

Indian Institute of Technology Kanpur
National Programme on Technology Enhanced Learning (NPTEL)

Course Title

Error Control Coding: An Introduction to Convolution Codes

Lecture - 02
Introduction to Convolution Codes-I

Encoding

by
Prof. Adrsih Banerjee

Dept. Electrical Engineering Psychiatrist, IIT Kanpur

Welcome to course on error control coding an introduction to convolutional code.

(Refer Slide Time: 00:19)

So we will start with introduction of convolutional code and today we are going to discuss how

we can encode an information sequence using convolutional code.

(Refer Slide Time: 00:31)

So today’s topic of discussion is encoding of convolutional code and we will take a very simple

example of a rate 1/ n conolutional code.

(Refer Slide Time: 00:44)

As you know a convolutional code process information sequence in a continuous fashion, so

information bits come in and we can get continues output form a convolutional encoder.

(Refer Slide Time: 00:57)

We also know that the output of a convolutional encoder depends not only on the current input

put it also depends on past inputs and past outputs depending up on the memory of the

convolutional encoder.

(Refer Slide Time: 01: 16)

And as we have seen we can realize the convolutional code using shift registers.

(Refer Slide Time: 01: 22)

So we describe a convolutional code basically as an n, k convolutional code.

(Refer Slide Time: 01: 30)

 With memory m.

(Refer Slide Time: 01: 33)

Now as we have said before our post to block codes typically the value of n and k for

convolutional code is much smaller like k may be one, two , three and similarly n will be may be

two, three, four like that.

(Refer Slide Time: 01: 51)

 So this is one example of a memory to convolutional encoder

(Refer Slide Time: 01: 59)

We can see this is out input ul an output v(l)1 and v(l)2 now note that the output v(l)1 and v(l)2

depends not only on the current input but also depends on the past inputs as indicated by content

here and content here and this is k=1 because there is already one input here that is why k is 1

there are 2 output this one and this one , so that is why n is 2 and since the output depends on two

memory elements this and this elements to so this a 2 , 1, 1 convolutional code.

(Refer Slide Time: 02: 53)

As we said the input is u 1

(Refer Slide Time: 02: 57)

And the output is v(l)1 and v(l)2 and how is v(l)1 and v(l)2 depend on u(l) and the pass values this

is given by the interconnection.

(Refer Slide Time: 03: 09)

 So we can see for v (l) 1 it depends on input ul as given by this and it depends on ul-2 as given

by this link so v(l)1 is given by ul and ul-2 so it depends on the current input and the input which

was there two time is this earlier similarly v(l) 12 depends on ul as given by this interconnection

ul-1 as given by this interconnection and ul-2 as given by this interconnection. So this is our v(l)2

so these are the two outputs and this is how they are related to the input so we can see that

whether a particular input appears in the output that is basically given by these interconnections.

These interconnections tell us whether that particular bit is taking part in the output or not.

(Refer Slide Time: 04: 17)

So if we denote by vi the length of the ith shift register in a convolutional encoder then we

defined a memory order as the maximum of maximum length of the shift register among the k

shift registers use to represent the convolutional encoder.

(Refer Slide Time: 04: 39)

And this parameter m is also known as memory order of the convolutional code.

(Refer Slide Time: 04: 50)

As we know this ratio of information bits to coded bits k/n is known as code rate which we

denote by R.

(Refer Slide Time: 05: 01)

And overall constrains length is defined as Σ of length of all the k shift register that is the overall

constrained length.

(Refer Slide Time: 05: 16)

Now we are going to show how we can encode a convolutional an informational sequence using

a rate 1/ n convolutional encoder.

(Refer Slide Time: 05: 31)

 So k is 1 n number of coded bits are send so there is one input coming in and there are n output

and the maximum length of this one shift register used to represent this rate 1/n code is m so this

shift register as m memory elements.

(Refer Slide Time: 05: 56)

So let us take our input which we denote by

(Refer Slide Time: 06: 00)

u to be u0

, u1
 ,u2, ul-1 since is a rate 1/n convolutional code so what we would get is corresponding

to one input we are going to get n outputs and we denote these n outputs by v(1), v(2) , v(3) , v(n)

where each of this v(i)’s can be return like this

(Refer Slide Time: 06: 28)

So the output at a particular incidence then is so corresponding to

(Refer Slide Time: 06: 34)

U0 then what is the output these are the n bits output corresponding to this input u0 similarly

corresponding to u1 mu output is this corresponding to u1 my output is this n bit output okay so I

write the output by v(0), v(1), v(2), v(l) where this v(l) is a n bit.

(Refer Slide Time: 07: 10)

Now how we generate these n bit vector from this one input and if we just go

(Refer Slide Time: 07: 20)

Back to our example

(Refer Slide Time: 07: 20)

(Refer Slide Time: 07: 23)

That we had shown look at this example how did we, generate 2 coded bits corresponds to one

information sequence. How did we generate these 2 coded bits these coded bits where generated

by various combination of input and these past inputs and whether a particular bit appears in eth

output that is governed by these interconnections. Whether there is a line connecting this part to

the output or not that determines whether that particular bit it's participating in the output bit.

(Refer Slide Time: 08: 07)

So what we can

(Refer Slide Time: 08: 10)

Conclude form here is.

(Refer Slide Time: 08: 11)

Basically.

(Refer Slide Time: 08: 12)

We can completely specify a code by this set of n generator sequence of length m+1 where each

of these generator sequences is basically of length m+1 and what are these g(0)1, g(1)1,g(1)2,gm1

so you can see so this super script that you see one, two , three and n this corresponds to each of

the output sequence so the first output sequence is specified by this generator sequence g1 the

second output sequence is specified by this generator sequence g(2) and the n yet output sequence

is specified by this output sequence g(n) and what are these g(i)’s now note that the memory order

of our convolutional encoder is m so there are so if let’s say.

(Refer Slide Time: 09: 22)

Just take an example

(Refer Slide Time: 09: 24)

 m=2 so if we take m=2 let’s say two memory order so then basically and this say this my input

u(l) and my output I can take from some interconnections form this let say this is my example

that I had this was my v(l)1 this was my v(l)2 now note that these interconnections are specifying

whether a particular bit is participating in the output code sequence or not so if we look at the

first coded bit ul now this as memory order m so they are possible m+1 connection what are

those possible m+1 connection 1 first one is corresponding to whether ul is participating in the

output bit or not.

Second one corresponding to whether ul-1 is participating or not is this point. Three one is this

point whether ul-2 is participating or not similarly the second coded sequence whether ul is

participating or not whether ul-1 participating or not whether ul-2 is participating or not so we can

see that the output here let us take the first output sequence that is completely specified by

whether ul is participating were ul-1 is participating ul-2 is participating.

So in this example g(0)1, g(1)1, g(2)m completely specifies what inputs are participating in

generating our code sequence similarly look at the second bit her also these m+1 connections

will completely specify whether a particular bit or the pass bit are taking part in the output coded

bit. So you can see if you have rate 1/n code whose memory is m then we can completely specify

that code using a set of n generator sequence where each of this n generator sequence correspond

to one of the output sequences and

.

(Refer Slide Time: 11: 55)

Each of the generator sequence is of length m+1 specifying the interconnections of ul, ul-1, ul-2 up

to ul-m so then what are these g(0)1 and g(1)1 if g(0)1 and g(1)1 are either one or zero. One means

they are participating zero means it does not participate for example in this example

(Refer Slide Time: 12: 24)'

What is g11 is u1 participating in the output sequence of v(l) yes it is so then

(Refer Slide Time: 12: 36)

 g(0)will be one is ul-1 participating in the output sequence v(l) no so then this will be.

(Refer Slide Time: 12: 43)

So then this will zero what about u l-2 it is participating the output sequence so it will be

(Refer Slide Time: 12: 50)

One so g(1) is 101 similarly.

(Refer Slide Time: 12: 55)

g(2) will be 111 because u1, u l-1 and u l-2 they are all participating in the output coded sequence

okay so if I specify these generator sequence then mu convolutional code is completely specified

(Refer Slide Time: 13: 18)

And what is my output then my output is nothing but

(Refer Slide Time: 13: 23)

Is a discrete convolution of the information sequence with this generator sequence? So if my

generator sequence if my code as memory m then basically I can write this discrete convolution

in this particular position and that is basically my output sequence which is discrete convolution

of the input sequence with this generator sequence. Now let us take an example

(Refer Slide Time: 13: 59)

This is the same example that we are considering this rate one of code with

(Refer Slide Time: 14: 07)

Memory two so you can see v(1)l this is basically again discrete convolution of input with these

generator sequence which we can write as ul+ u l-2 and this v(1)2 can be written as ul+ul-1 + ul-2

if you go back

(Refer Slide Time: 14: 36)

Our output is this if you can

(Refer Slide Time: 14: 36)

Expand it for this particular example this will be ulg0i+ul-1g1i+ul-2g2i and for the first coded

sequence this g is g(o), g(1), g(2) was 101 and the second sequence was 111 that is why the first.

(Refer Slide Time: 15: 24)

First coded sequence is u l+ u l-2 and the second coded sequence is ul+u l-1+u l-2.

(Refer Slide Time: 15: 38)

So if we have information sequence this, what was our output sequence

(Refer Slide Time: 15: 43)

We had vl1 is ul +u l-2 and v(1)2 is u1+u l-1+u l-2

(Refer Slide Time: 16: 03)

Now we can show that our output coded sequence will be given by this now this can easily

verified so let us says what was our output

(Refer Slide Time: 16: 15)

Coded sequence v(l) was ul+ul-2 and vl2 is ul+ul-1 +ul-2 now note when the first input ul which

is one comes what is the output now to specify the output we need to specify what the initial

contents of ul-1 and ul-2 so initially we will assume that the convolutional encoder was in all

zero state now what do we mean by all zero so we are assuming that initially the contents of the

shift registers where all zero in other words ul-2 and ul-1 they were both zero okay.

If both where zero initially and if u(l)is1 what will be

(Refer Slide Time: 17: 15)

Vl1 this is 1+0 which is 1 so you can see.

(Refer Slide Time: 17: 21)

 This is one and what is vl2 is 1+0+0 so that is also 1 next what happens next if you go back

(Refer Slide Time: 17: 36)

(Refer Slide Time: 17: 37)

This one which was here when you apply a clock this one moves here and a new bit comes here

so now in the next time instance ul-1 becomes 1 and what is ul-2 since ul-1 initially was zero so

this zero will come here so the new contents of the shift register will be now one and zero.

(Refer Slide Time: 18: 03)

So what we have is now ul-1 is 1 and ul-2 is zero. Now the next input is zero so next input is

zero so what is are next output this is zero and ul-2 is zero so this will be zero you can see this is

zero what about this now u(l) is zero ul-1 is one and ul-2 is zero so 0+1 +0 that will be one and

that is I given by this okay next what happens.

(Refer Slide Time: 18: 44)

(Refer Slide Time: 18: 45)

Again go back to this diagram you are input zero here so now this zero will move here and you

had a one here so this is one will move here so the new contents which shifty register will be

zero and one okay.

(Refer Slide Time: 19: 02)

If that happens

(Refer Slide Time: 19: 02)

Then next input is one so if this is one.

(Refer Slide Time: 19: 07)

So if this one what is ul-2 ul-2 was one so 1+1 that is zero wand u(l) is one ul-2 is 1 and ul-1 is

zero so 1+ 0+1 that is zero. So like that you can basically write down the output coded sequence

so then what is my finial output so corresponding to this one and what is my coded sequence that

is given by this corresponding to this zero my coded sequence is given by this okay.

(Refer Slide Time: 19: 45)

So then I can write my final output as so corresponding to input one I get

(Refer Slide Time: 20: 01)

11 that is give by this corresponding to zero I get 01 that I give this corresponding I get 00 as

given by this so this is how I can write my output coded sequence

(Refer Slide Time: 20: 17)

Now the same thing I can write in the matrix from so.

(Refer Slide Time: 20: 24)

 I define this generator matrix G which generate this codes code word so the output code word

can be written as input times this generator matrix G okay and this generator matrix is of the

from like this so let us just expand it and may be try to explain why the generator form as this

semi infinite kind of form for a convolutional code so let us say u is u(0), u(1), u(2)…. Is continuing

set of sequence like this right now what is your, output sequence.

Output sequence so initially what happens if you go back to this.

(Refer Slide Time: 21: 18)

Diagram.

(Refer Slide Time: 21: 20)

(Refer Slide Time: 21: 20)

(Refer Slide Time: 21: 20)

Initially you are assuming that the encoder is an all zero state correct so what will be the first

output that you will get here that is I nothing but u(0) times g(0) what is g(0).

(Refer Slide Time: 21: 45)

g01 this g02 is this. This interconnection which is connecting u(i) to the output so at first time

instance.

(Refer Slide Time: 21: 57)

What you would get is

(Refer Slide Time: 21: 59)

(Refer Slide Time: 22: 00)

The output is nothing but.

(Refer Slide Time: 22: 02)

U(0) times.

(Refer Slide Time: 22: 04)

g(0) this is the output that you will get at first time instance what is a output that you will get in

the second time

(Refer Slide Time: 22: 10)

(Refer Slide Time: 22: 11)

(Refer Slide Time: 22: 13)

Now.

(Refer Slide Time: 22: 14)

Whatever u0 you had now that u0 has moved here correct and a new bit which is u1 have come

here u1 so what is a output at this time it is u1 times g0 +u0 times g1 so I can write.

(Refer Slide Time: 22: 35)

(Refer Slide Time: 22: 33)

And the second time.

(Refer Slide Time: 22: 37)

Instance.

(Refer Slide Time: 22: 38)

My output is give by

(Refer Slide Time: 22: 40)

 u1 times g(0) + u0 times g(1) fine next time instance what is my output

(Refer Slide Time: 23: 00)

(Refer Slide Time: 23: 01)

(Refer Slide Time: 23: 01)

Now what is going to happen is this u1 will move here so this will be now u1 this will become u2

and this will become u0 so what is my output now it is u2 times g(0) + u1 times u1+ u0 times g(2).

(Refer Slide Time: 23: 42)

(Refer Slide Time: 23: 43)

(Refer Slide Time: 23: 43)

(Refer Slide Time: 23: 44)

So go back to so what would be my output here it is

(Refer Slide Time: 23: 48)

u2 times g (0) + u1g(1) + u0times g(2) what happens next

(Refer Slide Time: 24: 02)

(Refer Slide Time: 24: 03)

(Refer Slide Time: 24: 03)

(Refer Slide Time: 24: 03)

This u0 moves out

(Refer Slide Time: 24: 10)

Here what we will get is u1

(Refer Slide Time: 24: 18)

This will be u1 what about this. This will become u2

(Refer Slide Time: 24: 26)

So this u2 and this will become u3.

(Refer Slide Time: 24: 26)

So this is u3 so what will be the output now it is u3 times g(0) + u2 times g(1) + u1 times g(2) and u0

does not appear because of memory order of this course was 2 so what is the output in this case.

(Refer Slide Time: 24: 51)

(Refer Slide Time: 24: 51)

(Refer Slide Time: 24: 52)

(Refer Slide Time: 24: 52)

Was so what is the output in this case thirds instance this will be

(Refer Slide Time: 24: 56)

u3 times g (0) + u2 times g(1) + u1 times g(2) now if you write this same thing in a matrix form so

what is v is basically

(Refer Slide Time: 24: 15)

v at time zero time 1 time 2 if you write this in this particular form is equal to u times this matrix

G now you compare this equation with this equation so at first times is this that output is u0 g(0)

so that is what so this is u0 times g(0) so this is g(0) second is this what is my output my output is

u0 times g(1) this term and then g(0) times u1 which is this term so the second entry of this

generator matrix is this okay now what is this third entry here you can see u0 times g(2)

so u0 times this is g2 + u1 times g1 that is this so this is g1 and then this u2 times g0 so you can

see then feather if you look at this what we get here is so u0 times 0 will get here and the uv will

get u1 times g(2) u3 times so this will be like zero g(0), g(1) and g(2).so say in this case a memory

order was m that I why we are getting like this so you can see here our generator matrix is of the

form of semi infinite form we are basically our G is something like this.

 so you have g(0), to gm now this becomes zero now this is new g(0), and this gm and then this is

00 this is g(0), so it is like in this way diagonally my generator sequence is moving and that is

what I have written here so if try to write it in the form of generator matrix then I can my

generator matrix in this case is a semi infinite from and through this.

(Refer Slide Time: 27: 23)

Sample for a memory to code we should that this is G is of the form this okay and where each of

this g(0), are basically these will represent what are these and bit output.

 (Refer Slide Time: 27: 41)

So let us continue with example that we are considering so far so we are continuing with our rate

½ code who is memory orders is two and we know.

(Refer Slide Time: 27: 53)

Our generator sequence for the first code sequences given by 101 because my out v(l) is ul + ul- 2

similarly the generator sequence for the second code word is give by 11 okay then can I write

basically what is my g(0), g(1), and g(2), so g(0), is given by now there are two outputs so g(0), will

have two terms the first term corresponding to the fist coded sequence so higher this is one and

what about the second code is sequence that is one so g0 is 11 g(1), is this is zero so this zero and

this one.

So g1 is 01 and what about g(2), g(2), is this is one and this is one so g(2), is 11. So I can then write

my generator matrix which is of the form G is of the form g(0),, g(1),, g(2), and the rest all of these

are basically zero these are zero these are zero this is g0, g1 g2 and then these are all zero. So

what is g(0), g(0), is 11 so that is what I have written here g1 is 01 that is what I have written here

and g(2), is 11 the rest all these entries are zero.

Similarly this is 00 and then I have g(0), g(1), g(2), and then these are all zeros okay so this how I

can write a generator matrix.

(Refer Slide Time: 29: 44)

Now let us verify our coded sequence that we calculated in the last time.

(Refer Slide Time: 29: 53)

 Coded sequence corresponding to this informative sequence was give by this

(Refer Slide Time: 29: 58)

(Refer Slide Time: 29: 59)

(Refer Slide Time: 29: 59)

Was.

(Refer Slide Time: 30: 03)

Our coded sequence corresponding to this information sequence now let us try using this

generator.

(Refer Slide Time: 30: 10)

(Refer Slide Time: 30: 11)

See if you use

(Refer Slide Time: 30: 12)

The generator matrix then our first input is one so times g(0), that this is the next is input I zero

so one time this + 0 times 11 that will be 01 next 101 ,so 1 times 11 zero times this 1 time this so

that is 00, so we can see basically we are getting the same out sequence we can just verify

110100.

(Refer Slide Time: 30: 41)

(Refer Slide Time: 30: 43)

(Refer Slide Time: 30: 44)

So we are getting the same output sequence

(Refer Slide Time: 30: 49)

(Refer Slide Time: 30: 50)

As before.

(Refer Slide Time: 30: 52)

(Refer Slide Time: 30: 56)

Now we are going to give a polynomial representation of these generator sequence which I very

convenient in case of convolutional codes so I'm introducing

(Refer Slide Time: 31: 10)

A delay operator D so if you have one memory element delay that will be

(Refer Slide Time: 31: 14)

 D if have delay of 2 it will be D2 if you have delay of three D3 so the exponent of D is going to

specify how much delay okay so what I'm going to show you is that I can write my output

sequence in this polynomial notation as u times D into gi times D so every output codes

sequence can be represent as product of this information sequence using this delay operator

multiplied by this generator sequence in the delay operator farm work and the overall code

sequence when we have a rate 1/n code can be given by this expression.

So let us first try to write each of these terms in terms of this delay operator polynomial

representation and then we will show that this time domain representation where we where

computing the output using convolutional discrete convolutional can be similarly obtained using

just this operation in the delay domain which we are calling cross from domain operation so we

will take the same example that we were considering so I will

(Refer Slide Time: 31: 32)

(Refer Slide Time: 32: 33)

Back and show you again.

(Refer Slide Time: 32: 33)

The

(Refer Slide Time: 32: 35)

Convolutional encoder.

(Refer Slide Time: 32: 36)

That we are considering we have one input we have two outputs output depends on pass two

inputs so basically memory order is two g(1) is give by this g(2) is give by this these are my

output v1
(1) , v1

(2) these are my output sequences.

(Refer Slide Time: 32: 59)

Okay so let us look this so

(Refer Slide Time: 33: 04)

g(1) is 101 now what does this one corresponds to one corresponds to this connection g(0) which

is linking my input u(l) so that would be u(l) without any delay so that would be 1 what was this

corresponds to g(1) that is input delayed by one so this will be representing using D so D time

zero will be zero and this will be this will corresponds to g(2) basically and this is delay of two so

this will be represented using D2 so this g(1) in this transform domain using this delay operator

can be written as 1+D2 similarly this g(2) which is 111 can be written as 1+D+D2 so this my g(2)

of D.

now the information sequence also I can write in this D delay notation since is u0 u1u2u3 so this

is a informative sequence I'm getting at this time this after one delay element two, three, four so

then this will be 1+D2+D3 +D4 and that’s I basically my informative sequence now the dicrete

convolutional of information sequence is g(1) is basically given by this and this if I write in a

delay operator form will be what 1+D+ D2+D3 +D4+D5+D6 and what is u(D) u(D) ia given by

this D1 is given by this so let us multiply these two so what do we get .

so if we multiply u(D)/g(1) (D) so one time this will be 1+D+ D2 +D3 +D4+D 2 rimes one is D2 this

will be D4 this will be D5and this will be D6 SO D2+ D2 is zero D4+ D4 is zero so what we are

left with 1+ D3 +D5+D6 this is prissily what you get here okay so you can see basically these two

in representation is equivalent similarly we can write u(2) which is give by this and you can verify

for yourself u(2)D is given by this.

Now once you have these individual sequence how do you write the overall output sequence so

note that for one input sequence you are getting an outputs okay so this is taken care by.

(Refer Slide Time: 33: 12)

This so if v(i)D is going to give me output sequence corresponding top each of this output n

output outputs now if I can combine this n outputs in this particular section so I take the first

output note that I have made a D over in because the if the rate 1/n code the first output will

appear after every n bits. The first bit is from the first coded sequence then after n bits it will

again repeat it will come meaning so that is.

(Refer Slide Time: 36: 50)

Why I have made it D(n) now how do I combine these n sequences so note I'm take this is output

v(1) D(n) is output from the first code sequence this is the output from the second sequence that

is I delayed by one the output from third sequence is delayed by D2 as similarly the output from

the enough sequence it will delayed by n-1 go back here.

(Refer Slide Time: 37: 19)

(Refer Slide Time: 37: 20)

These are the two individual outputs how where we getting the final output so note here I'm

taking first bit from here that is one second bit I'm taking from her that is this the third bit is this

which is this fourth bit is this which is this so what is what am I doing in this case rate was one

half so after every you can see in the output every second bit is coming from this so this is my

one which is appearing here this is my zero which is this is my one which is appearing this so

note this appearing every second bit and that is I why what we did.

(Refer Slide Time: 38: 07)

(Refer Slide Time: 38: 08)

Combined we made it each of this coded bit we made it D forward in next.

(Refer Slide Time: 38: 08)

If you look here.

(Refer Slide Time: 38: 20)

(Refer Slide Time: 38: 21)

The first coded sequence is

(Refer Slide Time: 38: 21)

this one this is the output from the first code sequence and what is the output form the second

sequence which is this one so what are you doing when your combining these output sequence

which is v(1) and v(2) so your taking v(1) like as it is only things is, is this spread out after every

second bit and

(Refer Slide Time: 38: 52)

v(2) is delayed by one and it is also spread out this is one this one is appearing here this zero is

appearing here this is appearing here so every second bit is also from this encoded sequence and

note that this is delayed by one corresponding to v(1) so that is what we are doing.

(Refer Slide Time: 39: 12)

(Refer Slide Time: 39: 13)

(Refer Slide Time: 39: 13)

If you combine this consider this combine output sequence there are n coded sequence v(1) v(2)

v(3) v(n) now for sequence we just take v(1) Dn seconds is v(2)Dn third is v(3) Dn and then each one of

them are delayed by 11 so this is no delay this is delay of one delay of two and this delay of n-1

so over all code sequence will be give by this

(Refer Slide Time: 39: 44)

Expression so I hope I made it clear why this is Dn and why each the parity bits re delayed by 1

D, D2,D3, Dn-1 so following this basically we.

(Refer Slide Time: 40: 03)

Basically we can also write our encoding sequence in this

(Refer Slide Time: 40: 08)

Particular form where output sequence is give by u(Dn) times g(D) where g(D) is this a

generator sequence for the first coded sequence the generator sequence form the second delayed

by one generator sequence of the third delayed by two generator sequence of the n delayed by

Dn so the overall encoding sequence can be equivalently written like this .

(Refer Slide Time: 40: 34)

And we can again go back to the same example our output sequence in a time domain was given

by this and if we follow the same procedure.

(Refer Slide Time: 40: 34)

Of v(D) should be u(D2) times g(D) where g(D) is g(1) D2+Dg(2) D2 so u(D2) is

(Refer Slide Time: 41: 00)

 What is u(D) go back the example

(Refer Slide Time: 41: 04)

(Refer Slide Time: 41: 05)

U(D) is 1+D2+D3+ D4 so this is.

(Refer Slide Time: 41: 11)

(Refer Slide Time: 41: 04)

u(D) is 1+D2+ D3+ D4 so u(D2) will be 1+D4+D6+D8 so that is what we have written here okay

and what is g(D) g(D) g(1) D2 + D times g(2) D2and what is g(1) D and g(2) D v(1) D is 1+ D2and this

was 1+D+D2 so g(1) D2 will be 1+D4 and this will be so this will be 1+D4 .1+ D4 g(2)D will be

g(2)D2 this is so this term is give by this I hope this is clear so g(1) D is given by this what we are

interested is g(1) D2 so g(1)D2 will b given by this expression and we are interest in g(2)D2 so this

will be given by 1+D2+ D4 now what is our overall g(D) this is given by

g(1)D2 +D times g(2)D2 so then this will be g(1)D2 is 1+D4+D times this okay so this can be written

as 1+ D4+D+D3+D5

so this is 1+D this is 1 +D+D3 D4 D5 okay so this our g(D) now if you multiply all of them what

we get is this and we can write this what is 1 D is this D2 is zero D3 is one D4 is zero D5 is zero

D6 is 1 D7 is zero D8 zero D9 1 D10 one d11 zero d12 one d13 one so this is our output sequence

now compare with this what we got in time domain 11,11,01,01,00,00,10,10,01,01 so you see

basically we are getting same sequence 10, 10 , 11, 11 and rest are all zeros it also we are getting

all zeros so the point to take is these generator sequence that we wrote using this time domain

representation we can similarly represent them using this display domain representation and it is

not more covenant to write it in this particular notation because then the output sequence.

(Refer Slide Time: 44:40)

Is just product of the input sequence and this generator sequence in this domain?

(Refer Slide Time: 44:40)

 So with this I'm going to conclude this lecture I just want to make another point that these

generator matrix that we saw

(Refer Slide Time: 44:59)

For example this g(1) D which we wrote as 101 and g(2) D which is 111 it is typically a

represented using octal notations so in many books when they will describe the convolutional

encoder for this they will write it as five seven code because octal notation of this is five and

octal notation of this is five and octal notation of this is seven so in many places they will say it's

a rate ½ five seven code and what it means is they are specifying the generator sequence using

this octal notation. Thank you.

Acknowledgement

Ministry of Human Resource & Development

Prof. Satyaki Roy

Co-ordinator, NPTEL IIT Kanpur

NPTEL Team

Sanjay Pal

Ashish Singh

Badal Pradhan

Tapobrata Das

Ram Chandra

Dilip Tripathi

Manoj Shrivastava

Padam Shukla

Sanjay Mishtra

Shubham Rawat

Shikha Gupta

K.K. Mishra

Aradhana Singh

Sweta

Ashutosh Gairola

Dilip Katiyar

Sharwan

Hari Ram

Bhadra Rao

Puneet Kumar Bajpai

Lalty Dutta

Ajay Kanaujia

Shivendra Kumar Tiwari

an IIT Kanpur Production

©copy right reserved

