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Welcome to the course on error control coding an introduction to convolutional codes. In this 

lecture. 
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Today we are going to talk about classification of convolutional codes based on type of 

connections between the output and the input. Also based on what are our output bits, we will 

classify convolutional codes into systematic and nonsystematic codes. Then we are going to talk 

about how we can realize convolutional code using shift registers.  
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So at the set first we will talk about convolutional codes and in this we are going to talk about a 

classification based on types of connections between the input and output of the convolutional 

encoder. In this regard we are going to talk about what do we mean by feedforward encoder and 

feedback encoder. 
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Then we are going to introduce our classification based on what are the output bits whether the 

information bits directly appears in the output or not based on that, there will be a classification 

of convolutional code.  
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The encoder basically where information bits can be separated out is known a systematic encoder 

and in nonsystematic encoder we cannot separate out information bits directly from the parity 

bit. So we will talk about what do we mean by systematic encoder for a convolutional code and 

nonsystematic encoder. 

 

And then we will introduce this concept of equivalent encoders. So for every nonsystematic 

encoder there is an equivalent systematic and through an example we are going to illustrate how 

we can get its equivalent encoder. 
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Then we are going to talk about a class of encoder where if the input bits are very high weight 

we can still get an output code word of very low weight and this kinds of encoders are known as 

catastrophic encoders.  
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And finally we are going to talk about two different types of realization of convolutional codes 

using shift register. The first one which is known as controller canonical form realization and the 

second one is known as observer canonical realization.  
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And finally we are going to conclude this lecture with the concept of minimal encoder.  
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So let us start our discussion on classification of convolutional encoder the first type of encoder 

that we are going to talk about is known as feedforward encoder. So what is the feed forward 

encoder?  
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The encoder corresponding to a polynomial generator matrix which does not have any feedback 

from the output to the input is known as feedforward encoder.  
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Let us take this example this is our information sequence v(D) denotes our coded sequence. 

What is the generator matrix G(D) in this case it is given by 1+D. Note here the generator matrix 

here is a polynomial generator matrix right, as suppose to a rational generator matrix and there is 

no feedback from the output to the input side.  

 

You can see basically the output depends on the current input as well as the input one pass time 

instance. So there is no feedback from the output to the encoder side. And this is an example of a 

feedforward encoder. 
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Now we can represent the output of a feedforward encoder as linear combination of current input 

and finite number of past inputs. We also refer this type of encoder as nonrecursive encoder.  
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And as we said in this we have an example of a rate one code, because input to one bit, output 

there is one bit coming out, and the generator matrix of this rate one code is given by 1+D and 

you can see it this is of example of a feedforward encoder whose generator matrix is a 

polynomial generator matrix and there is no feedback from the output to the input side. And this 

is this corresponding state diagram for this feedforward encoder.   
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This is another example of a feedforward encoder we can write down the generator matrix for 

this.  
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G(D) v(0) is nothing but the input bit so this first one is just 1. And what about the second parity 

bit this is information bit so we have 1 plus one delayed version of this information bit plus D3. 

Because this is one, two, three, three time instance delayed version of u, so this is the generator 

matrix. This is also polynomial generator matrix and there is you can see, there is no feedback 

from the output to the input side. 
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Now let us look at what do we mean by feedback encoder as opposed to a feedforward encoder.  
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The encoder for a feedback encoder has a rational generator matrix please note here.  
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We had a polynomial generator matrix for a feedforward encoder we had a polynomial generator 

matrix. 
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Whereas for a feedback encoder we have a rational generator matrix with at least one 

nonpolynomial transfer function containing a feedback path from the output to the input. Look at 

this example from the output we can see there is a feedback going to the input side.  
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And the generator matrix for this is basically – so first coded bit is nothing but the information 

bit so that is one, and this is basically 1/1+D.  
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So, because there is a feedback from the output to the input side output of a feedback encoder 

can be written as a combination of past input as well as past outputs. 
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Hence the output depends on infinite number of past input.  
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Because the current output depends also on past output and past outputs also depends on past 

inputs and past output. So the output will basically depend on infinite number of past inputs. 

Now feedback encoder is also known as recursive encoder.  
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And we just now mentioned one example of this feedback encoder is given in this figure. This is 

a ray to one half code you can see for one input, we have two outputs and is generator matrix is 

given by this. This is this corresponding state diagram for this feedback encoder.  
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This is another example of a feedback encoder, so there is one input and there are three outputs. 
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We can write down the generator matrix G(D), the first output is nothing but the information bits 

so that is one. Now what are the feedforward terms in v(1) so D1 depends on this bit and this bit. 

So this is 1+D2 and what is the denominated term, we have basically 1+D+D2 term. Similarly v2 

is basically given by 1+D and this is 1+D+D2. So this is the generator matrix for this feedback 

encoder.   
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The next classification that we are going to talk about is based on output bits whether we can 

separate out the information bits from the coded bits.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



(Refer Slide Time: 09:59) 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



(Refer Slide Time: 10:02)  

 

 
 

So in a systematic encoder a rate k/n systematic encoder, the k information bits appear 

unchanged in the output. So out of those encoded bits you can directly see the k information bits 

and rest n-k-bits are your parity bits.  
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And the generator matrix corresponding to a systematic encoder is known as systematic 

generator matrix. Take example of this rate ½ feedback encoder you can see there is one input 

and there are two outputs so it is rate ½ and it is a feedback encoder there is a feedback from the 

output to the input side. You can see here the first coded bit is nothing but the information bit.  

 

And the second coded bit is, is parity bit basically coming out from this convolutional encoder, 

so from these two coded bits we can easily find out what the information bit was from this bit so 

we can separate out the information bit from the coded bit and this is example of a systematic 

encoder. 
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As opposed to a systematic encoder in a non systematic encoder. 
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We cannot separate out the k information bits from the n coded bits. 
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This is an example of a one second I want to make it a rate 1 this is actually rate  
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Just type this is a rate 1 code because this 1 there is input and there is 1 output this is a rate 1 and 

this is a feedback output this is a rate 1 and this is a feedback feed forward encoder you can see 

there is no feedback from the output to the input side, so it is a rate 1 feed forward encoder and 

you can see the output bit is given by this current input bit and this past input bit so you cannot 

directly take out the information bits from this coded bit. So this is an example of a non 

systematic encoder.    
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We could also define a class  
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Which is called  partially systematic encoder so in a partially systematic so if you have rate k/n 

partially systematic encoder out of those k information bits some of them appear on change in 

the output while some of the information bits do not appear unchanged in the coded bits so in a 

systematic rate k/ n encoder we can see directly the k information bits I a partial systematic 

encoder we can see a fraction of  these k information bits may be few bits like from 1 to k-1 and 

in an all systematic encoder we cannot see any systematic bits direct in any information bits 

directly in the output.  
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 So all the parity bits essentially liner combination of current and pass inputs and outputs.  
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Now that brings us to our next topic of discussion which is a concept of equivalent encoders. 
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 So before we defined what is an equivalent encoder we will defined what is an equivalent 

encoder we will defined what do we mean by equivalent generator matrices so we do 

convolutional generator matrix let us call it G(D) and G´ (D) re equivalent if  they encode the 

same code  now what do we mean by encode the same code. So the set of  
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Code words generated by this and this if they are same then these generator matrices are 

equivalent now the set of code words generated by these generator matrix are same but the 

mapping between the input and the output is different in this encoder from what the mapping 

between inputs and output is for this generator matrix        
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Now we say do convolutional encoders are equivalent if their generator matrix are also 

equivalent in other words if they are a generator matrix encode the same code then we say two 

convolutional encoder are equivalent. 
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 So if G(D) and G´ (D) are equivalent this condition. 
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Should hold so two generator matrix are equivalent if and only if there exists a rational invertible 

matrix   T(D) such that we can obtain G´(D) by T(D) multiplied by G(T) okay and we can see 

basically so let us say set of codes generated by G´(D) so that would be V(D) it will be U(D) 

times G´(D) now this  we can write  as U(D)T(D) times G(D) let us call U(D) T(D) is U´(D) 

G(D) okay 
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So let us take an example this G(D) 1 1+1/1+D AAND G´(D) which is 1+D 1 these are 

equivalent encoders because we can write  
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G´(D) as 1+D times G(D) okay so far and we can see this is a systematic encoder generator 

matrix for a systematic encoder okay now for. 
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A and this is  
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A feedback encoder this is a feed forward encoder. 
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So let us take an example of nonsystematic feed forward encoder and let us try to fine it is 

equivalent systematic encoder s what would be the equivalent systematic encoder corresponding 

to this nonsystematic encoder the generator matrix   
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G´ (D) should be of the form identity and some matrix P so what we want is basically we want 

this to be of the form 10 something here  01 something here so we want to convert this into a 

form of this type okay so we will do elementary operation to bring this generator matrix into a a 

generator matrix of this form. 
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So first so we will do this transformation row 1 we will try to make this as 1 how can we make 

this as 1 if we multiply row 1 by 1/ 1+D  if we do that this term will become 1 this term will 

become D/ 1/D and this term will become 1 we leave this second row unchanged next   
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We want to get a 0 here right how do we get a 0 here we do this transformation row 2 will make 

it row 2 + D times row 1 so the first row is unchanged but second row we do this transformation 

it is row 2+ D times row 1 so row 2 here is D + D times row 1 which is another D so D + D is 0 

similarly row 2 this 1 + D2 /1+ D this is basically given by.  
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This and we have 1+D which is this term so what we have done is we have converted this into  

form 10 next we want to get a 1 here right we want to get a 1 here so how can we get a 1 here we 

will. 
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Do this following transformation so for row 2 we will multiply row 2 by 1+D/ 1+D+D2  so if we 

do that then this will become 1 so we leave the first row uncharged here 0 if you multiple by this 

it does not change if you multiply this by this we get a one here and here we get this term so now 

what we have got so far is we got 1 here we got a 0 here we got a 1 here now what else is 

remaining we have to make this a. 
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We make this a identity matrix so we have to make this as 0 how can we make this as 0 we 

multiply this by this and added up to the first row we can make it as 0 so next.     
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To row 1 we add D times 1 1+D times row 2 if we do that 
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 The modified generator matrix that we get is this note now this a generator matrix for a 

systematic encoder you have your identity matrix here  
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And you have some matrix here which is your P matrix so this is basically the generator matrix 

for a systematic encoder. 
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So note now. 
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By simple row operations we were able to get an equivalent systematic generator matrix for a 

none systematic encoder   
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By simple row operations we were able to get an equivalent systematic generator matrix for a 

nonsystematic encoder whose generator matrix is given by this. 
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Next we will explain the concept of catastrophic encoder, so convolutional encoder is 

catastrophic if it encodes some information sequence which has large weight which has large 

number of once into a code sequence with finite number of once so if you have an informational 

sequence let us say u(D) which is 1/1+D. 
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Now this is a sequence of all once, this is basically nothing but 1+D+D2 …… so this is a 

sequence of one all once. Now if you have an encoder which maps a sequence input sequence 

which has large number of once into a sequence coded sequence with finite number of once now 

that type of encoder is known as catastrophic, catastrophic encoder. 
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Now why is it catastrophic? So to illustrate it we will take an example it is a catastrophic encoder 

because a finite number of channel errors can result in infinite number of input errors because 

you had well inform just sequence which has large number of once possibly infinite number of 

once because that information sequences getting map to a coded sequence with finite number of 

once if error happens in those locations.  

 

Where you have finite number of once then your output sequence will get transformed into an all 

zero sequence and your decoder will think that you have transmitted and all zero sequence, 

whereas actually you where transmitted a sequence of all once so finite number of channel errors 

in case of a catastrophic encoder can result in infinite number of input errors. 
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Let us take an example of this encoder with generator matrix G(D) which is given by 1+D and 

1+D2  and let us feed input which is all sequence of all once which I can write as 1/1+D. 
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Now if this information sequence passes through this encoder what would be your output 

sequence it output sequence would be 1 and this will be 1+D.  
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So what you will get is, you will get an output sequence which has weight only three, whereas 

your information sequence has infinite number of once so here is an example where an input 

sequence of very large number of once getting mapped to an output sequence of only weight 

three, what if error happens in these three locations where you had once? Then your output 

sequence that the decoder will receiver will receive will be all zero sequence and the receiver 

will think that you transmit you transmitted all zero sequence. 

 

 

 

 

 

 

 

 



(Refer Slide Time: 25:34) 

 

 
 

Whereas the input is all one sequence, so you can see in case of a catastrophic encoder a finite 

number of error in this example only three errors can result in infinite number of errors input 

errors, okay. 
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This I have explained. 
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Next I am going to come to the topic of realization of a convolutional encoder how can we 

represent a convolutional encoder using shift register so given a generator matrix how can you 

implement a convolutional encoder, so in this we are going to talk about two such type of 

realization, the first one that we are going to discuss now is known as controller canonical form 

realization. 
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So in a controller canonical form realization if you have a rate R=k/n convolutional encoder we 

use k shift registers. 
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So the number of shift registers used is equal to number of information sequence that you have 

and the output is obtained by using n set of adders one for each output sequence. 
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And In this case the k input sequences enter the shift register from the left and side and we take 

the output from the right and side. 
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The next point to remember here is in  case of a controller canonical form realization these n 

adders that are used to obtain the output sequence the coded sequence these adders are external 

to the shift registers. 
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So they are not inside the shift registers. 
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So let us take an example for rate one in all systematic convolutional encoder whose generator 

matrix is given by this, so in the numerator you have f0 +f1D + f2D2 like that similarly 

denominator you have 1+ q1 D + q2 D2 like that so how can we implement this using controller 

canonical form realization so let us go back so we are going to use k shift registers so this is a 

rate one 1/1 so there will be only one shift register. 
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So we use one set of shift register corresponding to one input sequence, next. 
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We use n set of adders now what is n here? Because is a rate one so n is also one so we will use 

one set of adders. 
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And these set of adders basically this output that we are seeing we have this n set of adders that 

we are using to obtain this coded sequence v. 
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Now the key input sequence enter the shift register from the left and side so we can see here. 
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The input is entering from distance i, so since this is feedback encoder so let us first look at the 

numerator term. 
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What do we have here we have f0 + f1 D + f2 D so this input is basically multiplied by f0 . 
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So the current input is getting multiplied by f0 then one delayed version of the input is getting 

multiplied by f1 two delayed version is multiplied by f2 so you can see this is an f0 this is f1 this is 

f2 and again whether there is a connection from this input to the output depending on that f0 f1 f2 

will be either one or zero if there is a connection this will be one if there is no connection this 

will be zero. So you can see this, this is f0 this is f1 D, f2 D2  like that basically if this is emit delay 

element this will be fm, Dm. Similarly you look go back and look at the denominator.  
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We have 1+q1 D + q2 D2 like that. 
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So this the input one this is the D term u1 D term so this is multiplied by q1 this is D2 term 

multiplied by q2 like that and then finally you have Dm term which is I am getting multiplied by 

qm .So you can see this is how we can realize a convolutional code using controller canonical 

form realization please note these adders are external to the shift register so there is not adders 

here internal to shift registers. The inputs are entering on the left and side where the output is 

taken from right and side.   
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Now contrast is with observer canonical form realization so now observer canonical form 

realization we need to realize the rate k/n encoder we require n shift registers. 
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Now please note for the controller canonical form realization we required k set of shift registers 

whereas in this case we require n set of shift registers one for each of the coded bits. 
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The second difference is the key input sequence is in the observer canonical form realization 

these key sequences enter into the shift register and these adders are internal to the shift register 

if you recall. 
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In case of a controller canonical form realization the input is entering here and a t time is still set 

when your clock comes they move they shift to one location to the right, this will move to here, 

this will move to here. 
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Whereas in the observer canonical form realization these inputs are directly entering into the 

shift register and these adders are internal to the shift register we will give an example to 

illustrate what we mean. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



(Refer Slide Time: 32:25) 

 

 
 

The lowest degree term generator matrix represent the connection to the right and side of the 

shift register, in case of controller canonical form realization the lowest degree term was on the 

left and side here the lowest degree term will be on the right and side. 
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So let us take the same example that we considered earlier so we are considering the same 

generator matrix and we are going to realize this generator matrix now using observer canonical 

form realization. So again here k is one n is one so we have n is one so we have one set of shift 

register this is one set of shift registers. 
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Next what did we say? 

 

        

 

 

 

    

 

 

 

 

 

 

 

 

 

 



(Refer Slide Time: 33:10) 

 

 
 

The key input sequence enter the adder internal to the shift register.  
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And what do we mean by internal. So these are the shift register elements delay elements, and no 

more these adders are in between the shift register these adders are internal to the shift registers 

okay.  
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And next thing that we said was a lowest degree term in the generator matrix, represents 

connection to the right hand side. 
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You see here, the inputs are directly coming to the adder. So this term is corresponding to S0 

u(d) this term is corresponds to f1 d of u(d). Where as in the controller canonical form the left 

most term was f0 and the right most was fm. Here, is just opposite, so you can see this is f0 term, 

f1 term, f2 term and similarly in the denominator you can see this is q1, this is q2 like that this 

will be qm. Same generator matrix can be realized using two different forms.  
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So let us take an example to illustrate this, so we are considering our rate 2/3 systematic feed 

forward encoder who generator matrix is given by this. Now let us try to realize this generator 

matrix using controller canonical form realization and observer form realization. So the parity 

check matrix for this is given by this expression we will just show you that so in controller 

canonical form realization we have so there are two inputs here so we will have one set of shift 

register for each of the input.  

 

So we will have one set of shift register for this and one set of shift register for this. And to 

realize this we need two memory elements because here the highest degree of D is 2. And to 

realize this we required one memory element. 

 

So total we will require three memory element so that is what I said for the controller canonical 

form realization for this rate two third this is my n, this is k, and this is the memory order. We 

basically require three memory elements to represent this convolutional encoder in the controller 

canonical form realization.  
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Now what about observer canonical form realization in observer canonical form realization we 

use wise set of shift register for each of the end coded bits. 
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So how many coded bits we have, we have three, one is this, one is this and one is this. Now how 

many memory elements you required to represent this 0 is directly the input coming in here. 

Here, 0 because the direct input is coming here, and what about this its maximum degree is 2 so 

we will require 2. So over all for this generator matrix if we try to realize it using observer 

canonical form realization, we require only two memory elements. And in the next slide I am 

going to show you those two encoder realization. 
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So let me just write down the generator matrix. 
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So my generator matrix G(D) is 1001. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



(Refer Slide Time:  37:28) 

  

 
 

 Then do we have 1+D+D2. 
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1+D+D2 , 1+D. so one set of shift register for this, so this maximum degree is of this is 2 so we 

use two memory elements and for this maximum degree of D is 1 so we use one memory 

element okay. Now what is the first output first output is directly input u(1) so this is my u(1) 

second output is directly u(2) this is basically this and the third output is 1+D+D2 of u(1)  so this is 

u, this is the D of u D, u(1)D and this is D2 of  u(1) D plus 1+D times u to D so 1+D meaning one 

term is u(2) and second is delayed version of u(2). So this will be my third coded bit. So you can 

see to realize this generator matrix, we required total three memory elements one, two and three.  
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Now let us see for the observer canonical form realization, again let me write down my generator 

matrix this is 1001, 1+D+D2, 1+D. So we said one set of rows, one set of shift register for each 

of the coded bit for each column there is one set of shift register what some maximum delay 

element here 0 so you can see directly. What about this again there maximum degree of D is 

basically 0 so this no shift register. And here for the third line D is 2 so we took 2D. So what is 

the final output then first one is first, first coded bit is just u(1) of D that is what it is.  

 

Second coded bit is u(2) of D straight this and third coded bit is 1+D+D2 of u(1) of D. So what is 

u(1) of D, u(1) of D is this one. What is D times u(1) of D that is this term, and what is D2 u(1) of D 

that is this term. Find plus 1+D times u(2) of D.  So then what we have is u(2) of D is this and D 

times u(2) of D is this. So this is our observer canonical form realization for this convolutional 

encoder with this generator matrix and note.  
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We only required 2, 1, 2 we required only two memory elements. So same encoder here require 

two memory elements for the controller canonical form realization we required three memory 

elements.  
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So that brings us to this notion of minimal encoder we saw the same encode convolutional 

encoder with same generator matrix can be realized using two different ways one that resulted in 

three memory elements other that resulted in two memory elements.  
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So we say a generator matrix is minimal if the, if its number of states is minimal over all possible 

equivalent generator matrix.   
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And among the minimal encoder matrix are minimal encoder is basically our realization of a 

minimal encoding matrix which will result in minimum number of memory elements use to 

represent that, that particular convolutional encoder. So we define a minimal encoder as. 
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The minimal realization of a minimal encoding matrix, so the minimal encoder should result in 

minimum number of memory elements used to represent that particular convolutional encoder.  
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And for the example that we have considered this in this case you can see from the generator 

matrix the maximum degree of these two so we atleast made two memory elements to represent 

it and you can see the observer can undergo form realization in this particular example we will 

result in minimal encoder on this convolutional encoder. So this realization will result in minimal 

encoder realization for this convolutional encoder. Thank you. 
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