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Welcome to the course on error control coding, an introduction to convolutional code.
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Lecture #5: Decoding of convolutional codes-11: BCJR algorithm

We are going to continue our discussion on decoding of convolutional codes. In the last class we
talked about Viterbi decoding and if you recall Viterbi decoding is an efficient algorithm to
compute a path to the trellis for convolutional code. Now it essentially finds out, Viterbi
algorithm essentially finds out an estimate of the code word, because any path through the trellis

of a convolutional code is basically a code word.



Now that not necessarily minimizes the bit error rate probability. In many applications we are

interested to minimize the bit error rate.
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Qutline of the lecture

@ BCIR algorithm for convolutional codes

So today we are going to talk about a decoding algorithm which is basically going to minimize

bit error rate probability, symbol error rate probability.
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@ To minimize the bit error rate (BER), the a-posteriori probability
P{ily = w|r) that an information bit u) is correctly decoded must be
maximized.

So we are going to use a a-posteriori probability based algorithm to estimate our information

sequence.
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BCJR Algorithm

@ To minimize the bit error rate (BER), the a-posteriori probability
P(idy — wr) that an information bit u; is correctly decoded must be
maximized.

@ An algorithm that maximizes P(d; = u|r) is called maximum
a-posteriori probability (MAP) decoder. e

And this algorithm which maximizes probability of G given u, given the received sequence r is

known as map decoder.
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@ To minimize the bit error rate {BER), the a-posteriori probability
P(idy = wy|r) that an information bit wy is correctly decoded must be

miaximized.

@ An algorithm that maximizes P{d; = u|r) is called maximum
a-posteriori probability (MAP) decoder.

@ In 1974, Bahl, Cocke, Jelinek, and Raviv introduced a MAP decoder
that can be applied to any linear code. This is known as BCIR
algorithm.

Now this is known as — also known as BCJR algorithm named after these researchers who Bahl,
Cocke, Jelinek and Raviv who introduced this algorithm in 1974. And this algorithm can be

applied to any linear code, block code or convolutional code.
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@ To mimimize the bit error rate (BER), the a-posteriori probability
Pl = wr) that an information bit u, is correctly decoded must be
mraxirmized

@ An algorithm that maximizes P({J; = wu|r) is called maximum
a-posterion probability (MAP) decoder.

@ In 1974, Bahl, Cocke, Jelinek, and Raviv introduced a MAF decoder
that can be applied to any linear code. This is known as BCJR
algorithm,

@ The BCIR algorithm computes the a-posteriori L-values (APP
L-value) of each information bit

— i [Pl =+1Ir)
L) I”lp{m- 1|'JJ

Now the complicity of this algorithm was much higher than Viterbi algorithm and that is why it
was not popular in 70’s, but in late 90’s with, when this concatenated codes, turbo codes came

into picture and we required soft estimates then these algorithms became very, very popular.
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@ To minimize the bit error rate (BER), the a-posteriori probability
P(fi; = wr) that an information bit w, is correctly decoded must be
rraximized

An algorithm that maximizes P(d; = w|r) is called maximum
a-posteriori probability (MAP) decoder.

In 1974, Bahl, Cocke, Jelinek, and Raviv introduced a MAP decoder
that can be applied to any linear code. This is known as BCIR
algaorithm,

The BCIR algorithm computes the a-posterior L-values (APP
L-value) of each information bit, ———

Plu =+l|r]J (1)

L) =In [P'{m—llrj

So what this algorithm does, it computes the a-posteriori probability, so | define a a-posteriori
log likelihood value, I call it L-value like this. So it basically computes probability of u; being +1
given a received sequence r/P(u;) being -1 given received sequence r, take a log of that. Now if
this L-value is greater than zero, then you decide in favor of u; being +1, otherwise you decide in

favor of u; being -1.
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To minimize the bit error rate (BER), the a-posteriori probability
P& = w|r) that an information bit u, is correctly decoded must be
rria i zed

An algorithm that maximizes P({d; = wy|r) is called maximum
a-posteriori probability (MAP) decoder.

In 1974, Bahl, Cocke, Jelinek, and Raviv introduced a MAP decoder
that can be applied to any linear code. This is known as BCJR
algarithm,

@ The BCIR algorithm computes the a-posterion L-values {!\PP
L-value) of each information bit

i [_u,a:l = In

—_—

lF’{m - +l|rJJ -

P(u = —1|r)
@ The decoder autput is given by

- -Ii. if I(u,u] =0 B
oy { T L{w) <0 I=0,1, k=1, (2)

So your decoder output will be +1 if the L-value is greater than zero, otherwise you decide in

favor of -1.
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To minimize the bit error rate (BER), the a-posteriori probability
P& = w|r) that an information bit v is correctly decoded must be
rraximized

An algorithm that maximizes P(J; = w|r) is called maximum
a-posteriori probability (MAP) decoder.

In 1974, Bahl, Cocke, Jelinek, and Raviv introduced a MAP decoder
that can be applied to any linear code. This is known as BCIR
algorithm,

The BCIR algorithm computes the a-posterior L-values (APP
L-value) of each information bit

() = o | Bl =£1In) !
() =0 | =10 (1)
The decader output is given by -
. +1 if Liw) =0 ”
- { B e 2

So we are going to now talk about how to compute these terms. These terms you see in
computation of APP value, how do we compute these terms and how we can exploit this

structure of the trellis of the convolutional encoder to simplify this expression.
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BCJR Algorithm

@ The APP value F(u,u = +1 rj as fallows

(= +Lr1) >-!“_ plrlv)Plu)
Pir)  Xuplriv)P(u) '

Alup = +ijr) =2

(3)

where

So let us look at this probability of u; being +1 given a received sequence r, this can be written as
join probability of u; being +1 and received sequence r divided by the probability of receiving
this r. Now this probability of u; being plus one given a received sequence r can be written as
probability of r given v, multiplied probability of u some over all input sequences that belongs to

the set where u, is +1.

And this can be written as probability of r given v multiplied by probability of u some over all

input sequences.
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@ The APP value P{wy = +1|r) as follows:

pl[u,: = +1, l’] 2‘{_'_?:_;,'“-.’{'!"}-:'(“)

=i P(r) 3, plew)P(u)

(3)

where
a U/ is the set of all information sequences v such that w, = &1,

So as | said since we are interested in joint probability of u, being +1 and r, we sum this

probability over all those set of information sequences where the bit, the corresponding bit is +1.
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BCIR Algorithm

@ The APP value P(w 1lr) as follows:

F’{”n’ = +1, l’) Euru; plrlv)Plu) .
P(u = +1]r) P(r) > PP (3)

where
a U/ is the set of all information sequences u such that w, — +1,

@ v i5 the transmitted codeword corresponding to the information

sequence u, and
2 p(riv) is the pdf of the received sequence r given v .

And our transmitted code word is v, our information sequence is u and r is the received

sequence. So probability of r given v can be computed from the channel, given channel.
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@ The APP value P{w — +1|r) as follows:

F"{“n’ = +1,r) EI.ILTU..' plriw) Plu)
Plur=+1le) = == 3= plriv)Plu)

P

(3)

where
@ U, is the set of all information sequences u such that w = &1,
@ v is the transmitted codeword corresponding to the information
sequence u, and
a piriw) is the pdf of the received sequence r given v .
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@ The APP value F'(q.rf = + Ll.—) as follows

plu = +1,6)  Paey plriv)Flu)
Pir) — Lplrv)P(u)

(3)

F"(ur = +1 r} =

where
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To minimize the bit error rate (BER), the a-posteriori probability
Pl = wr) that an informatien bit u, is correctly decoded must be
rhaximized

An algorithm that maximizes P{{; = u|r) is called maximum
a-posteniori probability (MAP) decoder.

In 1974, Bahl, Cocke, Jelinek, and Raviv introduced a MAP decoder
that can be applied to any linear code. This is known as BCIR
algorithm,

The BCIR algorithm computes the a-posterior L-values (ARPP
L-value) of each information bit

L{w) = In [%H ﬂ (1)

The decoder autput is given by

. i if f,(u,:} =0
th { T L) <0 I=0,1,- k=1, {2)

Now if you go back here the denominator we need to compute probability of u; being -1 givenr.
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To minimize the bit error rate (BER), the a-posteriori probability
P{d = w|r) that an information bit u, is correctly decoded must be
maximized

An algorithm that maximizes P{d; = w|r) is called maximum
a-posteniori probability (MAP) decoder.

In 1974, Bahl, Cocke, Jelinek, and Raviv introduced a MAP decoder
that can be applied to any linear code. This is known as BCIR
algorithm.

The BCIR algorithm computes the a-posterion L-values {AF’P
L-value) of each information bit

_ lIPUII=+1r o
.f[_u,:l In l[Fi{?-ll_r] (1)

The decader autput is given by

c +1 if L{ey) =0 .
& { B iy 2 g =0 k1. (2)
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@ The APP value Plw = +1]r) as follows

P = +1jy = 20 =10) _ Ty Pe)P0)

Pl M - Leemem ¢ O

whers
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@ The APP value P(u = +1|r) as follows:

p(u,: = +1. I’] ] .E.\'u_'tp{rlvjp(“) i
Fha==rir} Plr) 3 p(rv)P(m) )

where
s U is the set of all information sequences u such that v = +1,
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@ The APP wvalue P(w = +1|r) as follows:

ply = +1r) l:uru..' p{rl‘fj‘a{“)

Pl = +1|r) P(r) 3, plr(w) Plu)

(3)
where
a U/ is the set of all information sequences v such that w, = 41,

@ v i5 the transmitted codeword corresponding to the information
sequence u, and
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@ The APP value Plu = +1]|r) as follows:

Pl F1lr) P{”n’ =+1, ") l:uru; plrv)F(u)
t r =
’ F(r) 3, p(r[v)P(u)
where
a U, is the set of all information sequences w such that o, = 1,
@ v is the transmitted codeword corresponding to the information
sequence u, and
a plriv) is the pdf of the received sequence r given v .
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@ The expression in equation (1) for the APP L-value becomes

Tuctip p{rw]P{u)J @)

L{w) =1In \‘.Zm-ul.- o(rv)P(a) |

where U, is the set of all information sequences u such that
w=-1

We can also write probability of u, being -1 given r and probability of r is a common term.
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@ The expression in equation (1) for the APF L-value becomes

S ucu; PUFIV)P(u) J 5

L{wr) =1In {;E..;UI.—P{H")P(") :

where U, is the set of all information sequences u such that
w=—1

So if we do that what we get is this. So again this L-value, the APP value of u, is given by
probability of r given v multiply the probability of u where we are summing over all information
sequences where the corresponding bit is +1. And similarly for the denominator we are summing

over all information sequences where information bit is -1.

We will illustrate this with help of an example and then things will be little more clear.
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@ The expression in equation (1) for the APP L-value becomes

Sucur Plriv)P(u) J

Llw) = In \‘Zu\-u; (v P(a) |

where U is the set of all information sequences u such that
U =-—1

@ For shart constraint length convelutional codes equation (4) can be
simplified by employing a recursive computational procedure based
on the trellis structure of the code.

Now note here, if you have very large sequences this is some over all input sequences where u; is
+1 in this somewhat all input sequences where u; is -1. So if your information sequence is large,
this is somewhat very large number of possibilities. So this is quite complex, now can we use the

structure of the convolutional code to simplify this expression.
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@ The expression in equation (1) for the APP L-value becomes

) 1 | Ec PLeVIPL0)
u | = 3
Lm—u; plrlv)P(u)
where U is the set of all information sequences u such that
w=—1
@ For shart constraint length convelutional codes equation (4) can be

simplified by employing a recursive computational procedure based
on the trellis structure of the code.

The answer to this is yes, so we are going to basically simplify this equation for by using the
trellis structure of the convolutional code. We know all possible transitions are not possible. So

our trellis diagram what the state diagram will ensure, will tell us what are the valid transitions.
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@ The expression in equation (1) for the APP L-value becomes

L(w) = In r:"' £l )
v

2 yeur PrV)P(u) )

where U is the set of all information sequences u such that
w=-1

@ For short constraint length convelutional codes equation (4) can be
simplified by employing a recursive computational procedure based
an the trellis structure of the code.

So we can simplify this expression using our valid state transitions. So what we are going to do

is we are going to make use of the trellis structure of the code to simplify our equation number 4.
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@ Equation (3) can be re-written as

y=+Lr) er,,):zl Bls =5, 541 =571)
Plr) N F(r)

P(.”'J = +]|r} = P(
' (5)

where " is the set of all state pairs 5, = s" and 5.1 = 5 that
correspond to the input bit w; = +1 at time [

So let us see how do we do it.
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@ Equation (3) can be re-written as

— t. Fu
[plu = 11.0)) Yfeaeg, Plsi =5 501 = s.7)
P(r) = TP

)

P{:m ES +]|r} ES

where ‘.5_ is the set of all state pairs 5, = 5' and 5.1 = 5 that
correspond to the input bit w; = 1 at time /.

So again we go back and look at this probability of u, being +1 given our received sequence r as
we have written, this can be written as joint probability of u; being 1 and the probability of
receiving r divided by the probability of r. Now we are going to now look at this expression, this

is joint probability of u; being +1 and given the received sequence r has been received.

So if you look at any trellis diagram let us say this is on trellis diagram, this simple two state
code like that you have. So we are interested in where u; is +1 and where u; is -1. Let us say this
is 0/00, this is 1/11, this is — let us say 1/10, this is 0/01. So let us look at one trellis section, so
we are interested in all those transitions which belongs to u+1. Now what are those transitions,

so in this example this is one set transition and the other is this transition okay.

So what I am writing here is then | am interested in what is the joint probability that the previous
state is S’ s prime, the next state is S, and the received sequence is r and | am summing over all
those state transitions that belong to the set pair where the input corresponds to this transition is
+1. So note what is my this 3" it is the set of all state pairs where the initial state is S’ then next
state is s, so it is a pair of states where the transitions, the input bit corresponding to a valid

transition is +1.



So in this case the set that belongs to this is given by this red line okay. So | can write the joint
probability of u; being +1 and r in terms of condition on the valid trellis transitions in this way, |
can write it as what is the probability that the initial state is s’ next state is s given that I have

received sequence r. And | sum over all those transitions which belong to input bit being +1.
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@ Equation (3) can be re-written as

(=+1r) e ey Plse = 850 = 5.¢)

B P
Fpe sk iy Plr) P(r)

where L is the set of all state pairs 5, — 5" and 5.y — 5 that
correspond to the input bit 4y = +1 at time |

@ Similarly, equation (4) can be written as

Peid=ln { y:ia;'.a;'ln: g+ pls = 5" 500 5.1) } . (6)

P sjer- Pls =5 500 = 5,1)

where T is the set of all state pairs 5 = 5" and 5,1 = s that
correspond to the input bit uy = —1 at time |

Similarly I can write exactly the way | wrote probability of u; being +1 given r, I can follow the
same procedure to write what is the probability of uj being -1 given r. So what will be the change
here, so | will compute this probability and I will sum over all those state pairs which

corresponds to input bit -1.
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BCJR Algorithm

1 - ¥
@ Equation (3) can be re-written as { ! 4'(‘ ?_[irﬂ 21—
_ B p!{ur =+l r) - E[s‘&}. g, 2 5 —“1’. S1= 8,1
-Fiw__l lﬂ P(r) O P(r) :

{5)
where L is the set of all state pairs 5, — 5" and 5.y — 5 that
correspond to the input bit w; = +1 at time /.

@ Similarly, equation (4) can be written as

L{w) = In { :)_:(s‘.slc T plsi = 8 5141 = 5,7) } . (6)

e sjer- PR =551 =57)

where T is the set of all state pairs 5 — s' and 5,1 = 5 that
correspond to the input bit w; = —1 at time |

So if I plug these values of probabilities which are given by equation 5 and similarly I can
calculate the probability of u; being -1 given r. So instead of this thing here, I will have ) over
(s', s) >, over all those pairs which corresponds to u; being -1. And | will get this same thing here.

So if I do that what | will get is equation number 6.
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@ Equation (3) can be re-written as

e T3
[plw = 11.0)) Xfoger (st =5 541 = 5.1)
P{uj=+3|r}= = — t :
e AN bl Flr) Flr)
(3)
where £ is the set of all state pairs 5, = 5" and 5., = 5 that

correspond to the input bit vy = +1 at time [

So note that previously.
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@ The expression in equation (1) for the APP L-value becomes

L{w) =1n F“'”r’ il
¥

S cu. PUFV)P() W

where U, is the set of all information sequences u such that
w=—1

@ For short constraint length canvolutional codes equation (4) can be
simplified by employing a recursive computational procedure based
an the trellis structure of the code.

I had this same expression equation number four in terms of this input sequence u.
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@ The expression in equation (1) for the APP L-value becomes

L{w) =1n F“'”r’ il
¥

S cu. PUFV)P() W

where U, is the set of all information sequences u such that
w=—1

@ For short constraint length canvolutional codes equation (4) can be
simplified by employing a recursive computational procedure based
an the trellis structure of the code.

Now if our input sequence is very long this is Y’ over, so large number of terms.
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@ Equation (3) can be re-written as

e T3
[plw = 11.0)) Xfoger (st =5 541 = 5.1)
P{uj=+3|r}= = — t :
e AN bl Flr) Flr)
(3)
where £ is the set of all state pairs 5, = 5" and 5., = 5 that

correspond to the input bit vy = +1 at time [

Whereas | have now simplified my expression.
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@ Equation (3) can be re-written as ( : (/ 2_(5:;} By
" _ B =+1r)  LagE)pls = s s = s)
Plu = +1jr) = ) ) ;
(5)

where L7 is the set of all state pairs 5y — s’ and 5.7 — s that
correspond to the input bit w; = +1 at time |

@ Similarly, equation (4) can be written as

E)=h { y_‘ts'.slt_i-'_F'{!"f 5‘-5H| s.1) } , (6)

s sier- Pla =5 541 = 5,7)

where ¥ is the set of all state pairs 5, = s’ and 5,; = s that
correspond to the input bit w;, = —1 at time [

So this Y is now only over valid transitions corresponding to u; being +1 and this ) is over valid

transitions corresponding to u; being -1.
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BCIJR Algorithm

U ==I T-:)
Plo==vfr) 3, 5-

@ Equation (3) can be re-written as

= b (s =8 5,1, = 5.1)
= +1.r ¢ gl 2 5 IR ES 1 “
P il M ) .
- F(r)

— P(r)

(5)
where L is the set of all state pairs 5, — 5 and 5.3 — s that
correspand to the input bit uy = +1 at time [

@ Similarly, equation (4) can be written as
Yz syers Pls = 5 s = 5.1)
Lluw) —In =t - 1 (6)
Dl E'i-*'-ﬂf-".-' p(si = 5", 501 = 5.¥) Sty

where T, is the set of all state pairs 5, = 5° and 5,; = s that
correspoand to the input bit uy = —1 at time [,

So | have simplified my equation number four, equation number six and | have used the state
diagram or the trellis diagram of the convolutional encoder to simplify my expression. So this
will be my a-posteriori probability log like L-value a-posteriori probability. Now how do |
compute this term?

This we will show that if we can write this term as product of three terms and two of these terms
can be computed recursively, that is what | am going to show in the subsequent slide. So let us
look at this expression, how do we compute the probability that in the current state it is in ' next

state is s given a received sequence r.
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@ The joint pdf's p(s’. 5. r) in equation (6] can be evaluated recursively

[ps’ Eﬂ pls' s .n 7] J—
[l’t 1E 4.]_._.! (7J.¢.r‘,:;.rf)J
—"-_P — )
- J_p[h-. |s' Jsfre e )b(s. vils’ p o Jp(s’ ki)
= 7 E —————
= plteag|s)p(s. s )p(s, re). (7
where r,.; represents the portion of the received sequence r before

time { and r;~.; represents the portion of the received sequence r
after time /

So as | said we are interested in this, now this can be written as, so | have this received sequence
r, so let us say thisis rattimet =1, t = 2, so this is my — let us say time instances. And | get
some bits, let us say | get some r; corresponds to what | receive at time t = 1, r, corresponds to
what | receive at time 2, r, corresponds to what | receive in time | and like that, ri+1 is what |

receive at time t = |+1 like that.

So this receives this whole thing is my received sequence r okay. Now what | am doing is | am
partition that received sequence into three segments. So one which corresponds to 1 is this,
which corresponds to time before I. So 1 is this portion, this portion of my received sequence,
this is r; < |. Next is this section which corresponds to r; > | and then third section is this which

corresponds to r; okay.

So what I did was | split this r into three segment, one is r corresponds to time less than |, r at
time | and r at time greater than |. Now using base rule I can write this probability as probability
of r at time greater than | given s’ and s and these are into probability of s’ s and r at t <1 and 1.
Now subsequently 1 can further simplify this again apply base rule and | can write this as

probability of s and r, given s’ and r; <1 into probability of s and r; < |.



So note now this term that | had here is applying base rule, essentially 1 broke it up into three
terms, one is this term, second is this term, and third is this term okay. Now let us look at this, so
probability of r when t > 1 given initial state s’ next state s and the received sequence before | and
received sequence is I. So let us look at the trellis diagram, let us go back and look at the trellis

diagram.

At time |, let us take this example of two state code, so what | had here was 0/00, 1/11 then | had
this, 1 as 10 and this was 0/01. So this was my trellis diagram, this is all zero state, this is state
one okay. Now note — and like that you have — you have in trellis diagram you have — this is one

trellis section, you will similarly have trellis sections are there.

So this is the time I, so you are interested in what is the probability of r; greater than I, given
previous state s’, given next state s, given the received sequence before time t = 1 and given the
current received sequence. Now note that if | specify this next state so probability of ri given s
then I do not need information about the previous state, |1 do not need information about what is
the current input, 1 do not need information about what was the receive sequence before I,
provided I know what is the next state s, so this probability that you see here, probability of re,

given s prime s and this receive sequence r can be then written as probability of re given only s.

Because knowing this final state s I do not need information about what was my state here, | do
not information about what my receive sequence was here, | do not need information about what
my past receive sequence was provided | know what was my next state s so this, given these
quantity will only depend on s, so | can simplify this expression like this, now same thing here

look at probability of being s r; given previous state.

And given the input before time t=I now if | specify what the pervious state is then | do not need
what was my input at time t<I, so this can be simplified into this expression and then of course
we have this third expression which is this, so what we have done is this join probability we have
now split up into three probabilities, one is this, second one is this, and third one is this, okay and

we will now show how we can compute each of these terms.
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@ The joint pdf's p(s’. 5.r) in equation {6) can be evaluated recursively
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[[r, |5’ ]5}r, p (5. 0)5 .k )p |:5 Frei)

= plreals)pls, nls)p(s’ ree), (7)

—

where r,.-; represents the portion of the received sequence r before
time / and re.; represents the portion of the received sequence r
after time |
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So let us call this probability by a, this probability by ¥, and this probability by 8 and now we are
going to show
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@ The joint pdf's p{s', 5. r) in equation (6) can be evaluated recursively

L,D[S).S. P[S'- s-EJ-’.'I]rJJrf'.n'i -
s plrge|s’ 5. 00 {:J.i.rt,;J.rLﬂ
o = - ’
= Frei| 5 JS4Frc AT, 8. Fj|§ ,F¢c 5, Fre
[plre-ils’ fSle Trbls. s’ o pls’ recs)

= “Blreils)pls. rls )a(s rres). (7)

where r,.-; represents the portion of the received sequence r before
time / and ¥;-.; represents the portion of the received sequence r
atter time {

Then we can write then this joint probability in terms of a, 8 and ¥.
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& Equatian (7) can be written as

pls. 5.1) = G (shnls’, shau(s) (11)
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@ Equation (7} can be written as

E:s. r) = S (shn(s’, shanis’) :{ (11)

So we can now write our equation in terms of a, B and ¥, okay, so let us now talk about how we

can compute a, § and ¥.
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where m) is the set of all states at time |

So this alpha’s can be computed using forward recursion as follows.



(Refer Slide Time: 21:00)

BCIR Algorithm

@ The expression for the probability ay. (s} can now be rewritten as

"_1.'- 1) pls o) Z ple. sr1)

Z pls.nils' rezi)pls's rict)

FeEm

D plsrils)pl(s )

T e

= Y s sl (12)

R

where mp 15 the set of all states at time |

So let us look at what is a+1(s), now go back to our definition.
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@ Eguation (7) can be written as

E?s.r] = i1 (s)mls’, s}nﬁ] (11)

So probability, joint probability of being in state s prime and receive sequence at time t<I.
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sl

F

where my s the set of all states at time |

So a 1+1 from definition can be written like this, now | can write this as, so | am adding a new
variable which is the next state s and | am adding a new variable which is next state, a previous
state s' and summing over all previous state, so what is this £ over s' belonging to all possible
state at time I, so what | did was so | had some term probability term, probability of let us say
(a,b) and what I did was 1 just added a term probability( a,b,c) and I summed over all possible
values of C so that is what | did here, | introduced a new variable s prime and | summed over all

these probabilities all these possible values of s prime, now this term can be written as product of
these two terms.
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@ Eguation (7) can be written a

E;s.r) = A (s)ri(s, s)als’) ] (11)
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This is following exactly the same procedure which we followed here.
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@ The joint pdf's p(s', 5 r) in equation (6) can be evaluated recursively
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where r,.; represents the portion of the received sequence r before

atter time /

When we wrote this we are basically using base rule.
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@ Equation (7) can be written as

E?s.r) i Jmts)n.-(s'.s_}uﬁj 1)
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S

where @ 15 the set of all states at time |

Now using base rule basically I can write this probability as product of these two probabilities,
now again the probability of s and r; given s prime and received sequence at time t<l if I, if you
know the previous state s prime you do not need this information so then this probability can be
simplified to this probability and this is this, now what is this term? This term is basically by

definition our a.
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@ Equation (7) can be written as

E?s. r) = i (shnls, s)eu(s) ] (11)

And what is the next term? This is our x.
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where mp is the set of all states at time |

So what | have shown you here then is alpha at next state s can be written as, can be computed
recursively from alpha’s at previous state in this particular fashion.



(Refer Slide Time: 23:36)

BCJR Algorithm

@ The expression for the probability c.i(s) can now be rewritten as

onals) = plstn) = 3 pfsrey) POV

X ' == i-rf:ﬂijuc\.)
Y plsnfs] el na)
#Em -i‘ ‘Z P
> plsinls (s rec)
= ¥ s, s)a(s), (12)

.

where ) is the set of all states at time |

So again let us illustrate this with an example, let us go back to our
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where m; 15 the set of all states at time [,

Two state code example, so this is two state code, this is my all zero state, this is state 1, so the
two transition let us say this is zero input, output 00, input 1, output 11, here input 1, output 10
and here input 0, and output 01, so then what would be the value of alpha so let us say this is
time equal to some | and this is time t =I+1 so how can we write let us say alpha at 1+1 for the

state zero, now note here this is given by product of this X over all input state, right?

Now so o’ can be written as, then gamma this can be written as ¥, (0,0 ) (0, 0) is previous state
zero next state is zero, ¥(0, 0) into oy belonging to state zero so this is ¥ (0,0 ) « (0) so this is
corresponding to this transition, okay this is corresponding to this transition this term will come,
fine now there is another transition here which is called basically this so we can write this will be
plus ¥ (1, 0) so ¥ (1, 0) is a gamma corresponding to this transition when the initial state is one

and next state is zero.

Multiplied by a | (1) okay so a 1+1(0) can be then written as this, now similarly we can also
compute what is the value of a 1+1(1) SO we repeat the same procedure so let us write it here

al+1 when the final state is one can be written as ¥(0,1) a (0) plus so this is corresponding to



this transition gamma L initial state zero, final state one and alpha at time L zero plus this

another transition which is this.

So this can be written as ¥ (1, 1) a (1), so this these are for this particular convolutional encoder
whose trellis section is given by this, these are these two are my alpha values, this one and this.

So you can see | can recursively compute alpha at time 1+1 from alpha at time | and branch
metrics gamma, now to do this recursion we need to know what is the initial condition, so what

is the initial condition?
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where @) is the set of all states at time /[, - 7

So we need to know what is the value of ag for different states, for state zero, for state one, we
need to know what the value of these are. Now note initially we assume that the encoder is in all

zero state so if you assume the encoder is in all zero state.
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where mp is the set of all states at time |

Then it is, it is going to stay in all zero state then in that case we consider this probability as one
and this all other possibility of it staying in all the state as zero, so the initial value when we
assume that the encoder is in all zero state we assume that alpha zero at zero is one and at alpha

zero at any other state is non zero.
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where m, 1 is the set of all states at time [+ 1.

So similarly we can compute betas recursively so from definition we can write betas in this

particular fashion.
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where my 1 is the set of all states at time 1+ 1

And again we introduced a new variable s and sum over all possible values of s, so then this
becomes from here we get this, now we split this r into these two terms so we get this expression,
now using base rule I can separate out this term into two terms like this and we know that, again
let us go back to our trellis section so 0/00, 1/11 this is 1/10 and this is 0/01, this is state O this
state 1.

So if you are interested in probability re that is r, this is your time=I so probability of ri given
previous state s' next state s and ry it only depends on, so if you know the next state s you do not
need information about the previous state, you do not need information about the current bits. So
I can simplify this expression in this particular fashion and if we go back this is nothing but our 3
and this is our ¥, so let us compute 3 for this particular code, so we are interested in computing
R;(0)and 13(1) so B (0O)would be so 3,(0)

So we are interested in computing 3(0) so this is sum over all those transitions which are ending
at this state, so there are two transitions, one is this one another is this one, so let us write the
expression for this particular term, this we can write as B}+1(1) times x(0,1) so the contribution of

this is 341 corresponding to state 1 multiplied by ¥ of this trellis section x; when the initial state is



zero and the next state is 1 so this, this will contribute this term, now plus is another transition
which is this, this one right? So we can write contribution of this as 3.1(0) times %,(0,0 ) so this is
our expression of 3, for state zero, similarly we can compute B, for state one, so what are the two

transitions which are ending at this state, one is this one, other one is this one.

So let us write down the expression for this one this one, so this will be B;.1(0) times ¥(1,0) this
is this term and what about this particular term, this will be given by B.1(1) times ¥(1,1) so this
IS our expression for 3 so as you can see Similar to the expression for a, now these B can be
computed using so a can be computed using forward recursion and similarly B can be computed

using backward recursion.
So we would require the knowledge of 3 at time at end of the trellis, now how do we know the
values of B, now if then encoder is terminated that means if the encoder is brought back to all

zero state in that case B at end of the trellis at end of the time let us say.
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@ Similarly expression or the probahbility 3,(s') can be written as

wihere a1 i% the set of all states at time [+ 1

Let us call B at time k which is the end of the block at state zero will be one and for all other state

it will be for in this case there are only two states so for all other state this will be zero, this is for



the case when the convolutional encoder is brought back to all zero state, it is terminated. In case
the convolutional encoder is not terminated then we do not know in which state it has ended up
with so what we will do is in that case we will assume that it is equally likely to end up at all
zero state or any other state.
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where my 1 15 the set of all states at time /+ 1.

So in that case we would assume B at the end of the block to be equal to 1 by number of states so
in this case in we would assume that R(0) =1/2 and Bx(1)=1/2 so this is for the case when
convolutional encoder is not terminated, that mean it is not brought back to all zero state and this

will be the initial condition when the convolutional encoder is terminated.
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where uy is the input bit and w; the output bits corresponding to the
state transition 5 — 5 at time |/

Now next we compute the branch metrics gamma.
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@ The branch metrie {5, 5) can be written as
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where wp s the input bit and vy the output bits correspanding to the
state transition s° — 5 at time |

Now from definition gammas can be written like this so this can be written as joint probability of
being in previous state s prime next state s given a receive sequence at time |, r/P(s") prime. Now
this, 1 introduce a term this, so | add this term into numerator, | similarly add this term in the
denominator okay now this, this quantity can be written as P(s|s') and this probability can be
written as probability of r;, given previous state s prime and next state S which can also be
written as probability of r given transmit sequence V, multiplied by a-priori probability of getting
U, so note that this probability will be one only when there is a valid transition from state S’

prime to S otherwise this will be zero okay.
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@ The branch metric (5", 8) can be written as
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where w15 the imput bit and v the output bits Lurreapundlng to the
state transition s° — 5 at tme 1.

So what does gamma depends on, it depends on what is the a-priori probability of U; and it

depends on this likelihood function probability of r,given V|
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Now if | consider an additive wide Gaussian noise channel we can write this probability of R
given V in this particular fashion so gamma for an A w channel will then be given by this
expression, so note this depends on a-priori probability of U, it depends on the Euclidean
distance between R, and V,_ Now let us assume that we are considering a binary phase shift key

so in another words basically we have bits map to plus one and minus one let us say or plus, plus
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# For a continuous output AWGN channel, if 3 — 5 s a valid state

transition, ,,:’- i ...q"_p_'r,pl
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where |Ir; -~ w|[? is the squared Euclidean distance between the
(narmalized by +/E,) received branch r; and the transmitted branch
vy at time /.

ES and - ES okay, so let us expand

This term and see can we simplify this term, now this term is, this term will be common for all
the terms which is, which depends only on signal to noise ratio and if you look at this particular
term so here there is an R, square term, there is V1% term, and then there is — 2 R; V/, term, so this

R 12 term that does not depend on what my VL is, and since we are considering a BPSK

modulate signal so V,whether UFL is — 1 or + 1 this will basically be the same.
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where |jr; ~ w|[* is the m‘|||.arr~d Euclidean distance between the
(narmalized by +/E,) received branch ry and the transmitted branch

'
w; at time J. '}"_,f.‘-.'-J —I'i‘r"l‘h

aflde ™ =

This will be just one, so the only term that is changing the choice of V, is this particular term, so
what we can simplify this gamma L, we can just simplify our gamma L like this, so it is basically
probability of U, and exponation — Es/ Np and this is basically two times R,V so it becomes dot
product between the receive sequence and this transmit code word V, okay so, and of course
there is some constant, there is some constant term K; which is common, so in nutshell then our
gamma depends on this term right. And it depends on what the initial a-priori probability of U_

is, so for an additive wide Gaussian noise channel when we are implying BPSK modulation then

We can simplify our expression for gamma so this can be written as E [indiscernible][00:39:53]
two times R, . Vynow what is this R, . V| we will illustrate this with an example when we solve
when we show an example okay, so the point which | am trying to make is that this expression
that you see for computation of gamma for an additive wide Gaussian noise it essentially
depends on 2 terms, one is this and another is this term.
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@ For a continuous output AWGN channel, if 8 — 5 is a valid state

transition,

s 5} = Plu)p(riw) = Plw) (\.' ) o Rkl {15)

Ex

e
where ||r; — w|[* is the squared Euclidean distance between the
(narmalized by +'E,) received branch r; and the transmitted branch
vy at time /.

@ On the other hand, if 5 — 5 is not a valid state transition, P{s[s")
and (s, 5) are bath zera,




(Refer Slide Time: 40:26)

E I - Al ST T

) B s

BCIR Algarithm

Inibial condilions for recurson

@ Forward recursion

gl ) Jl 5 :=g {16}

Next | have already specified now that our joint probability of
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p(5. 60)=———

Initial condibions for recursmon

@ Forward recirsion

agls) { é' :_g (16)

The joint probability that we compute it, it is basically a product of 3 terms alpha, beta and
gamma, now alpha, beta can be computed in a recursive fashion and I already mentioned that

usually our encoder is in all zero state to start off with and that is why we assume.
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BCIR Algorithm

p(s, s,0) = ——~

Initeal conditions for recurson

n.j_[':] {

_—

@ Forward recursion

l
=

{1a)

e

==
S

That alpha at time zero is one for the state zero and it is zero for all other state.
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BCIR Algorithm

Imtral condiiens for recurson

@ Forward recursion
1, s=10
||q['¢:| { 'i] 5 u “ﬁ!l

@ Backward recursion:

1 0
i) ={ 5 £33 )

Similarly if we assume that our encoder is terminated, that means it has been brought back to all
zero state, in that case at the end of the block which is our k, by will be one for state zero, and
zero for all other states. So these are our initial condition for computing the recursion for forward

recursion as well as backward recursion, so now then.
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Step 1 Initialize the forward and backward metrics ngl ) and Jg(s) using

equation [16) and (17).

Step 2 : Compute the branch metrics <(s’, s). /=0,1.-.- K — 1, using
equation [14) AT

Step 3 @ Compute the forward metrics g (s), {=0,1.--- K — 1, using
equation [12)

Step 4 : Compute the backward metries 3(s), /=K -1.K -2,--- .0,

using equation (13).
Step 5 : Compute the APF Lvalues L{u;), using equations (6) and (11).
Step 6 @ Compute the hard decisions Gy using equation (2}

To recap how do we compute the a-posteriori probability, the first thing is we need to initialize
the values of alpha at time zero and beta at time end of the block which is I am calling K. The
next thing | need to do is now to compute alpha and beta | need the value of these branch metrics
gamma, so the first thing | need to do is | need to compute this branch metrics gamma, so | will
compute this branch metric for all valid transitions and for all time instances so that is.
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BCJIR Algorithm

Step 1 ¢ Initialize the forward and backward metrics agls) and Gx(s) using
equation [16) and (17).
=

Step 2 | Compute the branch metrics (s, 5), {=0,1,--- K — L. using
equation (14) ——

Step 3 @ Compute the ferward metrics tq(s), T=0.1.--- K — 1, using
equation (12) -
Step 4 : Compute the backward metries 3(s7), I=H -1.K —-2,--- .0,
using equation (13). -

Step 5 : Compute the APF Lovalues L{u;), using equations (6) and [11).
Step 6 0 Compute the hard decisions b using equation (2)

The second step, the third step is once | compute this branch metrics gamma then I will compute
using forward recursion | will compute the values of alphas and using backward recursion | will
compute the values of beta. Once | have the values of alpha, beta and gamma then | can

compute.
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BCIR Algorithm

Step 1 @ Initialize the forward and backward metrics ng(s) and Je{s) using
equation [16) and [17).

Step 2 Compute the branch metnics (s’ s). ' =01.--- K — 1, using
equation [14) —

Step 3 Compute the ferward metrics wiq(s), {=0.1.--- K —1, using
equation [Iﬂj -

Step 4 Compute the backward metrics 3i(s'), =K -1.K-2,--- .0,
using equation (13). -

Step 5 Compute the APP L-values L{uwy), using equations (6) and (11).
Step & Compute the hard decisions &, using equation (2)

The a-posteriori probability because I, I have shown that it is a basically product of these three

terms so | can then.
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BCJR Algorithm

Exampln:

@ Consider the (2. 1, 1) systematic recursive convolutional cade with
Eenerator matrix
GID)=[1 1/(1+ D)
& We assume an AWGN channel with SNR of
E. Ny =1/4 [—6.0248). The received vector {normalized by +/E;}
is given by

ro= (rprr,r)= ':"cliu' ’tli;]' rli:;"'::ﬂ:riuj e rEU] 'r:ll];'

{+0.8, +0.1, +1.0, —0:5, —1.8. +1.1, +1.6. — 1.6}

Compute this APP values and once | have this APP value | will take a hard decision based on
whether this is greater than zero or plus one so the final thing that | going to do is | am going to

take a hard decision based on what is the value of this APP value okay, so let us now show this.
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FCIR Algonithm

Exnrmiple:

@ Consider the (2,1, 1) systematic recorsive convolutional code with
EEMErAtar matrix

(iD] =1 1_[1 - D]]. -F{U A T
@ We assume an AWGN channel with SNE of BPSK J\-I jl
Eif/lo = 1/4 [—0.02dB). The received vector {normalized by V'Ex)
is given By e
r = (r3,F.F,r)= {J;rll"l J;:l;.':l: r|:=:.J'f1];r£U]. r'.j.“;rE"'].rEnj

{+08, +0.1; +1.0, 0.5, —L8. +1L.1; + 1.4, —1.6).

The same using an example, so we are going to consider an example to illustrate how we can do
BCJR decoding, so we are considering our rate ¥2 convolutional code with memory one whose
generator sequence is basically given by this, the generator matrix is given by this. We are
considering BPSK modulation and we are resuming that initial probability U, is equally likely to
be plus 1 or minus 1 so we are assuming it is equally likely to be it is plus 1 with probability half
and minus 1 with probability half.

We are considering an AWGN channel with SNR of % and we are assuming that the receive
signal are normalized by under route DFS so what we are receiving is this particular sequence.
The question | am interested is if the receive sequence is this | am interested in estimating what
was my information sequence. So to solve this problem what we need to do is, we need to
compute the a-posteriori L value. Now to compute the a-posteriori L value we will first have to

compute alpha, beta, and gammas okay.

And eventually we will compute the a-posteriori L value and then | will take a hard decision on

that to decide, estimate our information sequence, so this is the.
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Convolutional encoder that we have consider, this is basically G(D) is the rate % code and its
corresponding trellis diagram is this. For simplicity | have just considered 4 time instances so
initially I assumed this encoder is in all zero state which is denoted by SO and it gets some bits, it
moves to either Sp and S; depending on what bits it has received, this is the first time instance,
this is first time instance, this is T= 2, this is T= 3, and then after this what I am doing is | am

terminating this encoder back to all zero state.

So this is the termination phase, so | bring this encoder back to all zero state. Now this is a rate
1/code of our each trellis section I am receiving 2 bits so at time T= 1what | received is these 2
bits, point 8 and plus point 1, for T= 2 | received these 2 plus point 1 and minus point 5, for T=3
I received minus 1.8 and plus 1.1, and for during the termination phase | received plus 1.6 and
minus 1.6. Please note | am interested in, given this receive sequence | am interested in

estimating what was the information bit.

That was transmitted at time T=1, what was the information bit that was transmitted at time T=2

what was the information bit that was transmitted at time T=3.
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Step

i Initialize the forward and backward metrics oals) and Gg{s) using
equation [16) and (17)

Imtial condibins for recu rawn

# [orward recursion:

ity 5] = -

_,Lq
(=l
W
=

So as we said the first step is initializing alpha and betas for recursion, so since we started with
all zero state, alpha at time zero for state zero is 1 and for, for other state which is state 1 it is

Zero.
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BCIR Algorithm

Step 1 Initialize the forward and backward metrics oq(s) and de(s) using
equation |16) and 1n -

Initial conditions for recursion

& Forward recursion

¥ =10
a(s) {ﬂ.s-rll'.l'

@ Rackward recursion:

And since we are terminate is, terminating this encoder so beta K times= 4 is 1 for state zero and
it is zero for other state which is state 1, so that is the first step, initializing the forward and
backward metric for time T=0 and time T end of the block in our example T=4. So once we have
initialized our alphas and betas next we need to compute alphas and betas for other time
instances and for that we would need.
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BCJIR Algarithm: Example

Step 2 Compute the branch metrics wis, 5], | =0, 1, . — 1, usin
equation {14). o 'TAL'}'.."_:"K,P{UA:JE:EJ ()

“wfSnS) = o7 =0.6376 =
ol 5. 51) U1 1 5eR3
"-jll'ﬁ[: 5:;:1 = g b 0.7788
il %0 50) &7 12840
ul5.5) = e "% =pa724
R = A=
vl S Sa) ¥ = 141
(55 = &' =p704T -
wlSu5) - ol - 42631
2[5y, 5p) = V48 — g 2346
3 5p. 5) ¢ = 10
w51 5l e? = 4.9530 il

Our branch metric, now how do we compute our branch metric, if you recall for the AWGN
channel we showed that this branch metric can written as some constant, let us call it K; times
probability initial a-priori probability U, and there we have explanation plus Es/N, 2 times R, V|,
Now in this particular example we are assuming that a-priori is equally likely to be plus 1 or

minus 1, so this probability will be half whether Uy is plus 1 or minus 1, so we can just
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BCJIR Algorithm: Example

Step 2 ¢ Compute the branch metrics (s, 5), ! - 0,1, B 1, psin
equation [14). A R ﬁf-‘-'..'-.:"K.P{U;;'E-*“‘)& W
“wulSn %) = e " =06376 — _'_':EE-,,(\-*,.M
050, 51) &% 1 5EA3 kg s 2
w5 &) = e ¥ =07788
1l 5e. 1) g 1.2640
(5. 5) = & =04724
n(%,5%) = 7™ =21170
v Sy Sa) e — ] 4191
1%, 5) = =¥ =07047 4
w2l 51, 51) g% = 42631
(5. Sn) =145 — 0 2346
“v3( 5p. 5g) "= 1.0
a5, 5n) F — 40530

So this will be a constant, so we can just include this in a constant thing and we can just ignore
this term, so what we need to compute, to compute the branch metric is basically some K 2 times
explanation plus E¢No 2 times R, Vynow in our example Es /No is 1/4 if you just go back Es /No

is Va.
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BCJR Algorithm

Step Lo Imitialize the forward and backward metrics oa(s) and Ji{s] using
squation (16) and [17). T

Initial conditions for recursion

1.s=10
rra[SJ { 0. :‘u

@ Forward recursion

@ Rackward recursion:
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@ Consider the (2, 1, 1) systematic recursive convolutional code with
generator matrix

G(D) =1 1/(1+ D))

3
| _P(LJJ{*I{
& We assume an AWGHN channel with SNR of BFSK -4 -;'L
Ei/fNg = 1/4 (—6.02d8). The received vector {normalized by +E)
is given by il -
ro= (o) = (g7 g% A0 A8 0, A4t A0, M)

(+0.8, +0.1; +1.0, —0.5; —1.8. + 1.1, +1.6, - 1.6).

So then



(Refer Slide Time: 49:32)

= ] | o S| O T R x|
Farthomedcfi-comEnmmEome ) | B wums
Step 2 ¢ Compute the branch metrics (s, 5), - 0,1, & - 1, osin
equation {14). L L3 - 'f,.fs'.i:'.-f»,l’{ug'}lr:“-)@“"’
ol S S5) e — 08306 — YE S ol
"ol 50. 51) &5 o 15683 "k “é{.%':
(S5 = <" =0.7788 S
1[5, 51 ) FLEEIE B Ly
(5. 5) = e =0.4724
1[5 50} = e
2(Sos S0} 5 = 14101
2[5, 5) = e "% =07047 i
ol 5. 51) el#5 263
w55 = = '*=0.2346
3 S Sp) =10
~a(5. B3 = P 40530

We can write this as, let us ignore the constant term and | can write this as R . V| /2. Now how
do we compute R, . V, let us take an example, let us take this gamma at time T=0 when the initial

state is Spand final state is Sp, S0 what is this.
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BCIR Algorithm: Forward Recursion

8
2 poE
L= =
\ =g
Wl &
)
. +a-**Lﬁ
(e H.w"\’ , 3
o
= "'r'}
B : Sk 1r-l. =
Nt e R
g = R B P \ i i
& 44
; o i
r o 1 R R s L] L 1 E ik

This corresponds to branch metric for this path, this is time T= 0 initial state is Sy final state is

zero, now what is R;, what is a receiver sequence corresponding to this trellis section. The

receive sequence is given by this, this is plus point 8 and plus point 1, now what is the V,

corresponding to this transition, this is minus 1 and minus 1 so VI is minus 1 and minus 1, then

this product can be written as plus point 8 into minus 1 plus point, plus point 1 into minus 1 so

this will be -0.9, so r.v;is -0.9.
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BCIR Algorithm: Example
Step 2 : Compule the branch metnes (s’ s}, J=0.1,--+ K — 1. usin
i LY d Yx[ﬁ'.xJ:K.Pfu;Jt*ﬂ'ii{”‘"‘J
wlso %) - et 08I T —SBafy
050, 51 4% 15683 =y EH%:
(o 5) = e =07788 il e
{50, 51 e 71,2840
(5. 5} = & " =pars
w151, 5) 75 2 21170
B0, %) = = la1e]
4a{ 5y, 51) a0 — 0,7047
TS, &) = eF¥— 42631
w5, %) = &' =0.2348
“3{5g, 5o} =10
w55 = & =408530 E

So if you plug that in here -0.9/2, so this -0.45 which is given by this. Now you can take any

other example, let us just take this example, y1, S1 Sp, now what is this?
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BCIR Algorithm: Forward Recursion

: 1'“'\' 'F.'l. « T — a5
o "o -1
P T Vg =
=i}
Vi L L r""f-]
Rf=1d
"’il'\r" - Ly

So y1 is time instance t=1 so this we are talking about this, and initial state is Sy, final state is S,
So we are talking about this transition. Now what is r, corresponding to this transition it is +1 and
-0.5. So this is +1 and -0.5 and what is v, corresponding to this transition, it is given by +1 and -
1. So v, is +1 and -1. So then what would be r;.v; in this example, it is 1.0 x 1.0+(-0.5)x(-1) so
this will be 1.5, so you plug that in here.
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Step 2 © Compute the branch metrcs 53, s}, F=0.1, - K — 1. usmn
equaticn {14). i 1 =TT ﬁ[s'.;]:]"\.P[u;Jl:*"‘-':lmu
I SO 1, e SO
0l 50, 5) e L * E”_%:
1i(S0, B) = e U =0.7788 ol e
w150, 51) "7 12840
w5 m) = e =04724
{51, 5) sl ANV
TS %) = &%= a9
r2f S0, 51) ™ = 0, 7047 4
w5, 5} = % =4.2631
w5, ) = eT' = 02346
RETE e =10
a8 50l = &M% = 40530

1.5/2 s0 this will be e®” and that is what it is okay. So | hope it is clear how we can compute the

branch metric.
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BCIR Algorithm: Example
Step 2 : Compute the branch metnes (s’ s}, /=0.1,.-- . K — 1. usin
equatien (14). O v;[s'.:}{i,'ﬂfu C*El{ﬁ.v.,l
iS50 5o} U e P T
:“'.I{.'h'o. M) A 1 56E3 Tk i%:
11 50, S0) e 2% = 0, 7788 ol A
150, 51) 75 12840
iS55} = &0 = 0ar2s
{51 %) o7 - 21170
i S) = = 14181
r2{ 50, 51} gl = 07047
] e T W e
BG5S = &V =025
155, 5a) ¢ =10
w5 Sat = &'® =4.8530

Please note we have ignored the common term which is common for computation of all of them
we are just computing the term which will be different based on what state transition we are, that
we are considering. So similarly we can compute gamma’s for other time instance t=1, t=2 and

for all other valid state transitions.
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Now the next step is once we know our y we have already initialized our alphas and betas so the
next step would be to compute alphas and betas. And this is shown here, now we have already

illustrated how we can compute our alphas and betas.
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BCIR Algorithm: Forward Recursion

Step 3 0 Compute the forward metrics oo (s), =01 K — 1, using
equation {12).

ar(%) = aolSo)iolSo. So) = 0.6376 (0.2890)

m(5) = wpl;)n(Se, 5) = 15683 (0.71140)

nz(Sp) = a(S)nl(Se, So) + mu(5)m (5, 5) = JE167 (0.7099)

r_r:-IE] - cnl[ﬂﬁ(Sn. S} + o (H)n (5. 5) = 1.5595 (0.2901)

oz(5p) = ea{Sp)val(Se, So) + o5 )ra(5:, ) = 5. 7821 (0.3824)

(5] ez Sn )2 (S, S )+ o2 (5 )25, 5 ) = 9.3379 (0.6176) 1

When we explained how to compute these forward recursion and backward recursion, we can

take another example let us just take this example, a2 at state S;.
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BCIR Algorithm: Forward Recursion
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So a2 will correspond to so this is a at 0 o at 1 so this is a at 2. So we are interested to calculate

2.
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BCIRE Algorithm: Forward Recursion
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At state Sy, so we are interested to calculate 02 (S1), SO we are interested to calculate alpha value
here. Now what are the transitions that are ending at this state, one is this, another is this, so there
will be two terms in the alpha computation of this, one corresponding to this transition which is
given by a1(So) v1(SeS1) + there will be another term corresponding to this transition, this will be
a1(S1) y1 initial state S; next state S; So this is the value of a2 at state S;. And that is what we
have got here.
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BCIR Algorithm: Forward Recursion

Step 3 . Compute the forwarel metrics ey ls), T=01--- K —1, using
equation {12].

n1(5;) =  exp{So)uin(Sp. 5o} = 0.6376 {0.2890)
m(5) = op{5n)n(Se, 51} = 1.5683 (D.7110)
ra(S) = ou(S)nalSe S+ oulS)n(S. %) = 18167 (0.7099)
r_ril: 5) = w(S)n(S, S )+ ml&H)n( s, 51_‘] = 1.5595 (0.2901)
ws(Sg) = oea(Su)i2(So, So) + 2l 91) {5y, Sa) = 5.7821 (0.3824)
il 5 ) s S )2 (S, 51 ) + o5 (5. 5) = 9.3379 (0.6176)

You can check a3(So) Y(SoS1).
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BCJR Algorithm: Forward Recursion
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w10
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v(SoS1) and the next term is o(S1) Y(S1S1)
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BCJR Algorithm: Forward Recursion

Step 3 | Compute the forward metrics ey (s), F=0,1.--- K — 1, using
eguaticn {12),

ai{S) = oolS)(S S) = 0.6376 (0.2890)

m(5) = wpl;)o(Se )= ﬂj (0.7114)

nz(S) = w(So)n(So. So) + ou(S )1 (5. %) = LEL67 (0.7099)

r_t;;IE] - -:l.|[5|£l:5n.5|} + 1 (51 ) (5, 5 ) = 1.5595 (0.2901)

ws(5a) = wa(So) (50, o) F r2lBa)al 5, Su) = 5.7821 (0.3824)

i[5 ) ez Sn e (Sn, S )+ oz (51 ) (5. 50 UE‘J (0.6174) 1

a(S1) v(S1S1). So like this we can compute the values of alphas and these values that you see are
basically the values of alpha computing the, computed this way. Now we can also normalize the

values of alphas because alphas are some of the alphas were all state should add up to 1.
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BCIR Algorithm: Forward Recursion

Step 3 . Compute the forward metrics ogpefs), f=0,1.--- K — 1, using
equation (12].

L~ 0375

m(S%) = oolSohnlS. S) = 0.6376 (0.2890) & T(37 /r"ﬂ
m(5) = an(Sn)n(Se, &) = 1.5083 (0.7110) I-[E:-"'

ozl Sp) = oS0}l Sos So) 4 nll:.‘;',_?]':l[.‘f{l..ﬁ:,} "I Ellﬁ? &Q‘JJ

a(S) = es(So)nlSe i)+ m(Si)n(5. 5) = 15595 (0.2001)

“.clls;:-] —_“u[usu}'uligu Su]‘ te ":UTLJ".J'[Sl 5.|J = ﬂl WEJ_“_J

il 5 ) i3l 3 ye (S0, ;) + aplE)relS . 5) = 9.3379 (0.61746)

14
i+

So in the bracket that you see here these are the normalized values of alpha. So how do | get this,
so this is 0.6376/0.6376+1.5683 so this is this quantity. Similarly this is 1.5683 divided by this
one. So these are the actual values of o and these are I normalized values because from, these are
sum of probability should add up to 0 so I can, | can take this value so when | compute alphas or
I can just work with these values or | can work with these values, it is just a scaled version so
does not make a difference. Expect for implementation purpose you may want to scale them, add

them up to 1 so that the values do not blow up.
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BCIJR Algorithm: Backward Recursion

Step 4 . Compute the backward metrics #(s"), /=K -1.K-2,---.0,
using equation {13].

H(5) = HalSo)(Se. %) = L0 (0.1680)

F(%) = Ha(Sa)7a(5:. 5) = 4.9530 (0.8320)

Hal&) = Sl )v2(Se. J) + FalFvalSe, 5,) = 4.0005 (0.1870)
F(5) = F(%)7(5.5%) + 55 )=(5, &) = 21.3497 (0.8130)
M%) = H(Se)r(5. %) + d2(5 ) (S0, ) = 31.2365 (0.6040)
(%) Fa(Sa)m (51, 50) + (5 iS5, &) = 20,4790 [0.3960)

So once we have computed alphas we can follow the same procedure to compute 3, so B
computation is given here again we can as an example we can take one particular case, let us just

consider this ; at state S;.
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So this is P, f1 at state S; so we are interested in computing B1(S1). Now what are the transitions
that are ending in state S;, one of them is this, the other one is this. So what is the contribution
from this, this transition this can be written as B, (So) times v1(S1Sp) + and the contribution from
this will be B, (S1) times y of this, this is y; this is 1, y; (S1S1). So this, the one in green is
corresponding to this transition, the one in red is due to this transition oaky this transition. So
B(S1) can be written as B2 (S0) v1(S1,So) + P2 (S1) 71(S1,.S1).
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BCIR Algorithm: Backward Recursion

Step 4 | Compute the backward metrics #(s7), /=K -1.K-2,--..0,
using equation {13].
L
L5 = ._:'sf__"'q]*ql%‘kj:l = 1.0 {0.1580)
u,.-:.H{S:}' - -34{5\¢|]','|[51.5¢|:| = 4.9530 I,’U.BE.'EU]
(%) = fslSa)n(Se. Sa) + FalSi)e(So 51) = 4.9095 (0.1870)
.-"-r..'.{S'_}' = -'51(5ﬂ',2[51.5¢|] - i,;_[S-_}-_--_g(SL.SL} = 21.3497 I:U.EIH-U]
Ahlm) = l\:':_S’J_J.l[SUE.IJ + (51 )50, 50) = 31.2365 (0.6040)
_(_.:51{5'} %:]'1[513«1] t i1_[§'_l‘1f5|5|} 20,4790 [U.S‘Jbu]

And that is what we have B2 (S0) y1(S1.S0), B2 (S1) v1(S1.S1). We already know the values of
gammas that we have computed earlier and we know the values of B at, at the end of block. What
is this value, this is one because the encoder is terminated and for all other state basically B4 (S,
S0). So this is 1 we know this values so we can compute what is f3 once we know the value of B3
then we can compute values of B, because B3 values we will require here. Once we know the
value for B, we can compute the value of ; they are required here. So like that basically we can
recursively compute the values of betas. So now what do we have, we have the values of alphas,
we have the values of beats, and we have the branch metrics gammas, next step we need to

compute the APP value and what is the APP value?
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BCIR Algorithm: APP values

= (s 1705 s)8,, 08
Step & Compute the APP L-values L{w), using ec|ua‘;ir.mi (4) and (11)

_ gl 5o}l 5o, 51)31(51)

Hinlk = '“{.m.:sn}-_.n(sn.sr,).s1{5n]

Bis) In {“l':sn}'q[sn- 5103405 ) + o (5 b (5 Sa) o 5a)

ey 20 b (So. 20 Fal ) + op (S bl S 50 {5)

il | ezl 3o e (Sos 31 ) Fa (a0} + oz( S el 5, 20)0a 50) 1 o3an
==t {ftzllsu}'f-ﬂf,Sb-5&]-'53{501 e P e )

} =U47ra

}v 0.6154

Step 6 Compute the hard decisions 4y using equation (2]
= (+1,+1,-1)

If you recall APP value v it was product of three terms alpha, gamma and betas, so product of
this term. And what was the term in the numerator, we were summing over all those transitions
which belongs to u®+1. And in the denominator we were summing over all those transitions
belonging to u®-1. So let us look at how we can compute this so let us look at first case. A time,
S0 Uy is the information sequence that we are trying to estimate for time first time instance t=0.
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BCIR Algorithm: APF values

So this is, we are looking at this trellis section. Now which are the transitions corresponding to u,

being +1? So | am denoting by blue.
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BCIR Algorithm: APP values

oy ls)wis508 18)

-8} T e = S

The transitions which is corresponding to u; being +1. And | am denoting by green the transition
corresponding to u; being -1 okay. Then in the numerator then 1 will have one term
corresponding to this transition and what would be that term, it will be ap(S0) and vy
corresponding to this transition which is yo(Se,S1) times B1(S1) so 0o(SO) a at this state, y

corresponding to this transition which is yo(So,S1) and B corresponding to this state. So if you go
back.
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+ Algorithm: APP values

= (31705l 5 ) ()
Step b - Compute the APP L-values Liu), using e<|L|alEion5 16) and [11)

el S ol So. 53105 )

Luw) = In { flnl:fin}'nfbn 3nja‘1(bn] } = (04778

bhine) I { ey (el S S ) 250 ) + o (5 500 Ba) B 5a)
i Sn)ve S, So)FalSa) + oo (Sl S, S5 )

L) |n{”2':.50i%[5':' 1) 5 51) 4+ ol Syl Sy 50:”3'[5:!]}
ozl So )zl So. So)FalS0) + cal S0 Pel 50 51004 51)

}v = [.6154

1.0301

Step - Compute the hard decisions iy using equation (2)
b= (+1.+1,—1}

This is what I have OLo(So) YO(SO,Sl) and Bl(Sl).
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At this time instance is there any other transition corresponding to uj+1 no, there is only one

transition corresponding to u+1.



(Refer Slide Time: 01:01:56)

L EE T T eI =

Tg rrR e @ o pEEEE O UEE L LB e 1

BCIR Algorithm: APP values

r 3 ENERS (ERY - WEY
Step 5 Compute the APP L-values L), using ECILIEIT;I:"TE [6) and (11)

evol 5) (5o, 51 )1 (51) :
o) = 0 { S e ()
Eios) n {':'-l(sn}'.-ﬂsn- S51)30(5) + ol 5 a5, Sa) el 5a)
vy { 3n v (S0, 20) 520 30) + on Sy S, 21005 )

L{u) ln{M(S-:}':-:['ia.'-‘?l]-"faﬁ.-] I '12[51]"-:(5-.-5&3.-11{-'54:'3}
: vzl 5o e (S, So)d3(50) + ceel 51 Pl 51, 51) 03 51) |

} =U0477d

} 0.6154

1.0301

Step & Compute the hard decisions iy using equatien (2)
= (+1,+1,-1)

So we will now look at the denominator term, so we have to look for all those transitions

corresponding u being -1.
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And there is only one such transitions, so the denominator term would be ao(So) Y0(S0,So) and

B1(So).
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BCIR Algorithm: APP values

= ENERS (ER)]-WEd)
Step 5 Compute the APP L-values L{u;), using ec|uaTiu:ms [6) and (11)

u
— apl So ol Se. SU)FA(S) ] _
Lw) = I"{nE(Sn}-nfSrgn).ﬁ{:i_n]} = 4778
e { S} (Sn. 51) 52 (5] + o (5 (5 Se)id{ Sn)
. In{ﬁui-‘:'o}'.-u(ﬁc-- Sp)Fa(Sa) 1 an( S5 ]~.||;.=s-_..ﬂ;,;|..3'3{5;,3} RIS,

ezl 5o vz (S0, 51)(50) 4 "'2[51]"'z|:5.-5.1:'.-1'3['503}
) = o (e + ol Sy | ~ 01

Step 6 Compute the hard decisions by using equation (2)
i=[+1,+1,-1)

So this is what we have 0o(So) Y0(S0,S0) and B1(Se). So we can then calculate the, what is the A
positive to read L value. Now let us take another example, let us take for the second time

instance. For second time instance we are interested in estimating what was our information

sequence, information bit.
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BCIR Algorithm: APP values

oy s (s 508 18

% o (5T, (R )8 ()

So we are now looking at this time instance, this time instance okay. Now what are the
transitions corresponding to u; information sequent being +1, one of them is this, you can see the
information sequence is +1 that is when you go from Sy to S; and another transition is this one.
So these are the two transitions corresponding to u; being +1. So in the numerator you will have
two terms, one corresponding to a1(Sp) Y1(So0,S1) times B2(S1) and another term corresponding to

this transition which is 01(S;) times y1(S1,So) multiplied by B2(So).
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% Algorithm: APP values

= als17(s )8, 08
Step 5 Compute the APP L-values L), using ecmaktJin:mi 16) and [11)

=
_ ftu(SU}'m(Sn.ELJ-'H{SJJ} .

Lw) = In {HEI:Sn}':nfﬁrfn:I-ﬁ{—qp] = 04778

L | eenl Sl (Se. 510351 ) + e (5 a5 Sa)8a Sa) } 06154

H]- . {ﬂti-‘io}ml-‘?c-« So)FalSn) + oS Fal s, = )5 5)

L in | 2t S0)i2(S0, 51)(51) 4 -12[51]"-:i5-.-5nll.-'f3[501} -

R, =k {uztsu}-msa.m:fsqsc.] - (S )a( S, 51)8(51) =

Step 6 . Compute the hard decisions U; using equation [2)
b= (+1,+1,-1)

And that is what you see here, there are two terms one is a1(So) Y1(S0,S1) B2(S1).
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BCIRE Algorithm: APP values

ll:'fu [-:&:I Tn{{'*. 5'}'{!: ib"-'l
ity B ofy (S0, (5 526 (<)
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e N
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1.8.+4 k. B T

This corresponds to this transition.
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BCIR Algorithm: AFPP values

oyl (s 508 (82

P ol (57, (%506 (5)

e

And the next term that you see here, this one corresponds to this transition okay. Now similarly
in the denominator you need to look at what are the valid transitions corresponding to ui-1, and
what are those, one of them is this and the second one is this. So now in the numerator,
denominator also you will have two terms one corresponding to this transition, other
corresponding to this transition. This transition will give you a1(So) v1(S0,Sp) times B2(So) +
a1(S1) Y1(S1,S1) times B2(Sy).
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BCIR Algorithm: APP values

z ENEYS (683
Step 5 Compute the APP L-values Liu), using equations (6} and (11]

U

_ el o b volSo: 51 ) 31 (54} | _
i {nfﬂsnr.-nfﬁrgn:l-ﬁ O3] g
ey (S0 )ya (Sn, 51) (5] + ca (S (5. Sa)de(50) }
bl In{“"":_-"'o}'.--ll-‘;c-- o (50) T (S mEn S0 | o
L{um) " {ﬁzl&‘r’)zi'?'c-. S50} F eelE "-:E-q.-.-ﬁ:u:l.-‘f.i{-ﬁbl} 1.0301
i ol So)val So., Su)da(50) + o (51 e S 5000 51) —

W

Step & Compute the hard decisiens by using eqqati:}n (2]
[ é=[+1,+1, -1)J
[ "]

And that is what you have here. So likewise we compute log like u ratios, APP values for all the
three information bits. Now what is the final step, once we have computed the log like u ratio we
will see whether these log like u ratios are greater than 0 or less than 0? If they are greater than
equal to 0 we decide in favor of uj+1 otherwise we decide in favor of u-1. So this is 0.4778
which is greater than 0 so we decide in favor of +1. This is greater than 0 so we decide in favor
of 1 and this one is less than 0 so we decide in favor of -1. So then the final decoded bits are +1,

+1 and -1. So with this I will conclude this lecture. Thank you.
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