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Welcome to the codes on error control coding, an introduction to convolutional code. So in this

lecture we will try to solve some problems
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Lecture #£10B: Problem solving session-111

Related to convolutional code and in general.
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@ Problem # 1: For reliable communication in presence of Gaussian
noise, what is the minimum signal-to-naise E,/ Ny required?

So the first question that we will try to answer is, if you want to do reliable communication in
presence of an additive white Gaussian noise channel and of course we have infinite bandwidth,

what is the minimum signal to noise ratio required?
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@ Problem # 1: For reliable communication in presence of Gaussian
noise, what is the minimum signal-to-noise E,/ Ny required?

@ Solution: Capacity of Gaussian memaryless channel with two-sided
noise power spectral density Ny,/2 and without bandwidth limitation

is given by
s
gE= »,J“_';..W"’%(' W)
5 1
— bits/
Npin2 s

where W denotes the bandwidth and S is the signaling power.

So for that we first need the expression for capacity of additive white Gaussian noise channel.



(Refer Slide Time: 00:56)

S e RS N |
g sTommma e dl

@ Problem # 1: For reliable communication in presence of Gaussian
noise, what is the minimum signal-to-noise E, /Ny required?

@ Solution: Capacity of Gaussian memaoryless channel with two-sided
noise power spectral density Ng/2 and without bandwidth limitation
is given by

bits/s )

where W denates the bandwidth and 5 is the signaling power.

And the capacity of additive white Gaussian noise channel is given by this expression, where w
is a bandwidth, s is my signaling power; No/2 is two sided power spectral density. Now — so we
are considering when bandwidth is infinite so this can be written, so this will be log(1+ when w
is infinite then this will go to zero, so log (1) will be zero and 1/w will also go to zero, so it is 0/0

form.

So we will differentiate and we can find out that the capacity when bandwidth is infinite is given

by this expression, S/Ng natural log of two bits per second.
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@ Problem # 1: For reliable communication in presence of Gaussian
noise, whal is the minimum signal-to-noise £/ Ny required?

@ Solution: Capacity of Gaussian memaoryless channel with two-sided
noise power spectral density Ny,/2 and without bandwidth limitation
is given by

: 5
e = g wes (14 757)
5 ,
bits/
Mginz %
where W denotes the bandwidth and S is the signaling powar.

@ |f we transmit K information bits over T seconds, where 7 is a
multiple of T, we have

5.
B~

So we are interested in transmitting k bits over 7'seconds. So if we do that where T'is a multiple
of time period T, so if we do that our energy per bit is given by S 7/K this S was my signaling
power we are sending over time T, Tand total number of information bits was K, so energy per
bitis S T/K.
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@ Since the data transmission rate &, — K/ bits/s, energy per bit
can be wrtten as

Now what transmission because we are transmitting K bits what time 7'so our transmission rate

is K/ Tbits per second.
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@ Problem # 1: For reliable communication in presence of Gaussian
noise, whal is the minimum signal-to-noise B/ My required?

@ Solution: Capacity of Gaussian memaoryless channel with two-sided
noise power spectral density Ny /2 and without bandwidth limitation
is given by

- . =
e = VI.-!’E‘:\: W|I:_Jg, (l - W)
= ,
b t :.' E
Mpinz F
where W denotes the bandwidth and 5 is the signaling power.

@ [f we transmit K information bits over 7 seconds, where 7 is a
multiple of T, we have

ST

And our energy per bit that we wrote here is basically S 7/K.
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@ Since the data transmission rate R, — K /7 bits/s, energy per bit

can be written as -
£ 5
)

And K/ T'is R so we can write energy per bit in terms of signaling power and transmission rate
RF.
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Fundamental limit

@ Since the data transmission rate B = K /7 bits/s, energy per bit
can be written as

5
Eyp=—
b R
@ Thus we have
| Es

R Noln2
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@ Since the data transmission rate R, — K /7 bits/s, energy per bit
can be written as
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@ Problem # 1: For reliable communication in presence of Gaussian
noise, whal is the minimum signal-to-noise B/ My required?

@ Solution: Capacity of Gaussian memaoryless channel with two-sided
noise power spectral density Ny /2 and without bandwidth limitation
is given by

- . =
SR
= ,
b t :.' E
Mpinz F
where W denotes the bandwidth and 5 is the signaling power.

@ [f we transmit K information bits over 7 seconds, where 7 is a
multiple of T, we have

ST
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@ Since the data transmission rate R, — K /7 bits/s, energy per bit
can be written as
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Fundamental limit

@ Since the data transmission rate B = K /7 bits/s, energy per bit
can be written as

5
Eyp=—
b R
@ Thus we have
| Es

R Noln2
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@ Since the dala transmission rate Ry, = K /7 bils/s, energy per bit
can be written as

5
e
b R,
@ Thus we have =
Lo Es
R Npln2

So if we divide our expression for general capacity by R; what we get is this expression. Now we

know from Shannon noisy channel coding theorem that as long as transmission rate is less than

channel capacity we can reliably communicate over the communication channel. So we want R;

to be less than this channel capacity.
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@ Since the data transmission rale R, = K /7 bils/s, energy per bit
can be written as

L
E, = —
[ =
@ Thus we have
= _ &
Re  MNgln2

@ For reliable communication, we must have Ry = ™. Thus we have

E
E*;.-.--|r12 0.69 Il.ﬁdB

So if we want this to hold then we get a condition on signal to noise ratio, so we get this
following condition on energy per bit, so snr per information bit we get this condition that snr per

information bit should be greater than -1.6 dB. This is for the case when we have infinite
bandwidth.
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Fundamental limit

@ Since the dala transmission rale B, = K /7 bils/s, energy per bit
can be written as

L
E, = —
[ =
@ Thus we have
e _ B
Re  MNgln2

@ For reliable communication, we must have Ry = ™. Thus we have

E
E*;.-.--|r12 0.69 ‘1.&15

And our code rate can actually go to zero.
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Fundamental limit

@ Since the data transmission rate Ry = K /7 bils/s, energy per bil
can be written as

s
Ep = —
b =
@ Thus we have _
> - Eh
R Noln2

@ For reliable communication, we must have Ry = C™. Thus we have

E
E‘j;—-lnz 0.69 = ~1.6dB

@ Thus signal to noise ratio £, /Np cannol be less than Shannon limit
1.6 dB for reliable communications,

—_—

So signal to noise ratio then cannot be less than this limit which is -1.6dB. Okay let us look at the

next problem.
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@ Problem 3 2: For reliable communication in presence of Gaussian |
noise, what is the minimum signal-to-noise Ey/ Ny required if we are
using a rate R=K /N cade?
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@ Problem # 2: For reliable communication in presence of Gaussian
noise, what is the minimum signal-to-noise Ep/ Ny required if we are
using a rate R=K /N code?

So we are interested in reliable communication over additive white Gaussian noise channel and

we are transmitting using a rate K/N code.
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@ Problem ## 2: For reliable communication in presence of Gaussian
noise, what is the minimum signal-to-noise Ey/ Ny required if we are
using a rate R=K /N code?

@ Solutions: Capacity of bandlimited Gaussian channel is given by

¥ = Wiog (i + bits/s

S
NoW

where W denotes the bandwidth and 5 is the signaling power.
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@ Problem # 2: For reliable communication in presence of Gaussian
naise, what is the minimum signal-to-noise E /Ny required if we are
using a rate R=K /N code?

@ Solutions: Capacity of bandlimited Gaussian channel is given by

5
W —wi ( +—— ] bits
C og | 1 NUW) hits/s

where W denotes the bandwidth and 5 is the signaling power.

So what is the effect of the bandwidth w, now we know for a band limited channel the capacity is

given by this expression okay.
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@ Prablem # 2: For reliable communication in presence ol Gaussian
noise, what is the minimum signal-to-noise E,/ Ny required if we are
using a rate R=K /N code?

@ Solutions: Capacity of bandlimited Gaussian channel is given by

5 ;
CW = Wieg [ 1+ =) bils/s
G ( NUW) '
where W denotes the bandwidth and 5 is the signaling power.
@ Assuming we are transmitting at a rate of 2W samples per secand
and using a rate R=K /N hlock code. If we transmit K information
bits during v secands, we have

N = 2Wr samples per codeword

So let us say we are transmitting at Nyquist rate.
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@ Problem # 2: For reliable communication in presence of Gaussian
noise, what is the minimum signal-to-noise Ey/ My required if we are
using a rate R=K /N code?

@ Solutions: Capacity of bandlimited Gaussian channel is given by

5 e
CW = Wlog (L + NU—W) bils/s
where W denotes the bandwidth and 5 is the signaling power,
@ Assuming we are transmitting at a rate of 2W samples per second
and using a rate R=K /N block code. If we transmit K information

hits during + seconds, we have

N =2Wr samples per codeward

o

So we are transmitting at 2W samples per second and we are using a rate K/N code. So if we

transmit K information bits during time 7'then number of samples per code word that we are

sending is 2W T.



(Refer Slide Time: 05:38)

; S | Ll h.':" L ':"h'«E
FogTooEddcd o NNEEETTNEDD M| swwm

Coding Limits

@ Problem # 2: Far reliable communication in presence of Gaussian
noise, what 15 the mimimom 5|gna|-tg-no|§c Eb.,-"NQ rr,'qulrr_-l:l if we are L
using a rate R=K /N code?

@ Solutions: Capacity of bandlimited Gaussian channel is given by

5
N, W) bits/s

where W denotes the bandwidth and S is the signaling power.
@ Assuming we are transmitting at a rate ot 2WW samples per second
and using a rate R=K /N block code. If we transmit K information

bits during T seconds, we have

" = Wilog (L-!—

N = 2Wr samples per codeword

@ Hence

e

Re = K /v =2WHK/N = 2WR bils/s

Now our transmission rate is K information bits over 7'time, so a transmission rate is K/ 7'and
this we can write in terms of these samples per code word n which is given by this expression
and K/N is nothing but our code rate, so this transmission rate is given by 2WR where R is my

code rate, so this many bits per second is my transmission rate.
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— _ —2RE,/ N, N
Wiy L

Now we know we that



(Refer Slide Time: 06:18)

e R = - | i e T S T ,"'E
Fa rTo=mmwWd g Q_J|- - -II|IIIE:|IIEDl wany arm 32 |

Coding Limits

@ Since, E, = 5/ R, we have

Energy per bit is given by signaling power by transmission rate, this we have done in the last

example.
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@ Since the data transmission rate K, = K /7 bits/s, energy per bit

can be written as
=
b= R

@ Thus we have 3
[ Eg

R, Ngln2
@ For reliable communication, we must have K < C™. Thus we have

E,
— = |In2 =069 = -1.6dB
N

@ Thus gn;ﬂ to nomse ratio Ef_.,-'{Nq cannot be less than Shannon limit
-1.6 dB for reliable communications.

—
pr—

We had this right so using this, then so if we do that
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@ Since, Ey = 5/ Ky, we have
5
Wi

= 2RE,/ Ny

@ For reliable communications, we must have R < Y thus

2RE,
Ky = 2WR = Wlog(l F “)
Mg
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@ Since, E, = 5/R,, we have

5 |
—_ = i
[ e = 2REs/No

@ For reliable communications, we must have & < C%, thus

: 2RE,
R = 2WR < chg(l } —N—“)

S/WNj in terms of Ep/ Ng. this is equal to 2 times code rate by into SNR per information bit so

in this expression of
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@ Problem # 2: Far reliable communicalion in presence of Gaussian
noise, what 15 the minimum signal-to-noise Ep/Np required if we are U
using a rate K=K /N code?

@ Solutions: Capacity of bandlimited Gaussian channel is given by

/ _S
cW — w log (J_ +/NUW) bits,/s

where W denotes the bandwidth and S is the signaling power.
@ Assuming we are transmitting at a rate ot 2W samples per second
and using a rate R=K/N block code. If we transmit K informaticn

bits during 7 seconds, we have

N 2Wr samples per codeword

@ Hence

R =

=

= 2WK /N = 2WR bils/s

Capacity of band limited channel we can replace this expression by
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@ Since, Ep = 5/ R, we have

—

5
—— =2RE, /N,
WNy - b My

This, fine?



(Refer Slide Time: 07:16)

a a5Q - e wll | CLGL B R ST
fa sTdmEn ol o BEEEEETENT B v 2|

@ Since, E, = 5/ K, we have

@ For reliable I:'I:)I:T:IrT1LJI'IiI::.'-1|i(;, we must have R < CY, thus
ERED)
N

il

Ry = 2WK < chg(l |

Now for reliable communication we know that our transmission rate should be less than channel
capacity and what is channel capacity, that is for the band limited channels W log (1+ S/WNN
which is basically given by this expression, so a transmission rate which is 2 times WR should be

less then W log (1+ 2REp/ N
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@ Sinee, By = 5/ Ry, we have

2REL! Ny
W/ o E
a For reliable communications, we must have i = €% thus

2REL
)

Ry =2WFR = Wlog (1 +

@ We can wrile equivalently

228 q
Enifin = =
A I 2

So from here then we can write down
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@ Since, E, = 5/ Ry, we have

5
—
e 2REw/No ’

@ For reliable communications, we must have & = €%, thus

IRE
R, = 2WR = W log (1 + 'N"‘)

L

2R ]
2R

2 We can wrile equivalenlly

E; Np =

The expression for minimum SNR information bit is a energy per information bit by noise power
[indiscernible][00:08:05] so SNR by information bit we can write it as this is should be greater

than equal to 227 -1 / by 2R, now this right hand side term is an increasing function of R
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@ Since, E, = Sf'.ﬁ',_-. we hiawe

5
WA

@ lor reliable communications, we must have & = C% thus

.
R, = 2WR = Wleg (1 4 'i&)

U

2REs/ No

@ We can wrile equivalenlly
2R 1

Lp,,-"'Nn 2 = 2

@ Since RHS is an increasing function of R, in order to communicate
close to Shannon limit, we have to use both an information rate R,
and code rate R close to zera,

So if you want to communicate close to the Shannon limit then your information rate R; as well

as code rate R should be close to zero. In fact
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Coding Limits

@ Since, Ey = 5/ R, we have

5 .
Wi 2RELS Ny
@ For reliable communications, we must have /& = €', thus

2R
= 2WR = Wlog (1 + NE")

2 We can wrile egquivalently

2R 1
Enf Ny = =
T TR
@ Since RHS is an increasing function of R, in arder to communicate
close ta Shannon limit, we have Lo use both an information rate R,
and code rate B close to zera,

@ If we let R — 0, we get Ex/Ny = In2.

If you let R — 0 what you will see is
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Coding Limits

@ Since, Ey = 5/R;, we have

5 . ,
Ve 2REw/ N

@ [or reliable communications, we must have & = C%, thus
2R

R, = 2WR = W log (1 2k E°)
t Ny

@ We can wrile equivalently

2R _ |
Eps Ny = 3R
@ Since RHS is an increasing tunction of R, in order to communicate
close to Shannon limit, we have to use both an information rate R,
i-II'1'.'J ('t.‘ld\" rate R t:l(:l.'-h’! (23] Fero,

@ Ifwelet R — 0, we get Ey/Ny =In2

You will get the limit that we had just talked about in the previous problem which was minus

1.6DP and if, let us plug in some practical values of R, let us say R is



(Refer Slide Time: 08:58)

HCEla S84 ¢ ke x|
g »TooEd i EaEenmammnn m e

Coding Limits

@ Since, Ep = 5/F, we have

5
= —2RE, /N,
Wi Ee
@ Far reliable communications, we must have Rt < ('W. thus

2RE,
Ky = 2V = Wlag(l ’ ")
N

@ \We can write eguivalently

R _ 1
2R

@ Since RHS is an incressing function of R, in order to communicate
close to Shannon limit, we have to use both an information rate K,
and code rate R close to zera.

@ |f we let ® —+ 0, we get Eqf/ My = In2.

@ fwelet @ 1/2 weget EgfMp>1-0dB. |

Eo/ My =

Half , we put value of R to be half then Ep by not should be more than 0 DP, so you can see for
any rate which is away from 0 then this minimum SNR required for transmission is also more,

okay.
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Convolutional codes

@ Problem 3 3: Prove that every convolutional code C has a
generator matrix that is delaytree.

Now the next question that we will solve is to prove that
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Convolutional code

@ Problem # 3: Prove that every convolutional code C has a E _
generator matrix that is delayfree. arte) - [ B 1+ D’{m-j

For every convolutional code has a generator matrix which is delay free. Now delay free
meanings are basically if we have a generator matrix let us say of the from D' and then some,
something like 1 + D and some D' 1+ D+D? or something like that we can always write an

equivalent generator matrix which will be free of these like delay terms, I will talk about that.
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Convolutional codes

@ Problem # 3: Prove that every convolutional code C has a
generator matrix that is delaytree.

@ Solution: Let G(0D) be any generator malrix for C The noneera
entries of G0} can be written as

(D) = D7 £(D)/g5(D)

where s, is an integer such that
H0)=ay0)=11%isk1=/2n

So let us see we have a generator matrix
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Convolutional codes

@ Problem # 3: Prove that every convolutional code C has a
generator matrix that is delayfree.
@ Solution: Let Mhe any generator matrix for C. The nanzero
entries of i{g} can be written as g ) \I_},,;EBJ:-._.
gl ) = e—

(D) = D7(D)/ay(D] s e T
i B "

where s is an integer such that
fi0)=gs(0)=11=i=kl=j=<n

G(D) okay and its non-zero entries can be written in this particular form, so there is some delay
term we calling D% ; and then we have this rational function we have this rational function which
is fij D) /q;;(D) and fi; D) and q;;(D) is of the form 1+some fo D+ .... This is 1+ qoD+ something,
something okay, so that is what | meant if (0) and q;;(0) is 1, so any entry in the generator

matrix can be written in this form okay? Now
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Convolutional codes

@ Problem # 3: Prove that every convolutional code © has a
seneralor matne Lhal s delaylres,

# Salution: Let G{0}) he any generator matrix far . The nonzero
enitries of GIOY can be wrillen as

gl P} DD ay7)
where ;i an integer such that
GO - q{0) -1 1=isklzj=n
# [he number 5 is the delay of the sequence

£(D) = DR G(D)/ (D) = D% + 1,07 4 -

What is this term S1J; it is essentially a delay term, so if we have some term like SIJ so what you
will get is terms of this particular form.



(Refer Slide Time 11:18)

| 2 a QA Al w | F TR R \.lJ
Fa TEOmwEN |:?_-| s EEEEES S EE | | W ocHew 02

Convolutional codes

@ Problem # 3: Prove that every convolutional code © has a
seneralor matnx Lhat is delayiree.

@ Solution: Let G{3) he any generator matrix for C. The nonzero
entries of GO can be weitlen as

g5l D) DUEID) g5

where =y iy an integer such that

f0) — a0} — 112 izk1zjza
# [he number 5 is the delay of the sequence

(0 = Do (D) ay{ D) — O 4 mu__n'u'l fas s
@ lot s mih;” -:.;.}, then
S —
G0} = D"'GED_;I
ic both delayfree ane realizable and both GO and G'[D) penerate
the same convolutional code. o

Now if we consider S which is the minimum S;; over all I and J then we can find an equivalent
generator matrix which would be G — of D which we can write as D-S GD and this GID will be
delay free and it is of course realizable, and it also generate the same set of code words, so
whenever we have a generator matrix which has the delay term we can always have - find an

equivalent generator matrix which is delay free.
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Convolutional codes

@ Prublem # 4: I'rove that every comvolutional code © has o
polynemial delayfree menerator matrix

Next question, prove that for every convolutional code has a polynomial delay free generator
matrix. So for any convolutional code we have an equivalent polynomial delay free generator

matrix.
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Convolutional codes

@ Problem # 4 Prove thal every convolutional code C has a
polynomial delayfres genorator matris.

@ Solutions: Lot t:[l'.l=}_ he any rna_li?lﬂn and dnliﬂ'_nn generatar far C
and let giD) be the least commen multiple of all the dencminators
al the nonzera entries of G{D).

So let us say we have a generator matrix which is given by G(D) and this be any realizable and
delay free generator for this convolutional code C, and let q(D) be the least common multiple of
all the denominators of the nonzero entries of G(D), so GD basically has a natural form and q(D)

is the LCM of the denominator terms of the nonzero entries of G(D).
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Convolutional codes

& Problem 3 4 Prove Lhal every convalubional code C has s
polynomial delayfree gencrator matrix.

@ Salutions: Let G[D} be any realizakle and delayfren generatar far C
and let g{0) be the lzast commen multiple of all the denominators
af the nonzero entries of G{D).

@ Since (D) s a delaylree palynomial. we have

G'(0) — q(D)6(0)

i & palynamial delayfren generator matrix far C

Now if we have such and so we will have a q(D) which is basically delay free so if we multiply

our original generator matrix by this (D) we will end up with a
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Convolutional codes

@ Problem # 4: Prove thal every convolutional code C has a
pelynomial delayfres generatar matrix.

@ Salutions: Lot G[D) be any realizable and delayfren generatar far C
and let g{D] be the least common multiple of all the denominators
of Lhe nonzera entries of GO

@ Since (D] is a delaylres pobmaemial, we have

G'(D) — q{D)G(D)

iz & palynamial delayfron generator matrix for C

New generator matrix G — of D which will be polynomial and delay free.
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Convolutional codes

@ Problem # 5 [he dual code C+ to o comolutional code © 5 the
set of all n-tuples of sequences wI such that the inner praduct

{v,ul] —wlw ‘Ilrw- Q_:_'I

15 2810,

Okay next so let us first define a dual of convolutional code so we define a dual to convolutional

code C as a set of all n-tuples of sequence V dual such that the inner product between this which

is define as V and this V dual transpose this is essentially zero. So if you have a dual to the

original convolutional code, then if you take set of code n-tuples sequence from the original code

and the dual code, their inner product will be zero.
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Convolutional codes

# Problem # 5: The dual cade CF to a conwalutional code © is the
sel al all n-luples of ssquences v such Lhat the inner praduct
|
(v.v') =vlv )
is zero.
& Let rate Ao comalutional code be genetated by the sem-infinite
generator matrix G and the rate # — {7 — &)/ dual code O be
generated by the semi-inhnite generator matriz G=, where B

G G o G
6 = T G G

G(GL) -1

Then

So let us define a rate k/n convolutional code which is generated by a generator matrix G and

you know that we can write the generator matrix or convolutional code in a semi-infinite fashion.
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Convolutional codes

@ Problem # 5: The dual code CF to a convalutional code © is the
el ol all n-luples of ssguences vt such Lhal the inner praduct

(v.u'] = wiw ]IJ

is zero.

a Let rate ﬁu__.:imn-.-;;ul-uligjnal code be penerated by the semi-infinite
generator matrix G and the rate £ — {0 — &)/ dual code O be
generated by the semi-inhnite generator matric G-, where -

G G 0 G
.;-._( N )

And let us see the dual code has is this, which has rate n — K /n and it is generated by this semi-
infinite generator matrix, then show that G, G transpose basically will be zero whereas G is the

generator matrix of the original code and this is the generator matrix of the dual code.
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Convolutional codes

@ Let v = ul and v+ = utG—, where v and v— are orthogonal. Then
e = =
wi have

T 1
wlw :Ir = uG{u G'jT—uGE}1 it )* =a

So how does this follows so since V, V transposes zero so what is V, V is U times G and V and
V dual is U dual, G dual. Now we know that they will be dual of each other if V, V dual
basically is orthogonal so if, if this inner product is zero now if the inner product is zero, so then
UG and this transpose should be zero, so this we can write as UG(G) transpose, you transpose.

Now this term will be zero only if this term is zero for all u okay.
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Convolutional codes

@ Letv=uGand v’ — u'G", where v and v" are orthogonal. Then
wie have

u'[:vJ' }T = uG(u'G')T = I.IGI:GJ')T{IJJ' ]T =1l

@ Thus we have
G(G')=0
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Convolutional codes

@ letv-uGandv' = u' G" where vand v are orthogonal. Then
we have

v(v' )" = uG{uG)" =uG(G") (u")T =0

@ Thus we haye

And hence we get this condition that this should be zero, okay
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Convolutional codes

@ Let v = uG and v = u~G+, where v and v are orthogonal, Then
wir have

vivh )" = uG{u 64" = uG(GH) (ut)" =0

@ Thus we have
G(G") =0
& The convolutional dual eode €= to 3 convolutional cade C which s
encoded by the rate R k/r generator matrix G2} is the set of all
codewords encoded by any rate & — (n ~ k)/n generator matrix

G (D) such that
G(D)GT (D) =0
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Convolutional codes

@ Let v = uG and v= = u=G+, where v and v- are orthagonal, Then
we have

v(v')" = uG(u 6")" = uG(G") (u")" =0

@ Thus we have
GG ) =0
@ The convolutional dual code C— to a convolutional code € which 15
encoded by the raEﬁ'_ e/ n generator matrix G(0) s the set of all
codewords encoded by any rate K~ (n - k)/n generator matrix
G, (D) such that et Ty
sy G(D)G](D) =0

gl a

So a convolutional dual to a convolutional code C which is encoded by a rate k/n generator
matrix G(D) is set of all code words encoded by rate n-k with generator matrix this such that
G(D) and the generator matrix of the dual transpose should be zero, so dual of the code is
defined by this.
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Convolutional codes

@ Problem # 6: The convalutional dual to the code encoded by the
generator matrix (D) is the reversal of the convolutional code dual
to the code encaded by G(D).
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Convolutional codes

# Problem 3 6: The convolutional dual to the code encoded by the
generator matrix G(D) is the reversal of the convalutional code dual
ta the code encoded by G(D).

—

Next, so here we will show that the convolutional dual to the code encoded by the generator
matrix G(D) is nothing but reversal of the convolutional code dual to the code generated by
G(D).
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Convolutional codes

& Problem # 6: [he convolutional dual to the code encoded by the
menerator matrix (D) is the reversal of the convalutional code dual
to the code encoded by G(D).

@ Let us consider a rate A = &/n convolutional code encoded by the
polynomial generator matrix

GiD) =G+ GD+  +Gul”
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Convolutional codes

& Problem # 6 The convolutional dual to the code encoded by the
generator matrix G{D) is the reversal of the convolutional code dual
to the code encoded by G(D).

@ Let us consider a rate K = k/n convelutional code encoded by the
polynomial generator matrix

6(D)= G+ GD+++ + GuD™

_ e p—

So let us consider a rate k/n convolutional code which is encoded by a polynomial generator. We
have already showed that we can find an equivalent polynomial delay free representation of any

convolutional code right? So let us see this is our G(D) for our original code C.
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Convolutional codes

& Problem # 6: The convolutional dual to the code encoded by the
generator matrix G(0) is the reversal of the convalutional code dual
to the code encoded by G(D).

@ Let us consider a rate K = k/n convolutional code encoded by the
palynomial generator matrix

GID) =G+ G+ + Gy D7

—_—
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Convolutional codes

@ Problem # 6: The convolutional dual to the code encoded by the
generator matrix G(D) is the reversal of the convolutional code dual
to the code encoded by G(D).

@ Let us consider a rate R = k/n convelutional cade encoded by the
polynomial generator matrix

GID) =G+ GO+ -+ GuD™

2 Let tf*(DJ denote the rale R=(n — k)/n polynomial generator
makrix

GHD) =G

L]

)

'm!

D+ O™
which is the reciprocal of the generator matrix
GH{D)=G +6iD+---+ G

far the dual code £
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Convolutional codes

@ Problem # 6: The convolutional dual to the code encoded by the
generalor matrix G(D) is the reversal of the canvalutional code dual

Lo the code encoded by G D). T i

@ Let us consider a rale R = & /n convolutional code encaded by the
N » L Pl
pnlw_.fnnr'rn:-al generator matrg L:@.— i] -3
crlD

G0 =G+ &GO+ + G.D"

@ Let E:-J' ) denote the rale R=(n — k)/n polynomial generator

makrix - T
[60) G+ G0 1 G0"

which is tha Eci_procal of the generator matrix

E:*{o] = (=—H e e GJj

far the dual code £+

Now we define this as the reciprocal of the generator matrix now how do we come up with the
reciprocal, so we do G(D™) and we multiply by the maximum degree which is in this case m, so
this is how we, we get the reciprocal, this how we get the reciprocal, okay. Now what | have
shown you here is the reciprocal of the generator matrix for the dual, this is a generator matrix of
the dual code and this is the reciprocal of the generator metric of the dual code, now note we
have to show that the convolutional dual to the code encoded by G(D) is nothing but reversal of
the convolutional code dual coded by G(D). So if that is the case then G(D) dot product of G(D)

with this should be zero.
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Convolutional codes

@ Then we have

GIDNCIDNT — GalG

m

e GM{GU-]TDur-m

(“-'z (i G..w,.ﬂ.r)) S
J=—m \i=i

¥ HGt6h )+ Gle e

m
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Convolutional codes

@ Then we have

H(ONGON" GG,

(£c

I {'PI: ml ‘_) f {"1{(-' }
( TDur it

Gi(Giy) )) D=0

So let us try to find G(D) and transpose of this reversal.



(Refer Slide Time: 19:26)

Convolutional codes

@ Problem # 6: The convolutional dual to the code encoded by the
generalor matrix G{D) is the reversal of the convolutional code dual

la the code encoded by G(D). —

@ Let us consider a rate R = k/n convolutional code encoded by the
palynomial generator matric E‘ﬁi)‘_ i]'ﬂcr{u-lj

G(D) =G+ GO+ + GuD™
@ Lat GL ) denote the rate R={n — k)/n polynomial generalor

matrix - — |
lr_ﬁl{ )= Ga + G D+ o+ HO” l

which is the reciprocal of the generator matrix

Ls_lm]:q%-s,—n-----aﬂ

for the dual code £+

Of the dual matrix, see again pay attention to the question, basically what we are saying is the
dual of the code encoded by the generator matrix is given by the reversal of the convolutional
code dual so reversal of the convolutional code dual is this right? So if the dual of the original
code is given by reversal of the convolutional code then what is the property the this generator
matrix should satisfy, this and this transpose should be zero, so we have to show that G(D) and

this generator matrix transpose is zero.
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Convolutional codes

@ Then we have

SONG(ONT — Gal6, )T + GalGe )T + Gi(6, 0D

m

e +____GM{GIJ_)TD,Ur-m

(Z (}_ r_:.-(c;,.,._jr)) D™
J=—m \)=0

So we do this so this can be written as this term, okay.
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Convolutional codes

@ Then we have

G(D {f{U]}j -Cn{f-:m )T+ Gl G _y) + GG,y lﬂj
p— 6t T it

s o Tt ’“{. N o

Now further we can write this as double ¥ and what are, what is this? This is the dual of
generator matrix is the dual of this so this, this G(D) G transpose should be zero, right? So this
whole X would be also zero, so what we have shown is then the dual of the dual of this code

which has generator matrix G.



(Refer Slide Time: 20:59)

Convolutional codes

generator matrix G(D) is the reversal of the convolutional code dual

to the code ancoded by G(D). Tl

@ Let us cansider a rale R = k /o convalutional eade encadad by the

polynomial generator matrix \ E‘ﬂ,’)‘_ ﬁ'“crw.nj
G(D) = Gy + G0+ + G, D™
@ Let fing] denole the rate R=(n — k}/n polynomial generalor

makrix - L
[6/0) G+ Gur D 44 0"

which is the reciprocal of the generator matrix

far the dual code CL.

Is nothing but reversal of the convolutional code dual because this generator matrix is nothing
but it is the reversal of the generator matrix of the dual code of c okay?
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Convolutional codes

@ Problem g 7: Show that the free distance for any hinary rare
R &/ n conalutional code encoded by & minimal encoding matrix
of memory m and overall constraint length i satisfies

i [+
e S 110 { [%J }

Next we are going to show a bound on free distance of convolutional code, so show that if you
have a rate key by n convolutional code whose encoding matrix as memory m and over all

constraint length v. Then free distances upper bounded by this.
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Convolutional codes

@ Problem # T: Show that the fres distonce for any binary rate
i = k{n conolutional code sncoded by a minimal encoding matrix
of memary m and overall constraint length i satisfies

{m = ijn }

e il { 1 — 2e—kmri])

@ Arate B k/n _ronunlutl'nnal code can be encoded by a minimal
encoding matrix whaose realization in contraller canonical faorm has
¥ encoder states - -

JR—

So if you have a rate k/n code we can realize it using controller canonical form using 2vencoder

state because this is over all constraint length is .
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Convolutional codes

@ Prohlem 3 7: Show that the free distanee for any hinary rate
R i/ n convelutional code encaded by a minimal encoding matrix |
of memory m and overall constraint length o satisfies |

o {m+ i) |
dfrge = rll'f:.ln { . 2{1 . zr-—lctm—lllj

a A rate B = /0 convolutional code can be encoded by a minimal
encoding matrix whose realization in controller canonical form has
2% encoder states.

@ Consider 28m+i ;1 2 information sequences

@ There exisl 2¥" /2 information sequences starling in Lhe zero
stale leading Lo Lhe sero siale.

@ Corresponding code sequences constitute a block code with |
M — 2K codewords and blocklength N — (m + i)a for
P i

Now if we consider 2™ information sequences. Then there exist 2™/ 2v information
sequence starting at zero state leading to all zero state. So if we count number of such code
words then number of such code words M is given by 2™+ and what is the length of this code
word, length of this code word would be (m+i) n because this is our rate k/n code right? Next we

are going to use
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@ From Plolkin bound, we have

iy [wﬁﬁf L:IJ

Plotkin’s bound, now Plotkin bound says it upper bounds the minimum distance as flower of this
is code word length, number of code words 2 into number of code words -1, so in this example
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_onvolutional codes

@ From Plotkin bound, we have

]
o = | =)

a Putting the value of N and M, we get the desired bound.
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@ Problem § 7: Show that the free distance for any binary rate
R k/n corvolutional code encoded by a minimal encoding matrix
of mamory m and overall constraint length i satisfies

i {m+ i)m
e = 70| }

z{l ™ 2r;—|ctmé|'|j

@ A rate R = &/n convolutional code can be encoded by a minimal
encading matrix whose realization in controller canonical form has
2" encoder states.

@ Consider 25mH0 § ) 2 ... information sequences

@ There exisl 2V 0727 informalion sequences starling in Lhe zero
slale leading Lo Lhe sero slale.

@ Corresponding rode sequences constitute 3 i
M pktm—-Jﬂrndmnrd: and hlnnklr'ngfh]’."u' (m -+ ijnftar

i—1,2,.: —

Li

What is our N, our N is this, okay. This is our N and what is our M, our M is this. So if you plug

in this value of M and N in our Plotkin bounds.
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Convolutional codes

@ From Plolkin bound, we have

Pt B
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Convolutional codes

@ From Plotkin bound, we have

M|
02 | 1)

@ Putting the value of N and M, we get the desired bound.

What we will get is our desired bound.
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Convolutional codes

@ Problem §t 7: Show that the free distance for any binary rate
R k/n convolutional code eneaded by 2 minimal encoding matrix
of memory m and overall constraint length » satishies

S (m+ i)
dfr‘.'? = I:n:]l'l { 2{1 — k(ﬂl—l]}' }
LR L e

@ A rate R = k/n convolutional code can be encoded by a minimal
encoding matrix whose realization in controller canonizal form has
2° encoder states

@ Consider phimbil ik information sequences

@ There exist 2417170 /2% jnformation sequences starting in Lhe zero
slate |eading 1o the zero state.

@ Corresponding rode sequences constitute a i
M ?"t""":"_"lrndr\wnrds and blocklength (N — (m + ijn/tor

i— L

Which is this result, okay?
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Convolutional cc

@ Problem §8: The froe distance for any hinary &~ k/n
convolutional code encodod by minimal encoding matrie of memory

m satisties ( )
3 ., m = iy
e < it 75}

e

So the next problem that we will solve is to show that free distance of a rate k/n convolutional

code is upper bounded by this. Now this result can be obtained from
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@ From Plotkin bound, we have
| M
=AM —1)

a Putting the value of M and M, we get the desired bound.
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@ From Plotkin bound, we have

]
A [mw 1))




(Refer Slide Time: 24:03)

& AT e a -t .,J,Z;F;i- CNEREN § UNENE e

@ Problem § 7: Show that the free distance for any binary rate
R k/n convelutional code encoded by a minimal encading matrix
of memory m and overall constraint length o satisfies

e {m+ i}
dfren:: = I'II‘|‘|1I'I { 2(1 B zl'f—lﬂtm—lllj
.

a A rate B = k/n cormalutional code can be encoded by a minimal
encading matrix whose realization in controller canomcal form has
2 encoder states.

& Consider pkimiil 1.2, information sequences

@ There exisl 2Y0" 10 /2% information sequences starting in Lhe zero
slate leading Lo Lhe sero stale.

@ Corrmsponding rode sequences constitute a i
M ?"'-"‘"’:J rodewords and hlncklrngthll."u' (m+ ijnltor
i e

1.3 e

The bound that we have derived earlier, this bound okay?
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Canvalutional ©

@ Prohlem §EB: The free distanee for any hinary & - ko
convalutional code encaded by minimal encoding matrix of memory

m satisfies ( )
= " o= 0
dires = it {ﬁ}

frun
.

@ Also

i L
Lol

And also we will show that this relation holds.



(Refer Slide Time: 24:14)

g 2T e E & & {_IR;;FD.. SR ] M s e | a2

Convolutional codes

@ Problem ##8: The free distance for any hinary § = k/n
ronvolutional code encoded by minimal encoding matrix of momaory

m satisties { )
_ M =+ I j
Uree = i { 701 — 21y }
@ Also
| _d'r"" < l
PR mn © 2

@ Salutions: Since v < &m, the bound fallows from the result of the
last question =

So since overall constraint length is less than k times m, then if you go back to this expression.
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@ Problem §f 7: Show that the free distance for any hinary rate
B - k;jr convolutional code encoded by a minimal encoding matrix
of meamaory m and overall constraint length o satisfies

By {m+iln
drpe = "“'1"‘[ 31 — pe—kmfy |

@ Arate R = k/n {_gxulutional n:a_de can be encoded by a minimal
encading malrix whose realization in conteoller canonical form has
2° encoder states

@ Consider 2470 7 1,2 ... information sequences

@ There exist 2¥7 0008 information sequences starting in the zero
state leading to the zero state.

@ Corresponding code sequences constitute & u_;lg_r.u;l_:_m_[!;o
]n'r?' 3 ]_] rodewords and hlnrklrnpth{m [m + i}nlior

=5 17

v-km is actually less than zero so we can then upper bound this by just to restore —ki. So if we do
that we get this expression okay?
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Convolutional codes

@ Prohlem #B: The free distance for any hinary R /n

e

convalutional code encodad by minimal fnrm‘!iné; matrix of mamaory

m zatisfies ;
m -+ ijn

ree = i { e

e —
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Convolutional c

@ Prohlem i B: The free distance for any hinary frl,-'rr
convolutional code encoded by minimal cncoding matrix of memory

m satisfies ( )
A m il
diree = i {ﬁ}

@ Almo

| F—
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Convolutional codes

@ Problem §#£8: The free distance for any hinary 8 k/n
convolutional code encoded by minimal encoding matrix of memaory

m satisfies T )
" r m =+ in m-o--}f"l
hetiazh) ¢
= Crs
-

@ Alss — s r :'
i i _ 1 = e
i p—

@ Salutions: Since v < fm, the bound follows from the result of the
last question e

d St
e < ]
Laalal e

-

s

Now how do we get this expression, so we know that this term is less than 1 and so this we can
just upper bound by (m+i)n/2 and if | take m and n out this will be (1+i/m) /2. So dfree by m of n
will then be so if | do further dfree of / mn would be upper bounded by 1+i/m /2 and if we let m
go to infinity this will go to 0 so that will be upper bounded by half. So that is the proof.
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Convolutional codes

a Problem #8: The free distance for any binary B = k/n
conwelutional code encoded by mimmal enceding matriz of memory

m salislies q )
. o+ 1)
%ree = MY 1ﬁ}
a Al —
M - l!-frm- - 1 J
lim vl
mode gt 2

a Solutions: Since » = ko, Uhe bound follows from Lhe result of the
lasl queslion.

a Let mr — o, and noting that (1 — 27%) = L, we get the desired
result T B

So you let m go to infinity and since this is less than 1 what you will get is this, thank you.
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