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Welcome to the course on Error Control Coding, an introduction to Convolutional Codes. 
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So in this lecture we are going to talk about how we can find out the way distribution of a 

convolutional codes and we are going to discuss about the distance properties of convolutional 

code. 
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So this lecture deals with how we can enumerate the distance profile or the way distribution of a 

convolutional code. 
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So we can define before we discuss a technique to find out the way distribution let us define 

what do we mean by a minimum free distance of a convolutional code, so minimum free distance 

of a convolutional code is defined as, minimum hamming distance between two codes v and v´, 

where v and v´ are two code words corresponding to information sequence u and u´ where u and 

u´ are two different information sequences.  
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So it is basically free distance is the minimum hamming distance between any two code words in 

a convolutional code.  
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And this is same as minimum weight non-zero, so it is a minimum weight of a non-zero code 

word. 

 

(Refer Slide Time: 01:37) 

 

 
 

We know that performance of any convolutional code depends on its weight distribution and that 

is why we are interested to find out what is a weight distribution of a convolutional code. In this 

lecture we are going to talk about a method based on Mason's gain formula to compute a weight 

distribution for convolutional code.  
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So in this we are first going to modify this state diagram of a convolutional code.  
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And how are we going to modify this state diagram? We are going to split the all zero state into 

two state.  
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One initial state and second final state and we are going to remove the self loop around the all 

zero state. 
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Next each branch which is linking from one state to another state this branch will be labeled by 

the output weight of the code words so we are going to denote by xi, where I will be the weight 

of the coded bits. 
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So for example if we make a transition from state 0 to state 01 when an input 1 comes and output 

is 11 so in that case. 
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Since the output is 11 we will label that branch by x2. 
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So now after we split this all zero sequence, all zero state into two states initial state and final 

state what we will have is each path starting from this initial state to the final state that will be 

our valid code word. 
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So each path connecting the initial state to the final state is a valid non-zero code word because 

we have removed the self loop around the all zero state. 

 

 

 

 

 

 

 

 

 

 

 



(Refer Slide Time: 04:00) 

 

 
 

So this modified state diagram is now going to show us all possible non-zero code words. 
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We define a path gain as product of branch gains along a path. 
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And the weight of a code sequence will be nothing but the power of x, in the path gain of the 

corresponding path because what we are doing is, so each branch is labeled by its corresponding 

output weight. So if we look at each path going from the initial state to the final state and we 

look at the power of x. 
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That will give us the overall weight of that particular non-zero code sequence. 
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As we said we are going to use Mason’s gain formula to compute the weight enumerating 

function for the convolutional code. So we are going to describe how we are going to use the 

Mason gain formula. So we are representing by T(X) the generating function which will 

basically enumerate all code words of weight i. 
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Now let us define few terms that we are going to use in Mason’s gain formula, the first term that 

we are going to define is what is known as forward path. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



(Refer Slide Time: 05:48) 

 

 
 

So a forward path is a path from the initial all zero state to the final state and the condition is this 

path should not go over any state twice that is our forward path. 
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Next term that we define is basically a loop what is a loop? A loop is a close path that starts and 

ends in the same state without going over any state twice, that is a loop. 
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When do we say two loops are non touching, we say two loops are non touching if they do not 

have any state in common so again I repeat these three definitions. 
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Forward path is a path from initial state to the final state without visiting any state twice, a loop 

is the close path starting and ending at the same state without going over the same state twice and 

two or more loops are non-touching if they do not have any state in common. 
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Now let us denote by Fi  the gain of the ith  forward path and let Ci denote the gain for the ith  loop, 

we denote by this the set of all loops similarly this set of i and j will denote set of all pairs of non 

– touching loops. This triplet will define set of all triplets of non-touching loops. So if we use 

this we define a term ∆ which is defined as follows. 
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This 1-Σ of all the gains of the loops plus product of gains of all those non-touching loops minus 

this is product of set of all triplets of non-touching loop and it goes on like this, so that is our ∆. 
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We define our graph that is obtained after we remove all states belonging to an ith forward path 

by Gi .  
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So Gi is basically the graph remaining after we remove the ith forward path. And the ∆ 

corresponding to this modified graph will be denoted by delta ∆i. 
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So the mason gains formula then says that the generator function for this convolutional encoder 

can then be given by this expression. 
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So this modified state diagram can be augmented to include more information, now what we had 

done so far was we labeled the branches of this state diagram by the overall total weight. 
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Now we can also augment this by mentioning what is the input that results in that output weight 

so we can label the weight of the input by Y. 
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So the power of Y will denote what is the input weight and similarly we can label each branch by 

Z. So in a path gain formula, the degree of Z will tell us, like what is the length of nonzero path. 

So degree of Z will tell us like once it diverge from all zero state after how much time it comes 

back into all zero state.  

 

So we can augment our state diagram by what I call a modified state diagram by adding two 

additional information, one is the weight of the message bit which will be denoted by power of 

Yi and other is branch which should be denoted by Z. 
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So we can then similarly define an augmented transfer function which will not only tell us the 

code word weight but it also tell us what is the input weight that results in that particular output 

weight and it also tell us length of that particular code word, by length I mean the time it 

diverges from all zero state until it cause back to all zero state. 
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So this is basically what we call input-output weight enumerating function.  
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Because this function is enumerating for what input you get what output, okay so this will give 

us weight input-output weight enumerating function. 
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And it is the property of the encoder an alternative version of this input-output weight 

enmerating function is one that contains only information about the input and output weight and 

not the length of each code word, so if we put z = 1 basically this is going to give us 

[indiscernible][00:12:05] in diversion of input-output weight enumerating function.  

 

And what is weight enumerating function? The weight enumerating function will only tell us 

what is the overall code word weight and this is a property of the convolutional code.  
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So weight enumerating function is related to input output weight enumerating function in this 

particular way so if you put z and y as 1 in the input output weight enumerating function we will 

get back our weight enumerating function.   
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Similarly we can define what is known as conditional weight enumerating function so what is 

conditional weight enumerating function? The conditional weight enumerating function it 

enumerates weights of all code words associated with a particular information weight, so if you 

are interested in knowing what is the output weight correspond to weight four input sequence, so 

from the input output weight enumerating function by collecting all terms which will have w4.      
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We can find out what is the weight of all code words corresponding to a output weight input 

weight of four and again we are using Y to denote the input weights so if you are interested in 

input weight four we should look for terms containing Y4. 
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So this denotes the input weight this denotes the output coded weight and this denotes the length. 
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So as I said for a input weight of j conditional enumerating function will give us what is the 

output code weight that you can achieve for a input weight of j. And we write our input output 

weight enumerating function in terms of conditional weight enumerating function so this is 

basically input of weight j will result in conditional weight enumerating function and we show it 

for all j that will be our input output weight enumerating function.  

 

There is another property which is define for systematic encoders which is called input 

redundancy weight enumerating function. So here because the output weight of a systematic 

encoder consist of weight of the information bits and weight of the parity bits. 
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Now since the power of Y already is denoting the weight of the information bits so when you are 

asked to show the output weight you can just instead of saying the output weight you can just 

specify the weight of the parity bits, because it is systematic encoder the overall weight will be 

weight of the parity bits and weight of the information bits.  

 

So overall weight would be w+j so input redundancy weight enumerating function is defined for 

systematic encoders. So where instead of specifying the overall coded weight here you only 

specify the weight of the parity bits. 

 

     

 

 

 

 

 

 

 



(Refer Slide Time: 15:59) 

 

 
 

Now let us take an example to illustrate how we can find the weight enumerating function of a 

convolutional code.       
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So we are going to consider a rate 1/2 convolutional code whose memory is 2 to this is the 

convolutional code we can see basically vl
1 is ul + ul-2 and vl

2 is nothing but ul +ul-1 + ul-2 the 

convolutional code. 
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Now the state diagram for this convolutional encoder is given by this. Now we are going to 

modify this state diagram for the purpose of calculating the weight enumerating function. So 

recall what are the modifications we have to do. 
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We have to remove this self loop around all 0 state and we have to split this all 0 state into 2 

state, initial state and final state. Next we have to label all these branches by weight of the output 

bit. So this will be x2. This will be x0 which is 1, this will be x, this will be x2, this will be x, this 

will be x, this will be x. if you go back. 
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This is how my augmented will modified state diagram will look like. So what I did was. 
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I have these states here, I split this all 0 state into 2 state.  
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So this state was split into initial state and final state okay. Next what did I do? 
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I redrew the same diagram but I labeled each transition by the weight of the outputs so you can 

see from 00 I am going to 10 and its output weight is 11, which is x2. So let us go back here.   
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From 00 I am going to this state and output is x2 this branch is labeled by x2. 
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Similarly, you can see from let us say from this state you are going to this state and the weight is 

x, you can see.   
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From this I am going to this state and the branch is labeled by x okay.  
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From this state you are going to this 11 state, and the branch is labeled by x.   
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From this you are going to this 11 state and it is labeled by x.  
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Around the state 11, there is a loop which has weight 1 x. 
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So this is my loop around 11, which has weight x, so like that basically we modify the state 

diagram and this is how our modified state diagram of a rate ½ convolutional code that we just 

showed looks like okay. 
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Now the next step is, we need to find out what are the forward parts, what are loops, what are the 

non-touching loops, and then we need to find out the path gains along those forward paths. We 

need to find out delta is corresponding to this forward paths, and then we need to apply Mason’s 

gain formula to get the weight enumerating function. 
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So first we find out what are the loops, so there are three loops in this, 1 is a self loop around the 

state S3 you can see. 
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This 1 loop right, there is another loop right, and then there is another loop. So there are three 

loops here and that is what I am denoting. 
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 It by S3S3 is gain X, next one is S1S2S1. 
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S1S2S1 is this one okay. And the third loop is given by this.   
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So these are the three loops and corresponding to these three loops these are the gains. Next, 

what are the pair of non-touching loops? Now, only these two C1 and C2 are non touching loops 

you can see and go back to this example. 
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This loop and this loop are non-touching why this loop contains S3 and this loop contains S1 and 

S2. So they do not have any state common between these two loops. 
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So the set of non-touching loops is basically the C1 and C2 and the gain corresponding to them is 

basically X2. And there is no set of three loops which are non-touching. So now, we can then 

find out the value of delta which is 1-Ʃ of these loop gains and plus set of non-touching loops so 

this comes out to be 1-2X. 
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Next we are going to find out what are the forward paths. 
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So there are two forward paths in this, and we are going to show you.  
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So let us use a different color pen let us use a red color pen, remember what is the forward path, 

a path from the initial state to the final state without going over any state twice. So one forward 

path is this, find what about another forward path, the another forward path is this. Both the cases 

you can see I am not going over any state twice.  

 

And there are only two forward path in this case. And what are the corresponding path gain for 

the one which I marked with red, this is x2 x and x2. So this will be X5and this will be x2 xx, x2. 

So this will be X6.  
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So then we have to forward path the 1 with gain X5 another with gain X6. Now what is the next 

step, we need to remove the forward path and see what is the graph remaining. And we need to 

compute the delta corresponding to that. 
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Now again let us go back to the same diagram, if I remove this forward path what is left in the 

graph only this, this node only this is remaining. And what about if I remove this forward path, if 

I remove this forward path everything is gone there is nothing left in the graph. 
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So that is what I am seeing here, if I remove the forward path 1, the only graph remaining is this, 

and the delta corresponding to this is basically there is only one loop with gain X so this is 1 – X. 

and for the second case, there is no graph left so Δ2 will be 1 okay. So now I have F1 Δ1, F2 Δ2 

and I also have the value of Δ.  
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So I can then apply Mason’s gain formula to get the weight enumerating function. So the weight 

enumerating function is given by this expression so I plug-in the value of F1 Δ1, F2 Δ2 and Δ 

and what I get is this expression which I can write like this.  

 

So you can see basically my output consist of one code word of weight 5, two code words of 

weight 6, four code words of weight 7. So you can see this transfer function is completely 

enumerating the weight distribution of my convolutional code. In the same thing I can do with 

augmented transfer function. 
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And again because the minimum weight is 5 so free distance of this convolutional code is 5.        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



(Refer Slide Time:  26:16) 

 

 
 

Now we repeat the same exercise with augmented state diagram. Now what was augmented state 

diagram each valid branch we added a, z to denote this you can reach from one state to another in 

one step. And we also added in each of these branches the weight corresponding to the 

information bits. So the information bit weight was 0, so with y0 so that was 1. So you can see in 

some cases the information sequence weight is 0. 
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So let us just go back to the original state diagram. 
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Yeah, let us go back to this, so you can see for this transition from 01 to 00, what is the weight of 

the information sequence that is 0. So y0 that is basically 1, what about this the weight of the 

information sequence here the input is 1, so this will be y. What is the weight of information 

sequence that is 1 so this will be y, this is weight information sequence is 0 so y0 is 1.  

 

So wherever you had 1 here you are adding basically y. This is 1 and similarly at each of these 

transitions where there will be a z added to denote the length okay. So that is your augmented 

state diagram.  
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And that is what I mean, the completed augmented state diagram is what. 
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 I am showing you here. 
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This is basically my augmented state diagram where I am not only specifying the coded weight 

but I am also specifying what input causes that output bit and z to denote the length. And I 

follow the same procedure using Mason’s gain formula to compute. 
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The weight enumerating function. 
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So I get this information I am skipping the steps is exactly the same procedure I just laid out for 

computing the weight enumerating function, and you can see it gives us lot more information. 
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The weight enumerating function said we had one code word of weight 5. Now it says that code 

word of weight 5 basically was caused by message information bit 1 and the length of the 

[indiscernible][00:29:18]  from all 0 state before it merge with all 0 state was 3. Similarly there 

we have shown that there were two code words of weight 6; this completely specifies what those 

two code words was.  

 

One which was generated by message bit v2 of length 4 this was message bit to length 5. So you 

can see at the augmented state diagram, if we use it to generate the transfer function it gives us 

lot more information. So with this I will conclude this lecture. Thank you. 
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