Rl and Vl.. Now let us assume that we are considering a binary phase shift key

so in another words basically we have bits map to plus one and minus one let us say or plus, plus

ES and - ES okay, so let us expand

This term and see can we simplify this term, now this term is, this term will be common for all

the terms which is, which depends only on signal to noise ratio and if you look at this particular

term so here there is an Rl square term, there is V1
2 term, and then there is – 2 Rl, Vl term, so this

Rl, rl2 term that does not depend on what my VL is, and since we are considering a BPSK

modulate signal so Vl whether UFL is – 1 or + 1 this will basically be the same.

(Refer Slide Time: 38:38)

This will be just one, so the only term that is changing the choice of Vl is this particular term, so

what we can simplify this gamma L, we can just simplify our gamma L like this, so it is basically

probability of UL and exponation – ES / NO and this is basically two times Rl Vl, so it becomes dot

product between the receive sequence and this transmit code word Vl okay so, and of course

there is some constant, there is some constant term K1 which is common, so in nutshell then our

gamma depends on this term right. And it depends on what the initial a-priori probability of UL

is, so for an additive wide Gaussian noise channel when we are implying BPSK modulation then

We can simplify our expression for gamma so this can be written as E [indiscernible][00:39:53]

two times Rl . Vl now what is this Rl . Vl , we will illustrate this with an example when we solve

when we show an example okay, so the point which I am trying to make is that this expression

that you see for computation of gamma for an additive wide Gaussian noise it essentially

depends on 2 terms, one is this and another is this term.

(Refer Slide Time: 40:25)

(Refer Slide Time: 40:26)

Next I have already specified now that our joint probability of

(Refer Slide Time: 40:35)

The joint probability that we compute it, it is basically a product of 3 terms alpha, beta and

gamma, now alpha, beta can be computed in a recursive fashion and I already mentioned that

usually our encoder is in all zero state to start off with and that is why we assume.

(Refer Slide Time: 40:55)

That alpha at time zero is one for the state zero and it is zero for all other state.

(Refer Slide Time: 41:10)

Similarly if we assume that our encoder is terminated, that means it has been brought back to all

zero state, in that case at the end of the block which is our k, bk will be one for state zero, and

zero for all other states. So these are our initial condition for computing the recursion for forward

recursion as well as backward recursion, so now then.

(Refer Slide Time: 41:41)

To recap how do we compute the a-posteriori probability, the first thing is we need to initialize

the values of alpha at time zero and beta at time end of the block which is I am calling K. The

next thing I need to do is now to compute alpha and beta I need the value of these branch metrics

gamma, so the first thing I need to do is I need to compute this branch metrics gamma, so I will

compute this branch metric for all valid transitions and for all time instances so that is.

(Refer Slide Time: 42:22)

The second step, the third step is once I compute this branch metrics gamma then I will compute

using forward recursion I will compute the values of alphas and using backward recursion I will

compute the values of beta. Once I have the values of alpha, beta and gamma then I can

compute.

(Refer Slide Time: 42:46)

The a-posteriori probability because I, I have shown that it is a basically product of these three

terms so I can then.

(Refer Slide Time: 42:55)

Compute this APP values and once I have this APP value I will take a hard decision based on

whether this is greater than zero or plus one so the final thing that I going to do is I am going to

take a hard decision based on what is the value of this APP value okay, so let us now show this.

(Refer Slide Time: 43:23)

The same using an example, so we are going to consider an example to illustrate how we can do

BCJR decoding, so we are considering our rate ½ convolutional code with memory one whose

generator sequence is basically given by this, the generator matrix is given by this. We are

considering BPSK modulation and we are resuming that initial probability Ul is equally likely to

be plus 1 or minus 1 so we are assuming it is equally likely to be it is plus 1 with probability half

and minus 1 with probability half.

We are considering an AWGN channel with SNR of ¼ and we are assuming that the receive

signal are normalized by under route DFS so what we are receiving is this particular sequence.

The question I am interested is if the receive sequence is this I am interested in estimating what

was my information sequence. So to solve this problem what we need to do is, we need to

compute the a-posteriori L value. Now to compute the a-posteriori L value we will first have to

compute alpha, beta, and gammas okay.

And eventually we will compute the a-posteriori L value and then I will take a hard decision on

that to decide, estimate our information sequence, so this is the.

(Refer Slide Time: 45:09)

Convolutional encoder that we have consider, this is basically G(D) is the rate ½ code and its

corresponding trellis diagram is this. For simplicity I have just considered 4 time instances so

initially I assumed this encoder is in all zero state which is denoted by S0 and it gets some bits, it

moves to either S0 and S1 depending on what bits it has received, this is the first time instance,

this is first time instance, this is T= 2, this is T= 3, and then after this what I am doing is I am

terminating this encoder back to all zero state.

So this is the termination phase, so I bring this encoder back to all zero state. Now this is a rate

1/code of our each trellis section I am receiving 2 bits so at time T= 1what I received is these 2

bits, point 8 and plus point 1, for T= 2 I received these 2 plus point 1 and minus point 5, for T= 3

I received minus 1.8 and plus 1.1, and for during the termination phase I received plus 1.6 and

minus 1.6. Please note I am interested in, given this receive sequence I am interested in

estimating what was the information bit.

That was transmitted at time T=1, what was the information bit that was transmitted at time T=2

what was the information bit that was transmitted at time T=3.

(Refer Slide Time: 47:06)

 So as we said the first step is initializing alpha and betas for recursion, so since we started with

all zero state, alpha at time zero for state zero is 1 and for, for other state which is state 1 it is

zero.

(Refer Slide Time: 47:30)

And since we are terminate is, terminating this encoder so beta K times= 4 is 1 for state zero and

it is zero for other state which is state 1, so that is the first step, initializing the forward and

backward metric for time T=0 and time T end of the block in our example T=4. So once we have

initialized our alphas and betas next we need to compute alphas and betas for other time

instances and for that we would need.

(Refer Slide Time: 48:13)

Our branch metric, now how do we compute our branch metric, if you recall for the AWGN

channel we showed that this branch metric can written as some constant, let us call it K1 times

probability initial a-priori probability Ul and there we have explanation plus ES/No 2 times Rl.Vl.

Now in this particular example we are assuming that a-priori is equally likely to be plus 1 or

minus 1, so this probability will be half whether Ul is plus 1 or minus 1, so we can just

(Refer Slide Time: 48:58)

So this will be a constant, so we can just include this in a constant thing and we can just ignore

this term, so what we need to compute, to compute the branch metric is basically some K 2 times

explanation plus Es/NO 2 times Rl . Vl now in our example Es /No is 1/4 if you just go back Es /No

is ¼.

(Refer Slide Time: 49:23)

(Refer Slide Time: 49:25)

(Refer Slide Time: 49:26)

So then

(Refer Slide Time: 49:32)

We can write this as, let us ignore the constant term and I can write this as Rl . Vl /2. Now how

do we compute Rl . Vl let us take an example, let us take this gamma at time T=0 when the initial

state is S0 and final state is S0, so what is this.

(Refer Slide Time: 50:00)

This corresponds to branch metric for this path, this is time T= 0 initial state is S0 final state is

zero, now what is Rl, what is a receiver sequence corresponding to this trellis section. The

receive sequence is given by this, this is plus point 8 and plus point 1, now what is the Vl

corresponding to this transition, this is minus 1 and minus 1 so Vl is minus 1 and minus 1, then

this product can be written as plus point 8 into minus 1 plus point, plus point 1 into minus 1 so

this will be -0.9, so rl.vl is -0.9.

(Refer Slide Time: 51:00)

So if you plug that in here -0.9/2, so this -0.45 which is given by this. Now you can take any

other example, let us just take this example, γ1, S1, S0, now what is this?

(Refer Slide Time: 51:20)

So γ1 is time instance t=1 so this we are talking about this, and initial state is S1, final state is S0.

So we are talking about this transition. Now what is rl corresponding to this transition it is +1 and

-0.5. So this is +1 and -0.5 and what is vl corresponding to this transition, it is given by +1 and -

1. So vl is +1 and -1. So then what would be rl.vl in this example, it is 1.0 x 1.0+(-0.5)x(-1) so

this will be 1.5, so you plug that in here.

(Refer Slide Time: 52:18)

1.5/2 so this will be e0.75 and that is what it is okay. So I hope it is clear how we can compute the

branch metric.

(Refer Slide Time: 52:33)

Please note we have ignored the common term which is common for computation of all of them

we are just computing the term which will be different based on what state transition we are, that

we are considering. So similarly we can compute gamma’s for other time instance t=1, t=2 and

for all other valid state transitions.

(Refer Slide Time: 52:57)

Now the next step is once we know our γ we have already initialized our alphas and betas so the

next step would be to compute alphas and betas. And this is shown here, now we have already

illustrated how we can compute our alphas and betas.

(Refer Slide Time: 53:20)

When we explained how to compute these forward recursion and backward recursion, we can

take another example let us just take this example, α2 at state S1.

(Refer Slide Time: 53:36)

So α2 will correspond to so this is α at 0 α at 1 so this is α at 2. So we are interested to calculate

α2.

(Refer Slide Time: 53:47)

At state S1, so we are interested to calculate α2 (S1), so we are interested to calculate alpha value

here. Now what are the transitions that are ending at this state, one is this, another is this, so there

will be two terms in the alpha computation of this, one corresponding to this transition which is

given by α1(S0) γ1(S0S1) + there will be another term corresponding to this transition, this will be

α1(S1) γ1 initial state S1 next state S1. So this is the value of α2 at state S1. And that is what we

have got here.

(Refer Slide Time: 55:01)

You can check α1(S0) γ(S0S1).

(Refer Slide Time: 55:05)

 γ(S0S1) and the next term is α(S1) γ(S1S1)

(Refer Slide Time: 55:11)

α(S1) γ(S1S1). So like this we can compute the values of alphas and these values that you see are

basically the values of alpha computing the, computed this way. Now we can also normalize the

values of alphas because alphas are some of the alphas were all state should add up to 1.

(Refer Slide Time: 55:35)

So in the bracket that you see here these are the normalized values of alpha. So how do I get this,

so this is 0.6376/0.6376+1.5683 so this is this quantity. Similarly this is 1.5683 divided by this

one. So these are the actual values of α and these are I normalized values because from, these are

sum of probability should add up to 0 so I can, I can take this value so when I compute alphas or

I can just work with these values or I can work with these values, it is just a scaled version so

does not make a difference. Expect for implementation purpose you may want to scale them, add

them up to 1 so that the values do not blow up.

(Refer Slide Time: 56:36)

So once we have computed alphas we can follow the same procedure to compute β, so β

computation is given here again we can as an example we can take one particular case, let us just

consider this β1 at state S1.

(Refer Slide Time: 56:54)

So this is β0, β1 at state S1 so we are interested in computing β1(S1). Now what are the transitions

that are ending in state S1, one of them is this, the other one is this. So what is the contribution

from this, this transition this can be written as β2 (S0) times γ1(S1S0) + and the contribution from

this will be β2 (S1) times γ of this, this is γ1 this is 1, γ1 (S1S1). So this, the one in green is

corresponding to this transition, the one in red is due to this transition oaky this transition. So

β(S1) can be written as β2 (S0) γ1(S1,S0) + β2 (S1) γ1(S1,S1).

(Refer Slide Time: 58:15)

And that is what we have β2 (S0) γ1(S1,S0), β2 (S1) γ1(S1,S1). We already know the values of

gammas that we have computed earlier and we know the values of β at, at the end of block. What

is this value, this is one because the encoder is terminated and for all other state basically β4 (S1,

S0). So this is 1 we know this values so we can compute what is β3 once we know the value of β3

then we can compute values of β2 because β3 values we will require here. Once we know the

value for β2 we can compute the value of β1 they are required here. So like that basically we can

recursively compute the values of betas. So now what do we have, we have the values of alphas,

we have the values of beats, and we have the branch metrics gammas, next step we need to

compute the APP value and what is the APP value?

(Refer Slide Time: 59:21)

If you recall APP value v it was product of three terms alpha, gamma and betas, so product of

this term. And what was the term in the numerator, we were summing over all those transitions

which belongs to ub+1. And in the denominator we were summing over all those transitions

belonging to ub-1. So let us look at how we can compute this so let us look at first case. A time,

so u0 is the information sequence that we are trying to estimate for time first time instance t=0.

(Refer Slide Time: 01:00:21)

So this is, we are looking at this trellis section. Now which are the transitions corresponding to ul

being +1? So I am denoting by blue.

(Refer Slide Time: 01:00:36)

The transitions which is corresponding to ul being +1. And I am denoting by green the transition

corresponding to ul being -1 okay. Then in the numerator then I will have one term

corresponding to this transition and what would be that term, it will be α0(S0) and γ

corresponding to this transition which is γ0(S0,S1) times β1(S1) so α0(S0) α at this state, γ

corresponding to this transition which is γ0(S0,S1) and β corresponding to this state. So if you go

back.

(Refer Slide Time: 01:01:34)

This is what I have α0(S0) γ0(S0,S1) and β1(S1).

(Refer Slide Time: 01:01:43)

At this time instance is there any other transition corresponding to ul+1 no, there is only one

transition corresponding to ul+1.

(Refer Slide Time: 01:01:56)

 So we will now look at the denominator term, so we have to look for all those transitions

corresponding u being -1.

(Refer Slide Time: 01:02:05)

And there is only one such transitions, so the denominator term would be α0(S0) γ0(S0,S0) and

β1(S0).

(Refer Slide Time: 01:02:22)

So this is what we have α0(S0) γ0(S0,S0) and β1(S0). So we can then calculate the, what is the A

positive to read L value. Now let us take another example, let us take for the second time

instance. For second time instance we are interested in estimating what was our information

sequence, information bit.

(Refer Slide Time: 01:02:54)

So we are now looking at this time instance, this time instance okay. Now what are the

transitions corresponding to ul information sequent being +1, one of them is this, you can see the

information sequence is +1 that is when you go from S0 to S1 and another transition is this one.

So these are the two transitions corresponding to ul being +1. So in the numerator you will have

two terms, one corresponding to α1(S0) γ1(S0,S1) times β2(S1) and another term corresponding to

this transition which is α1(S1) times γ1(S1,S0) multiplied by β2(S0).

(Refer Slide Time: 01:04:00)

And that is what you see here, there are two terms one is α1(S0) γ1(S0,S1) β2(S1).

(Refer Slide Time: 01:04:09)

This corresponds to this transition.

(Refer Slide Time: 01:04:15)

And the next term that you see here, this one corresponds to this transition okay. Now similarly

in the denominator you need to look at what are the valid transitions corresponding to ul-1, and

what are those, one of them is this and the second one is this. So now in the numerator,

denominator also you will have two terms one corresponding to this transition, other

corresponding to this transition. This transition will give you α1(S0) γ1(S0,S0) times β2(S0) +

α1(S1) γ1(S1,S1) times β2(S1).

(Refer Slide Time: 01:05:13)

And that is what you have here. So likewise we compute log like u ratios, APP values for all the

three information bits. Now what is the final step, once we have computed the log like u ratio we

will see whether these log like u ratios are greater than 0 or less than 0? If they are greater than

equal to 0 we decide in favor of ul+1 otherwise we decide in favor of ul-1. So this is 0.4778

which is greater than 0 so we decide in favor of +1. This is greater than 0 so we decide in favor

of 1 and this one is less than 0 so we decide in favor of -1. So then the final decoded bits are +1,

+1 and -1. So with this I will conclude this lecture. Thank you.

Acknowledgement

Ministry of Human Resource & Development

Prof. Satyaki Roy

Co-ordinator, NPTEL IIT Kanpur

NPTEL Team

Sanjay Pal

Ashish Singh

Badal Pradhan

Tapobrata Das

Ram Chandra

Dilip Tripathi

Manoj Shrivastava

Padam Shukla

Sanjay Mishra

Shubham Rawat

Shikha Gupta

K. K. Mishra

Aradhana Singh

Sweta

Ashutosh Gairola

Dilip Katiyar

Sharwan

Hari Ram

Bhadra Rao

Puneet Kumar Bajpai

Lalty Dutta

Ajay Kanaujia

Shivendra Kumar Tiwari

an IIT Kanpur Production

ssssss©copyright reserved

