Indian Institute of Technology Kanpur
National Programme on Technology Enhanced Learning (NPTEL)
Course Title
Error Control Coding: An Introduction to Convolutional Codes

Lecture-8
Turbo Decoding

by
Prof. Adrish Banerjee
Dept. Electrical Engineering, 11T Kanpur

Welcome to the course on error control coding, an introduction to convolutional codes.

(Refer Slide Time: 00:21)

LT T
o »To=#w ol ,;J_]—Q"i'”"i EEEEDOEEO0 W e

Lecture #8: Turbo Decoding

Today we are going to discuss about decoding of turbo codes.

(Refer Slide Time: 00:26)

= iwQ e =
FTa Toauiae | *vEEEEEEOEECC B e o

Concatenated codes

Outline of the lecturs

@ Review of BCIR algorithm in log domain

So to do that we will first review our BCJR algorithm in the log domain. We have talked about
BCJR algorithm in the probability domain. We will very quickly review the metrics that are
updated in BCJR algorithm and how they are implemented in the log domain. And then we will
talk about turbo decoding.

(Refer Slide Time: 00:50)

=]

EEEOC N e o

8 “..._'___u_ L, d b o0 68
o rTo=wNaelo m--|-..g

Concatenated codes

Qutling of the lecture

@ Review of BCIR algorithm in log domain.
@ Turbo decoding for rate R = 1/3 code.

We will take an example of a rate 1/3 code.

(Refer Slide Time: 00:55)

desoo e S e
Po/Too#¥Ed o b+~ EEEEECONEO0 B swme

intgeaed verson
mZn o Lpan
| I — s ‘

infurieaved vareion

o L
ula
—] softirei | | = Inbedeaver L o e it |
aln |
I

= =| Soh output -.] Sl outps |
o decoder | e |
Yin ! - A 1
L g e g [Il
e =

¥ infnrmation

n
Dimended caia d-—{ (=

So this is the block diagram of a turbo decoder. As you can see the main blocks here are — so

recall a turbo code consist of parallel concatenation of two recursive convolutional encoder.

(Refer Slide Time: 01:14)

L2 eavald “ofsn
min o Lazn

IrdErHEE L varain

I
L 1

Dosnitirs v ‘
= Intarsnmr

—] Sekirpa [et Inguit

*n Sofauput | “wln e
dnondor p—
¥ i | —
B chanrwl sl | e J

Mo Infarmation
¥ 4

Mncadad daa d-—{ Lannlurieuwar =

So here we have two decoders, it is an iterative decoding process, we have two decoders
corresponding to the two encoders. So this is one decoder, this is second decoder. Now note |
have written soft-input, soft-output decoder, now what do | mean by soft-input, soft-output

decoder.

So the input that this decoder receives are the real channel received values. These are not
quantized to zeros or ones. As opposed to getting zeros and ones in case of a hard quantized

decoder.

(Refer Slide Time: 01:57)

dhElienls eliessilcaaqaal

T "Toomud oglen

L2 eavald “ofsn

min o Lazn
Dosnitirs v L

‘ i uriuve wron ‘

ol 1
| il
] Settirpu | | E e — —— S inpuit

*n Sofauput | “wln [oo St
deander dncmer |
¥ - " =Lrn g
8 e chaie sl |]
darre -

Infarmation
2

Mncadad daa d-—{ Lannlurieuwar =

Here we are getting the received — noisy received sequence from the — directly from the channel

and that what we will call — we are calling as soft input bits.

(Refer Slide Time: 02:07)

L2 eavald “ofsn
wrn

Dosnitirs v ‘

The output is also soft, what do we mean by soft-output? Now the decoder will output not only
the decision about whether the bit it thinks is one or zero, but it will also give us some
information about with what probability it thinks the bit is zero or one. So not only we are
getting information about the decision of whether the bit is zero or one, but we are also getting

some information about how likely the bit is going to be zero or one.

(Refer Slide Time: 02:42)

= -IEK e e e e e e
é

g rTeomEac i -o AENEEETEEOC B som 1|

Dwslur lwaver 7 ‘

g
ik
E
E

= 1 -

That is why the input here is also soft and the output is also soft. As opposed to a hard decoder
where the output would have been just zeros and ones. So if you look at this decoder structure,
now recall our encoder diagram for a turbo code. So what we had was, we had one encoder right,

and this was an information sequence.

Now this information sequence was permuted using an interleaver, | am denoting the interleaver
by m and then this interleave signal was sent to another encoder, and the three outputs were first
was this information bits, second was this parity bit coming out of the first encoder and the third

is the parity bit coming out of the second encoder.

So these were the three outputs of a turbo decoder. Now after these bits passed through the
channel what you are going to receive is noisy version of the information sequence, noisy
version of this parity bit and noisy version of this second parity bit. Now as | said we are using
two decoders, one decoder to decode this convolutional encoder, the second decoder to decode

this convolutional encoder.

So this was my decoder one, if 1 want to call it and this was my decoder two. So what are the
inputs of decoder one, now decoder one | should be sending in the received information bits and
the received parity bits. So that is what | am sending here, you see here | have written, X, is
actually my received information bit and Y3, is my received parity bit corresponding to the

encoder one. So these are the two input to the decoder one.

Now what are the inputs to decoder two, now decoder two is an interleaved version of
information that has been coming to encoder one. Now here | am receiving information bit
directly, so the information received information bit that | will feed to the decoder two, because
this information bit is getting interleaved before being sent to encoder one. What | am going to

do is, so whatever — so this is my received information sequence.

So what I do is to the second decoder before | feed this information sequence | am going to
interleave this. So that the order of information bits that is coming here and what is being fed to
decoder two is same. So we do not send the interleave information sequence in turbo code from
this received sequence by interleaving, | can get back the information sequence that is being fed

to this decoder.

So the information sequence input to this decoder is nothing but the interleaved version of the
received information sequence. Now what is the second input with this decoder, this received
parity bit? And that | am denoting by Yy, fine. So these are the two inputs which I am receiving
from the channel, which | am feeding to decoder. So the input to decoder one are these two
inputs and input to the decoder two is interleaved version of the information sequence and this
particular parity bit.

So these are the two inputs to the decoders from the channel, what else is input to this decoder?
There is a third input to this decoder which is this one and this one. And what is this input; this is
a-priori knowledge about the information sequence. What is the a-priori knowledge about this
information sequence that is being fed here as third input? So these third input that you see to

decoder one is the a-priori knowledge about the information sequence.

Now how do we get this a-priori knowledge, now initially when we start decoding we do not
have any a-priori knowledge about the information bit. So we would assume that the information
bit is equally likely to be zero or one. So the likelihood of the information being zero or one that

is one, basically is equally likely whether the bit is zero or one.

(Refer Slide Time: 08:08)

SEAC S - MER- -

sTa=#¥ac b -o/BEENNTENEO0 W o w

So that would be our initial a-priori information. Now once we feed these three inputs to this
decoder one, now let us pay attention to the outputs of decoder one. So decoder one is giving us
two information, one what we call extrinsic information. Now this is information which this
decoder computes based on the trellis structure of this convolutional code and this extrinsic
information is being passed to the decoder one and this input is fed as a-priori knowledge to the

second decoder.

So you can think of it like this, so there are two decoders who are working independently, but
then one decoder once it decodes information sequence it passes some information to the other
decoder saying, hey I think the information bit is likely to be zero with this probability and
information bit is one with this probability. So the other decoder will take that as an input and

then recomputes the probability and then it will again compute some new probabilities of bit

being zero and one.

And it will pass that information back to the first decoder saying no, | think it is likely to be zero
with this probability and likely to be one with this probability. And this information exchange,
you know happens in a regular fashion in this, until they converge to this particular decision we
may stop iteration after fixed number of iteration or we could use some sort of a stopping criteria
to do that.

(Refer Slide Time: 10:01)

BEEERELOD W e

So the third input is the a-priori input, the other two inputs are the input received from the
channel. Now what this decoder one does it, it tries to find some estimate about the information
sequence pass it on to the second decoder. Now this input is fed as a-priori input. Now what is
the use of this interleaver, now note that the order of information bit here and the order of
information bit here, now the information bit that is being fed to second encoder which is this is

interleaved version of the information bit that goes to encoder one.

So the estimates that encoder one gives about the information bits that is being interleaved and
sent to decoder one, this is to maintain the same order of information sequence as being received
by decoder two. So, because the information sequence here is interleaved version of information
sequence here, so we are going to use this interleaver. Now similarly this decoder two, what does
this decoder two does, it takes these two channel values and it takes this a-priori information

which it has received from decoder one.

And then it will try to decode this code and it will form some estimate, some extrinsic
information and that information is fed back to first decoder and note there is a deinterleaver in
between, because the order of information sequence here is deinterleaved version of information
that is being fed to encoder two. So this deinterleaver is done, so that the order of information
estimates that we are feeding to encoder one is in same order as these other inputs are.

So this is an iterative process which goes on and after some fixed number of iteration or you can
do some stopping criteria you can use some stopping criteria after that finally you take some
decision so | can take decision let us say from the second decoder. So this is my a-posteriori
probability. Now this information is driven by the information sequence ordering at encoder two

is interleaved version of the information sequence of encoder one.

So if you want to know the order of information sequence here we need to deinterleaved this data

and here, then we will take a hard decision and take a decision whether the bits are zero or one.

(Refer Slide Time: 13:00)

o Q

ol | 5 S oy S

fa rro=uwsapfl

s EREE NS O EEL LW stk | 12

Tl emved wwran

ol Lazn
Merpeisguer [

chanrs | sin

Intrheg s
X ol autpand
umdir

Gt ot
Ancicine

Irinris s

riier g w"ﬁlu-l .
10— \
ﬁ. =

APP

rdnarmaton

Dhirecl i ke dr-—|“ Tirdrirrinswer I

So you can see this is an iterative decoding algorithm where instead of decoding this whole code

at one go. What we are trying to do i

one is passing some information to

s we are trying to decode first encoder one and then encoder

encoder 2, encoder 2 receives some information from the

channel and it receives some information from encoder 1, using this it tries to form some opinion

about information bits which it passes it on to decoderl and then decoderl uses that information

SO one iteration is

(Refer Slide Time: 13:34)

d 1B~ %0 # |l 5 e =
Fa »TomBwEaoe@eeBElEEIOINETT M senuma |12

Turbo decoding

it wiin
T gl e
e —_._._| [k 11
D{,E L Inteflegaved Iﬂr;lT 1.
[vl 1.n - ‘
Soll impd Interiaaver St irngit

| T
]_xn 5 Sioft output I'e1.n Sl it
decoder oEEaEr —
v >
e m"‘r'-":‘d channl state lj"f’f’
information
YZ i
| Dzt dala 4—-—‘ Dainterizaver th‘

When this decoderl has finished decoding and decoder2 has also finished decoding, so that is my
one full iteration. Now what is algorithm which is used inside of this | said soft input and soft
output decoder | said input is soft output is soft but what sort of algorithm we can use? Now we
can use any algorithm which would, which can take soft inputs and which can give soft outputs
and one of the most commonly used algorithm is our BCJR algorithm. Now in lecture 5 we have

talked about decoding of BCJR algorithm for convolutional code so this is

(Refer Slide Time: 14:23)

3 1B« ®0Q ¢l ool G R & .'-D\‘n[j
7

g T'Om N @l
it v el Rk
i L

£ adn e e—
|| Deinterhsaver
1- intafleaved vars
Dee o g A
10
Sall jnpod Intertaaver Rlt ingmit

3 = L i
]_In | ot output wln Sl cantpuot

= decoder osEer
v >
]’._‘j from channal state ,édgf"
I_Yr__:‘emc information
2.n
l Db data 4—-—1 Deinterisaver

Precisely what these 2 decoders that you see here they are going to use, they are going to use
BCJR algorithm and

(Refer Slide Time: 14:32)

= (=15 [#] ¢l oo o GLR R @ -| A
Fa /Tom@EHa g @-saBEETNTEETT W e

il it varRkgn
Lezn ’ nl
— | [mmbmrheaver I
Dee .L - intafleaved |nr5-T£ l
J 1
— Syltinpul = Intertaaver St il
j_!n H Sl output aln Sl cantpuot
— 4 decoder s e —
v >
]_‘j from channal stata ﬁFP
v S information
2.n
l Db data dl-—-] Deinterisaver h‘—‘

We are going to slightly modify this algorithm to get these extrinsic information’s from the
decoder and that we will show in subsequent slide. So this is the basic block diagram of your
turbo decoder you have to remember this and again | repeat each of this decoders are
independently working in the sense there is channel input which has been fed back and there are
some a-priori information which is coming from the other decoder which has been fed to these

decoder and these decoder take these 3 inputs.

And they compute 2 values what is this a-posteriori probability another is extrinsic information
,extrinsic information is passed on to the other decoder as a-priori value and the a—posteriori

probability is used when we want to take the final decision about the bits.

(Refer Slide Time: 15:33)

E — " u 3 v ¥ AJ \ :'\ '_'\- .;'\ I_i"\ \.| -:
FaoasTomesNd @ "gaEEEEOEE 0 W sz

BCJR Algorithm L

@ Define max*(-) function:

max"(x,y) = In(e* + &) = max(x.y) + In(1 + e~ 1*¥]

max"(x.y.z) = In{e” + & +) = max"[max"(x. y). z].

So let us just review BCJR algorithm very quickly, now we have already derived the expressions
for the channel matrix, the matrix that we need to compute in BCJR algorithm so we are just

going to directly write the expression for BCJR algorithm now I just

(Refer Slide Time: 15:54)

3 TELE 7 =
da | [®] i e s S e L] |
ForrowendcE& o mmimmmmmE Bl o=

BCJR Algorithm

[8] e
by i e I = % 4l it
@ Uctine max®(.) tunction) 4 (({,’{(;‘r S) y 1 (] e

!
4
max(x.y) =|nfe® + e¥)|= max{x. y) +ln(l+a = ¥

max'(x.y_?) In{c* 1+ e r,"':l mar'[max'{r, y:l:z]_

Want to introduce an operator which | called max* operator now what is a max* operator, max*
operator of X and Y is basically defined as log of E* + EY. Now this log of E*+ E” this can be
written as log of this E*x 1+E so Y — X. We can write it this way correct, now this can be written
as log of " + log of 1 — 1+ E to power Y — X, or | can also write the same thing as log of EY
1+E*Y log of E¥* log of 1+ E*Y and what is this log of E*? That is just X so this can be written as,
so this can be just written as X+ this and Y + this or | can write this max* XY as maximum of X

and Y+ the actual log of 1+e — absolute value of X -, right?

So, so whenever | have to take log of terms of this form I can actually implement it simply like

maximum of this 2 operator X and Y plus some correction.

(Refer Slide Time: 18:05)

aliala [®] r s ';'_ = ‘i"\. L= |~:

Fa reRaommd oo mmimmmemm W s e

. i . ya
. -l I r,i | £ .) ='% 1+ ..]
w [lctine Ex_l:_:l function = E{" f(}r 'd-:-u-}-‘] <y ale U{H-.'E-rj

ﬂdﬁxj ETIHI:E' - ;ﬁl: f.'r.J'xEr._v_‘,l +inflfe =

max'(x,v.2) ~ Infe” 1 & 1 &) max'[max'(x), 2]

Term which can be implemented with a table look of kind of thing and this operate, operator can

be extended for more than two operations, so if you want to

(Refer Slide Time: 18:18)

H | on Li 3 L ;'\ "’.‘\ "."\ Ul\ x|t
Fo»rSmMd| = o o) mmmmmmm wm | W st

(18D o)

@ Dehne max™{] function: 2
0 eI+ & y 4le ()

max"{x, ¥ EThle' - eal: :rr.}x{_x._v] +lnfl4e =¥

ma.\c'(x.y .r) H{.""’_l:‘y | r’ﬂ mav[mﬂv yJ:r]

Find max* of X, Y and Z then | can write it as the natural log of Ex+ Ey+ Z and | can do max*
of XYZ and then max then | take the max* of max* of XY and Z, so | can iteratively apply this
max™* operator to compute quantities of this form okay, which is log of summation terms. Now

where do we encounter log of summation terms, I will come to that.

(Refer Slide Time: 18:57)

dBaSds el T e =]

Fao »r3al@sd B[e mmmmme mmi B oo o

2 Define max™(-] function:

max' (. ¥) = In(e” + &) = max(x. ¥) +In(1 + a~1*7¥])
max™(x, ¥, £) = In(e” + e + &%) = max”[max"(x. y). £].
@ Branch n'lr'fri_r':'___ L
T e L UL 1

Now this branch metric, this we have derived in one of the lectures is given by this expression
this is a-priori, information this information bit, this is depends on channel SNR, this is receive
sequence, transmitted code receive sequence, transmitted code word so this you already are

familiar with because we have derived this expression before.

(Refer Slide Time: 19:22)

Aelatd F e wH A RARR S
Fa»rBomm o] oy i mmme i W e =

@ Dehne max”(-) funcbon:

max* (.) = In(e” + &) = max(x. ¥) + In(1 + a7
max”(x, ¥, £) = In{e” + ¥ + &%} = max"[max" (x.). 2]
@ Branch metrics:

wl () | L.

'..I-'{:".:a:l =ln '.r[‘:i".::l = —2 4 = T
@ | omvard metrics:
ity (5] = In oy (5) = mass o [37(s 5) + a7 (s7)]

Now remember, recall there were 3 quantities that we need to evaluate when we want to apply
BCJR algorithm and what are those 3 quantities? One was this alpha’s which was the forward
recursion, second was this betas which was the backward recursion, and then we had this channel

matrix, branch matrix right and gammas. Now if you

(Refer Slide Time: 19:51)

e Te ok =1
a #n a - S S i S e |

Fo»roommdcE@Fsemmmmmmmmi | B s oo

@ Define max™(-) function:
max'(x.y) = In{e” + &) = max(ie,¥) + In{1 + e~ 1*7¥)
s (x, v, 2) = nfe® + e¥) = fmax"[mnra”(x,). 2],

@ Branch metrics:

|.'.J"|:Jr.-J

. Le
~H{s.5) =ln (s’ 5) = e Rl a

- =

& | orward mictrics:

———

o
] iy (5) = In i (s) = maxd o, [37(5", 5) + a ()]

i -

e pLtis
= o (o)

a, a, bw =)

Iw IC hayt _\4' oy, @Y =)

TN i —
In (IE'. LR g A S FRR O ACY)

Recall what was alpha’s, alpha bit so if you just draw simple trellis diagram, let us just draw
simple trellis diagram, two state trellis and this is alpha at time, let us say L — 1 thisis L 5 time L,
let us just call it a state zero, let us call it state one then what is, let us say | want to compute
alpha at time L for state zero. What is it equal to, recall this was equal to so there are 2 states,
there are 2 branches which are terminating here one is this one, other is this one so the alpha zero

will be alpha L — 1 zero times branch metric corresponding to this.

Which we gamma zero, zero plus alpha L — 1, 1 times this branch metric which is gamma one
zero. So if you recall we had terms of the form summation alpha L — 1 times some gamma, so
those were our terms. Now if we take log of that so these were our alphas, we are defining a new
operator alpha * so that is a log of these alphas, so what is going to happen here? So you have
log of summation terms right, so if you can think of it as so here you have terms of the form like
this.

Al, B1+ A2, B2 and we are taking log of this, now we can also write this in terms of let us say
E*L-E"- + E® - E® right? So if we take log of this then this will become because this is like E

of EX +1+ so this when we take log of these summation terms we get this max* operator so we

will get this max* operator and this product term and we take log they will become summation.
So this forward metric will become when we implement it in we take log of this, this will

become a max* operator and this 2 terms inside which is this gamma term.

And this alpha terms, this will be plus, so the forward metric here in log domain will be given by
this metric, max* operator the summing over all the branches that are terminating at this state
and this will be gamma plus alpha *, so this will be our forward metric in the log domain, now

recall how did we initialize the alphas?

(Refer Slide Time: 23:22)

a 2| [¥] 2L R \G

Faosrr3oimmid @&~ s o m e B s

@ Define max™(-] function:

¥

max‘(x. ¥} = Infe” + &) = max(x.y) +In{l + e)

max®(x, y, 2) = Infe® 4+ a¥ 4 o) = max"[max®{x, y}, 2],

@ Hranch metrics:

|.'..|"[:Jf|}

!
sl sl = y(shs)= 5 ?I‘."'U.' { £T)

@ [orward metrics:

[ratr=n eae]

ol (8) = In oy (5) = max)io, [40(s', 8) + a5 (s')]
BN — sl
I (@b ”Lb'“g =, , @72
! rls e
I (e + €€ LT (e

When we were working in probability domain we said that the encoder starts from all zero state
so at a time zero it will be at all zero states, the probability of its being in all zero state at time

zero is one for all other it is zero, so when we take log of that then

(Refer Slide Time: 23:47)

H . E.i 2 ;'\ :'."\ :i'\ "-\ \|.:
Fo 0@ 0@ e e mmimmmmms | W s

@ Define max®(-) function:

— 1

max* (2.) = In(e” + &) -F‘r:x{x.y) £in(l+ e ¥

———— i

max”(x.y.) = In{e® + ¥ + &%} = max"[max”(x. y}. 2].
@ Branch metrics:

il gl [}
s’ 8) =In (s, 8) = rd—I:I} + —rpevy

2 2

@ | orvard metrics:

F:_,._ (5] ;In i (8) = maxf o [/(5". 8) + r-:j{s’ﬂ

& [omvard metrics initialization:

(5} = In mp(s) { i:_,,ﬁ_{ s=0.

The initialization will become for state initial state zero then this will become log of one will
become zero and for all probability of its being all other state this will then become minus
infinity okay. So if we are writing our recursion in this fashion using max* operation then the
initialization should be done like this, when it is in state zero the initialization alpha zero * zero
will be zero and it will be minus infinity for all other cases. Now if you are wondering why am |

switching from probability.

Domain to this log domain you can see that we have shown this max* operator can be very easily
implemented because this is just maximum of XY + some correction term, so this can be easily
implemented and that is why we are rewriting our forward recursion, backward recursion,
gamma in terms of log domain so that our, in our expression where we had the summation now
we, that has been replaced by max* operator, wherever we had multiplication that has been now
replace by addition. So following the same logic

(Refer Slide Time: 25:23)

| | v o] | o SN0 '\’E

EER - LRI ARE T TIrT T TR T falal i

@ Backward metrics: o (ﬁ

Si(sY =In 4(s") = maxle,., [[5’._5] +_‘_L.££J' %L[Ih:]-' -

We can write the backward metric in log domain in this particular fashion, so this max* operator
and this is sum of this branch metric in the log domain and the betas in the log domain, and again

if 1, if you can recall how were we computing betas, so let us say you had some this thing, so if
you are interested in computing beta for beta at L zero you will be

(Refer Slide Time: 26:02)

BCIR Algorithm

@ Backward metrics:

A= i) = s, “.,‘__[",*,E" :_]' 4 i .{:]]J E‘L@TE’I“{“}

st '];._t:-‘.r‘]

'(' ﬁ_ﬁ t,'l-]
r;.-‘J_(n,J,fl

You will be 3 and this is let us say this is time [, time 1+1, B time | this is 8 at time I+1, § at zero
will be, so these are the two branches that are terminating here so B 1.1 zero times branch metric
of this which is ¥ (0,0)+B+ this is state zero this is state one, state one (1) times ¥ (0,1) this
we have already studied when we did BCJR algorithm we are just re-writing the expression in
terms of log so that our addition term here becomes max star operator and the product term here

that you see becomes addition term.

(Refer Slide Time: 27:02)

BCJR Algorithm

@ Backward metrics:

And similar to alpha bit initialization

(Refer Slide Time: 27:08)

If we are terminating our convolutional encoder then By at s=0 will be 0 and for all other state it

will be minus infinity.

(Refer Slide Time: 27:23)

BCIR Algorithm

@ Backward metrics:
A = ') = max, e (s'.5) + 34 (8)].

@ Backward metrics initialization:

0, s=10
Fsl=ln dgls) = { o, A0
@ APP Lovalue:
Liu) = rr.'.:lxli;;.*;_:rl. |37 (8) + (5. 8) + uf(s")]

maxt;*.sJL'h. 471 (s) + 7/ (8", 5) + o (S]],

And of course if we are not terminating it then its probability of being any state is basically
same, and if you recall our APP log likelihood value this was again X of product of three terms a

at time |, B at time 1+1 and .

(Refer Slide Time: 27:48)

BCIR Algorithm

@ Backward metrics:
s = B{s) = maxge, |y (s".8) + 47,1 (3)).

@ Backward metrics initialization.

o ; 0. 5=1
Hls)=n dxis) = { i sl
@ APP L value:
Lw) = max, et [Fials) + (s 5)+ n.,f{:'.':]]

Moy e, Bi(5) + 71 (5'5) + (5]

So that and there were two terms one term in the numerator corresponding to all those transitions
belonging to information bit being +1 and in the denominator we had some terms related to

transitions that belong to information bit being -1.

(Refer Slide Time: 28:09)

BCJR Algorithm

@ Backwesard metrics:
&) =In A{s") = max), =0 iif) (s8] + 34 (s)).
@ Backward metrics initialization:

]

e 0. 5=
Ae(s)=In dg(s) = { N

L) = [:T:;;H ol iw,-_[f..m "-'{_ E _]
‘[ma'f J,_[}_J[L (5)f ,.I: s) B o {s)]. J

@ APP Lovalue:

So this term that you see here is the term corresponding to the numerator term, again the X term
has been replaced by this max star operator and this product term has been replaced by these
addition terms okay, and similarly this corresponds to all those transitions where my information
bit is +1 and the denominator we had this so we take log of them so become minus of this and

the denominator corresponds to all those transitions which belong to information bit being -1.

And again the addition term that we had in the probability domain description of BCJR that is
now max star operator and the product terms that we had in the BCJR algorithm are now
addition term. So this is re-writing the expressions for forward recursion, backward recursion,

and log likelihood ratio a-pository probability | value computation for the BCJR algorithm.

(Refer Slide Time: 29:29)

@ Basic structure of an iterative turbo decoder for a rate 13 turbo
cade.

So again we will go back to this decoder diagram that we have shown you before, I am
reproducing the decoder for rate 1/3rd turbo code.

(Refer Slide Time: 29:49)

Turbo decoding

@ Basic structure of an iterative turbo decoder for a rate 1/3 turbo
cade.

This is my decoder 1 corresponding to encoder 1, this is my decoder 2, these two inputs that you
see are my inputs corresponding to the received information bit and the corresponding parity bit.

(Refer Slide Time: 30:08)

@ Basic structure of an iterative turbo decoder for a rate 1/3 turbe
cade.

This is my information received information bit which is interleaved before being sent to decoder
2 and this is the received, this is an bit corresponding to the received parity, second parity bit. |
also said there is an third input which is the a-priori value, note this a—priori value is coming
from the other decoder and since the order of information bit here is deinterlead version of the
order or information bit at second decoder so you de-interleave it and send this information here
and the a—priori value that you send here is coming from this decoder.

And | am interleaving this because the order of information bit at decoder 2 is interleaved
version of the order of information bit at decoder 1. There is one more thing | am computing here
and | have talked about extrinsic value, right? So what is my extrinsic value and this is what | am
computing here so let us pay some attention to this, this is the extrinsic value so what is this
extrinsic value? So note | am getting this APP L- value computed that is this, from there | am

subtracting the contribution of the information bit; this term is same as this bit.

This is, this Lc term depends on received SNR | will come to that, this term is this and this is the
received value corresponding to the information bit and this is the term corresponding to APP L-

value, so what | am doing is | am subtracting from the APP L- value the contribution of this

received bit. I am also subtracting from this contribution this a—priori information so what | get is
my extrinsic information. So you can of it as some additional information about the information
bits that has been derived from the structure of the convolutional encoder and how am |
computing this extrinsic information from the APP L-value? | am subtracting the contribution of

the received channel bit.

(Refer Slide Time: 32:57)

Turbo decoding

_fﬂ o in-]:af'rnth“ bi b

@ Basic structure of an iterative turbo decoder for a rate 1/3 turbo
code.

I am subtracting the contribution of the a-priori value, what is left is extrinsic information and
this information as | said is being passed, is interleaved because the order of the information bit
in the second decoder is interleaved version of the order of bits in decoder 1 so | interleave it and
feed this as a—priori information so this is my a—priori information. So this is how | compute the

extrinsic information for decoder 1, now how do | compute extrinsic information for decoder 2,

the same procedure.

(Refer Slide Time: 33:41)

Turbo decoding

-_fﬂ___, aﬂ-fuﬂm‘m.r\- Lik
nim

rrrrrr

o W I LR Y

e D = e

ebinsic AT - Laiha
@ Basic structure of an iterative turbo decoder for a rate L3 turbe
code.

This is my APP L-value, correspond to the information bit. | subtract from there the contribution
of information bit, this is my Lcr, r zero term and then | am subtracting this contribution of the a-
priori information so what is left is this information which is my extrinsic information, so for the
second decoder in the similar fashion I compute the extrinsic information. | subtract from the
APP value the contribution of the information bit and contribution of the a—priori knowledge,

what is left is my extrinsic information.

(Refer Slide Time: 34:33)

Turbo decoding

uuuuuuuuu

‘%j T et
eebensic A -Lashka
@ Basic structure of an iterative turbo decoder for a rate 13 turbo
cade,

Now | need to de-interleave this information before feeding it back as a—priori information so
this is my a—priori value for decoder 1, and I need to de-interleave that because the order of
information bit for decoder 1 is de-interleave version of the order of information for decoder 2,
so this is how my iterative decoding algorithm is working, again | will do a quick recap so using

the BCJR algorithm.

(Refer Slide Time: 35:14)

Turbo decoding

: LL_J' - Eﬁ

einsic AR -Lakhe
a Basic structure of an iterative turbo decoder for a rate 1/3 turbo
code.

So | have some received value from the channel which is this and this, initially I do not have any
a—priori knowledge about the information bit so I assume they are equally likely to be 1(0) this
decoder 1 will apply BCJR algorithm and it will compute the APP L-values and it will compute
the extrinsic L-values. Now this extrinsic information is passed as a—priori information to
decoder 2, in addition decoder 2 has this received parity bit which is this one and interlead

version of the information sequence as input, so it will again compute APP L — value.

And it will subtract the contribution of the information bit and the a—priori value and then we
will get back extrinsic information, so you can see this extrinsic information is getting passed
from one decoder to another okay, and ideally what we would like is this extrinsic information
should grow in a manner so that it pushed the decision in favor of either information bit being +1

or -1, that is when we say the decoder is converging with iteration.

(Refer Slide Time: 36:32)

Turbo decodin g

@ Basic structure of an iterative turbo decoder for a rate 1/3 turbo
code.

@ |t employs two 5150 decoders using the MAP algorithm.

(Refer Slide Time: 36:35)

Turbo decoding

i

i L
|
rrrrr 3
i i . o Wy
Y | o | L 51 L |.mﬁ.f I =
—_— =
e e
Lot L

@ Basic structure of an iterative turbo decoder for a rate 13 turbo
cade.

@ It employs two 5150 decoders using the MAP algorithm.

So we have already explained that there are two decoders and each of them are using map
algorithm, this BCJR algorithm that we talked about.

(Refer Slide Time: 36:41)

Turbo decoding

(T4 iy [~ L
I
revesa |

1 | . 1y
L | Lol 1 I\':u..." L . o Kl | e T e b
- - e |

i f—=~
LTl [S LRy

@ Basic structure of an iterative turbo decoder for a rate 1/3 turbo
code.

@ |t employs two 5150 decoders using the MAP alzorithm.

@ At each time unit |, three autput values are received from the
channel, one for the information bit v,f"]. denotad rf”]. and two
for the parity bits vr“] and vl.m. denoled rl.“’I and :I[g].

(Refer Slide Time: 36:46)

Turbo decoding

[T,
------ ar
i 1 L
Ly | Lt 1 I.'\.. LY [| oncnary ==
I =eem |
= =
L) (1

@ Basic structure of an iterative turbo decoder for a rate 1/3 turbo
cade.

@ [t employs two 5150 decoders using the MAP algorithm.

@ At each time unit |, three output values are received from the
channel, one for the intormation bit w vf”]. denated rf'E. and two
for the parity bits vrr-” and vl.[?], denoled rl-“’l and :,[EL

e
== =

There are three inputs received from the channel 1 corresponds this r.© ' corresponds to the
information bit r,™ corresponds to the parity bit corresponding to encoder 1, and r_® the parity

bit corresponding to encoder 2.

(Refer Slide Time: 37:08)

Turbo decoding

@ The IK-dimensicnal received vector is denatad by

[o) {1) {2) (o) (1) {2) (o) (1} {2
- ("u fofp s ARt P11 TR].J

@ Assume 0 is map'ped to —land 1 to +1.
@ Then tor an AWGN channel, we detine the log-likelihood ratio

{L-valus) .L(u, | rfn"') {before decoding) of a transmitted
information bit w given the received valus r'r[""J 3

) Plo 114"
L [™) = In (—}
r Pl L] A0
N i

]

(Refer Slide Time: 37:14)

Turbo decoding

@ The 3IK-dimensional received vector is denoted by

(1) {2)) (1) ,‘". (1
] ('['L]u Lz _-:-u_ 12"""&[«P_JL.I«I“'}[<HL
@ Assume 0 is mapped to —1 and 1 to +1.
@ Then for an AWGN channel, we detine the log-likelihood ratic
{L-value) L (.-_r, | rf":':') {before decoding) of a transmitted

. - ¢ c 3 1]
informaticn bit w given the received value .r}” as

P (u.l 1| r“‘”}

a
Lw | "))

ty =

(0]

P (a=11)
P(3|u.—+L}P = +1)
(A 1) Plu 1)

J_r

So at each time instance, so this is my time index time 0, time 1, time k-1, so each time instance |
am getting this three bit information which is the information bit par, first parity bit and the
second parity bit, remember this is a rate 1/3" code so if you have a information block of k you
will get 3k coded bits, zeros map to in this case -1+1 is 1, now let us compute the log likelihood
ratio so probability of u_ given r_ is zero is given by what is the probability that u,_ is +1 given
this received sequence r_ divided by probability of u_ being -1 given receive sequence r_ this we
can write as probability of r given u multiplied by probability of u and so that is how we have

written it.

(Refer Slide Time: 38:20)

Turbo decoding

: Pl =+1)
Ll | r(mj In & o Iy e
} P (-"rlm = —l} Pl =-1)
() (1) Plu = +1
= In = +In (= 4]

B) Plu=—1)

GRS R =
E; LI Plu = +1)

= -’I—rr
n

N, Pl =—1)
Loet™ 40, ().

where E, /Ny is the channel SNR , w and rl.m have both been normalized
by a factor of VE,. L. 4{L,/Np) is the channel reliability factor and

Now we can separate out this into two terms

(Refer Slide Time: 38:22)

Turbo decoding

@ The 3K-dimensional received vector is denoted by

o) (1) (2} {0} (1) (2) {1 (2
- (I_EI_]L':T Ty "1': "'i]ﬁ[""'FH'].'{].F.IE(Fl

@ Assume 0 is mapped to :land 1 to +1.
@ Then for an AWGN channel, we define the log-likelinood ratio
(L-value) L(u. | ;') {before decoding) of a transmitted

informaticn bit u given the received value ri"” as

P(|1|r“”}
Pa117)
(@) —+1}V'(uf= +1)
[”” - 1}){)(1:.- 1),

L | ™)

So this is one term we have and this is another term we have so log(a) times b log(a) + log(b)

(Refer Slide Time: 38:31)

Turbo decoding

where E,/Np is the channel SMR , u and rl.[m have both been normalized
by a factor of VE.. L. — #{£,/ M) is the channel reliability factor and

So we can write it as this is one term and this is another term, now we are talking about additive
white Gaussian noise channel so we can find out what is the likelihood ratio so we plug that
value in here and after simplification what we get is a term of the form this, so there are two
terms one is this and another is this, now what is this is 4(Es/No) r, 1 is my information

received information sequence.

So this you can 4 Es/n0 | am writing as L. and calling it a channel reliability factor. So it depends
on the signal to noise ratio of the channel and this you can see log of P(ul = +1)/ P(ul = -1) this is
a-priori knowledge about the information bit being +1 or -1. So there are two inputs, one coming
from the channel which is multiplied by this factor L. and other is a-priori knowledge. And that

is why you noticed here in the diagram where | had

(Refer Slide Time: 39:51)

@ Basic structure of an iterative turbo decoder for a rate 173 turbo
cade. ‘

@ It employs two 5150 decoders wsing the MAP algorithm.
@ At sach time unit |, three autput values are received from the

channel, one for the infarmation bit u = v,:r':'. denated ﬂ: and two
for the parity bits v*' and v, denoted #*) and r*).

—_— =

1

I had L, times . L, times ¥, this was this channel here at L. times ¥ Lc times r; so these

values received values was scaled by this channel reliability factor as you have just derived here.

(Refer Slide Time: 40:10)

e # | = s L
fg rerouwe o l-s AANNEEIENEC TN el i

%

= (riﬂ | = 1] Pl = +1)

v i
]'_[r..'| | r|;,|.|::l T e
z (rrm P —l:| P 1)
_. r v (1] i
X E_,.E._-mmfr. —L} " Pl =+1)
E_“ ._.'.'-'\.-j[.-'.m-']. P[t”" |.]
il . P — +1)
1J } In Plu— 1)

where E_ /My is the channel SMIR | uy and rj':“ have bhoth been normalized
by a tactor ot Es, L — 8{ E:/Ng) i= the channel reliability factor and

(Refer Slide Time: 40:13)

Ui =g d ; o1 B B]
fg rromuw c 2f-o AENREDONEC TN wanmy u

@ In the case of 3 transmitted parity bit v,r"'. given the received value
1 is . :
rl.‘I i =1, 2 the L-walue {before decoding] is given by

L(w”J | r.-i"’] = L ¢ 1, I:v.”]:l =LAt j=12 (why?)

Now in case of transmitted parity bit we do not have any a-priori knowledge so in those case this

will be just L 1or 2 depending on whether we are considering parity bit 1 or parity 2.

(Refer Slide Time: 40:33)

U X O s e e G R AT

fg rroymuwd g@-»AENNEDONEC TN wwm

TI 1 I'l:.'llZ'.'l

@ In the case of a transmitted parity bit l..flL'.:, given the received value

r:"l],_." 1,2, the L-value {hefore decoding) is given by

L o) = L+ 1, () = L. j=120 (why 7)

@ L, () alsn equals 0 for the first iteration of decoder 1, but that

thereafter the a priu-ri L values ot the information bits are replaced
by extrinsic L-values from the other decoder.

As | said initially we do not have any a-priori knowledge about whether the bit is +1 or -1. So we
would assume this equally likely v+1 and -1, so the a-priori log likelihood value | value will be
considered as O for the first decoder. But thereafter this a-priori values will be replaced by the

extrinsic values received from the other decoder right.

(Refer Slide Time: 41:15)

F| Jid T o AL s e N
fg rroymuw: g - AENNEIONEC 0N s w

@ In the case of a transmitted parity bit L."ILI.;, given the received value

r:J], i — 1,2, the L-value {before decading) is given by
Lo 1) = o+ 0 () = L f=12 (why 7)

@ L, () also equals 0 for the first iteration of decoder 1, but that
thereatter the a priori L values ot the information bits are replaced

by estrinsic L-values from Lhe other decoder.

a The received soft channel L-values Lor'™ for w and Lort™ for vr[”

enter decader 1, while the [properly interleaved) received soft
1) :
channel L-values Lorp ! far up and the reccived saft channel -values

! ._J'rl:?‘l for 'vll'?:'

enter decoder 2

And again the received values that we got from the channel L. ' and ® and r® remember to

feed them in proper order when you are feeding to decoder 1 and decoder 2.

(Refer Slide Time: 41:35)

: == - ﬂ . e g Ny Ny "-.\. ¥ .-'{. .'I.IE

fg r72ou® 2 c@f -+ ANENEEIONEC TN e

In the case of a transmitted parity bit l.fl"'.'t, given the received value

rf":],_." 1.2, the l-value {hefore decoding) is given by
L(vjl.h I rrL"}] = LJIL.-] I (".'f"ljl 0 ir‘,.:.-'.‘_ j=1.2, {why)
L, fra;] also equals (1 tor the first iteration of decoder 1, but that

thereafter the a priori L values of the information bits are replaced
by extrinsic L-values from the other decoder,

The received soft channel L-values Lor'™ Tor w and Lort" for o

enter decader |, while the (properly inferleaved) recerved soft
channol L-values L, r}n:' for u; and the roceived soft channel L-values
(4 ,-|_[?J for v_}?] enter decader 2

And this we have explained also earlier you can see.

(Refer Slide Time: 41:40)

i AlE s elea (e T N

fg rTomud? c -+ BERREDEOREC O N wammy i

@ Basic structure of an iterative turbo decoder for a rate 173 turbo
code.

@ It employs teo 5150 decoders wsing the MAP algorithm.

@ At cach time unit [, three autpot values are received from the
channel, one for the infarmation bit u — uj:c'?, denated J"::”, and two
fizr the parity bits v,“" and v,m. denoted " and rj:‘_"_. 7

——

When we feed the extrinsic information from decoder 1 to decoder 2 we are interleaving it.
Similarly the information bit that we are feeding to decoder 2 that is the interleave version of
information coming from decoder 1. Similarly from decoder 2 if we are feeding something back
to decoder 1 we are doing D interleaver and when we are taking decision from decoder 2 we are
also again doing D interleaving. So this interleaving D interleaving is done so as the order of the

information bit is preserved in the fashion they are entering encoder 1 and encoder 2

(Refer Slide Time: 42:16)

i F L s nl" G \.l::

forTomute c A -o AENEEOONEC 0N i

@ The 3K -dimensional received wector is donotod by

PV ISCES B e S 0] 61 (3
r [:rE .IE fq «f ML Fres 1T M '.:l'

@ Acssurme O is mapped 1o —1 and 1 1o +1.
@ Then for an AWGHN channel. we defing the log-likelihaod ratio
{L-value) L (u.- | .rr[""'} {before decoding) of 3 transmitied

intormation bit &y given the received value ry ! an

I{uj rll'ﬂ".:l ki F [u,- =+1 | r.:l
Ce—— F(Ur__llr.::..]/\l \
| (P (Jl“-'.l W= +|:| g = +1)
= nj;F' (.',L':'] = ljlk:tl” T

(Refer Slide Time: 42:19)

1_=a &G e
g rTmmuwd ol

@ | he cotpot of decoder 1 contaims bao berrme:
o L1 () In[F‘{:u_- 1] r..LF.'-';l/P(u. 1| LM},
PR T L | |-L, R T o [u.-]].

So as | said there are three inputs to this decoder, this channel received value corresponding to

information sequence and parity bit and a-priori value and there are two output, one is this.

(Refer Slide Time: 42:37)

A A R e Y
fg rrtymuw o @ - ANNEESONEC TN smmm

@ | he sutpot of decoder 1 contains bawo berms:

s - [p (o 1/ 0P fofu- 1inad)].

i L,L_l:'[uq I;Uiﬂ], F‘?j LE[”{[}

APP L value that we have computed and the second is extrinsic value and how are we computing
extrinsic value from the APP L value, we are subtracting the contribution of the received channel
value and we are subtracting the contribution of a-priori value which is nothing but extrinsic

value of the other decoder.

(Refer Slide Time: 43:07)

Iimgs elewwanasaf
fgrTomuw @ e AANNEOONEC O N unmmn w

Turbo dec

@ The cutput of decoder 1 contains two tarins:
£
o M u)=m|Ple=+1/ L") fP{o=-1|nL" |
[t) =In {u.u /L :l,' (u. n.La }
a L fw) = L u) = L™ + 247 ()],

@ L) is the a posteriori L-value {after decoding] of each
infermation bit produced by decoder 1 given the [partial) received

wector py 2 |r$°:rﬂ".]. r,_l‘r':'rfu. e r;:ilrj‘lil and the a priori input

wertor LA 2 nr!i:]{HE,J. f_lal:[ul}.- . FW{HH _,.| for decoder |

e J;.L:'_[L; is the extrinsic a posterion [-value (aﬁ;?r dq{ndinr_«;j
Assnciated with cach information hit praduced by decoder 1, which,
after interleaving, is passed to the input of decoder 2 as the a priori

value 15 (1)

Okay, so this we have explained, so this is the APP L value and this is the extrinsic L value.

(Refer Slide Time: 43:20)

1 = & Sl S L e
fg rrovmuaw e o @i - ANEEEDONECON snmmi u

@ Subtracting the terms, viz, b ! |: ob from L), removes
the effect of the current information LnL ay Trom L), and thus

providing an independent estimate of the informatian bit i to
decader 2 in addition to the recrived soft channel F-values at time |/

So why are we subtracting these terms this information bit term and the a-priori term, so we
essentially are trying to remove the effect of the current bit in some sense from the APP values

S0 in some sense we are trying to provide some independent estimate because this

(Refer Slide Time: 43:46)

P Feomom GO A A AT

fg rrovmuw e -+ AENNEOCOREC TN wnnme

- () 2] 1
@ Subtracting the Lerms, '.'lz.J_L.-r.:LJJ + L (w) from L), removes
the effect of the current infarmation bit wy from L7 {w), and thus

providing an independent estimate of the infarmation bit v to
decader 2 in addition ta the recrived soft channel T-ualues at time |

Anywhere this a-priori information has come from the extrinsic information from the previous
decoder, so there is no point feeding the same information back to the same decoder. And the
received values are already received by the decoder so we are trying to some in one way trying to
send some independent estimate about what we think the bits are to the other decoder and that is
the whole idea behind this iterative process that you want to give some sort of independent
estimate. If you try to feed the same information back then it will become a positive feedback
system and unstable.

(Refer Slide Time: 44:22)

ILminn s ¢l gleicamsafF

EEERECON wuanmmi uw

@ Subtracting the Lerms, \.'l.:.,_L.-rE_:' + ¢) fram L (), removes
the effect of the current information BiL u frem L0}, and thus
providing an independent estimate of the information bit w to
decader 2 in addition ta the recrived soft channel L-values at time |

The decoder may not converge, so that we do not want.

(Refer Slide Time: 44:24)

T % ®maa olka s =]
fgrrommut s @ EZ-o AENIEDONEC O e w

@ Subtracting the terms, viz., L.-rf:';' £ L () trom LYY (), removes
the effect of the current information bit w from L {1}, and thus
providing an independent estimate of Lhe nformation bik w
decoder 2 in addition to the recenved soft channel Lvalues at time /.

@ Similarly, the autput of decoder 2 contains twio terms:

¥ (“I =+1/ ".'-LL-IIj /JJ (lu ==1|r |."12:‘;1 |

where r: & the {partial) received vector and Ly the a priori input
wechior for decogler 7 and

L () = L5 () [.r_,.f“' F 8 [u,]], and the strings 2
pasteriari Lvalues LY (1) produced by decoder 2. after

deintarleaving, are passed hack to the input of decoder 1 as the a
pricei values L3 {).

a LM {w)=1In

And in the same fashion the decoder 2 will also have two terms, one is this APP value and other
is this extrinsic value.

(Refer Slide Time: 44:35)

i ol A & | o S T T
Fo rrvmuw 2 @fF-» ANEREDONEC O N snmmi i

@ Thuis, the input ta cach decader contains theee terms
@ The soft channel L-valies _r.cr_,:f" [Informatan bit)
@ The soft channel Lvalussiort {or L™) {parity bit),
& The extrinsic a posterian Lvalies L5 {0 - r.!.U{.:} {ar

3] EL e
|':.' [p.'u} = I!. lJJl}:l prassl Trorr the ciher decogler

I have already explained what are the inputs to the decoder. | will again repeat one term
corresponding to the received information bit, one term corresponding to the received parity bit
and one term corresponding to the a-priori information which have been fed from the second
decoder. You can see basically a-priori information for decoder 1 is nothing but extrinsic
information coming from decoder 2, after proper interleaving D interleaving. Because you want

to ensure that the order of the information bit is same.

(Refer Slide Time: 45:23)

I L - e AL e e R
g » Toomiww 2 o0 ESCORECO N womm

@ Thus, the mpul Lo sach decodser conlaims thres terms,

a The soft channel L-values [, r:"'] [intorrmation bit)

s The soft channel Lvaluest. /™ {ar ey {parity hit),

@ The extrinsic g posterion L-valoes L.':-": ()= l'.EIII[I.h\,I {ar
gi [} = L';"J[u-}jl pagsad from the other decoder.

@ In the initial iteration of decoder 1, the extringc a posteriori Lvalues
L3) Y ey) are just the angingl a prion Couahies £ {u),
which are all squal to O for equally likely information hits.

@ [hus the extrinsc L-values passed from one decoder 1o the other
during Lhe iteralive decoding process are Lrealed like new sats of 4
prioet probabilities by the MAF algerithm

Okay this | have explained in the initial iteration extrinsic information is basically 0 and
subsequently a-priori information is 0, and subsequently the a-priori value will be nothing but the

extrinsic information.

(Refer Slide Time: 45:43)

ILeimd s eleeganaand
rﬂ AT MW & - EECOERECON wsmmme o

@ Decoding then proceads iteratively, with each decoder passing its
respective extrinsic L values back to the other decoder.

@ Decoding stops alter sulficient number of iberations.
& At the output of decoder 2, the decaded informatian hits are
determined trom the a posteriori Lovalues L2 {1).

@ Mositive L-values are decoded as "+10 and negative | -values ag
" _ g
Example:
a Rate = 1/3 turbe code using constitusnt encocer

G(o) =1 .2,

[See Figure in the next frame.]

So this process as | said goes on repeatedly iterative fashion. So let us take an example and see

how this works.

(Refer Slide Time: 45:58)

I R e A
fag rro=muaw? o @ff-s AENEEOENECO N summi u

@ Decoding then procesds iteratively, with each decoder passing its
respective extrinsic L values back to the other decoder.

@ Decoding stops after sulficient number of ferations.
@ At the output of decader 2, the decoded information bits are
determined fram the a posteriori Lovaluss L5 (),

@ Positive L-values are decoded as "+17 and negative L-valuss as

w g
Example: 1
@ Rate A = 1/3 turbo code using constituent encader
Gl — 1 vl

— —

[Ses Figure in the nest trame.)

So we are considering a rate 1/3 turbo code where the constituent encoder is this two state

encoder.

(Refer Slide Time: 46:08)

i 4 e B ol L S RN Y]
fgrrpmuwd cd-»NENNEOECNEC 0N wunme

Turbo decoding

So our turbo code is this, each one of them is using this two state recursive convolutional
encoder. This is my, this is my interleaver and this is the state diagram corresponding to these

convolutional encoder okay.

(Refer Slide Time: 46:40)

I EE ¢ L
fg rromuw? 2 -s AENREDCONEC TN wanm i

Turbo decoding

@ Consider an input sequence of length K =4, including one
Lermmnalicn bit, along with a 2« 2 block {rovw-coluinn) interleaver,
resulting ina (12, 3] twrbe code wath owerall rale B = 1/4.

Consider a information bit length of 4 and let us say | am doing block interleaving so I am

feeding the data block wise and | am reading it.

(Refer Slide Time: 46:55)

i ABO s el e nm sl
Fog rTovmuw? @ - AENEEDONEC O N wunme

@ Consider an input sequence of length K = 4, including one
Lerminaticn bit, aleng with a 2 = 2 block (row-column) interleaver,
resulting in a (12.3) wrbo code with owerall rate B = 174,

w The trellis for the constituent code is shown in the provions frame

where the branches are labeled using the mapping 0 — —1 and
1—+ +1. -

Column wise, so as | said | am mapping 0 to -1 here and 1 to +1.

(Refer Slide Time: 47:04)

i e ¢k oo G0 R A A
f : s AENEEDONEC O N wunmm v

@ Cansider an input sequence of length K — 4, including ane
termination bit, along with a 2 = 2 block (row column) interleaver,
resulting in a (12, 3) turbo code with averall rate 7 — 1/4.

& The trelhs for the constituent code is shown in the previeus frame,
where the branches are laheled using the mapping 0 — —1 and
1 = sp1.
@ The input block is given by the vectar u— [un, . 1, u1], the
interleaved input block is w),= [ug. o), &), ef] = [on, vz, 0, 0],
@ The parity vector for the first canstituent code is given by
| iy 1y) (1)
Pl = [, A, 85,]
w The parity vector for the second constituent code is
] S S R T
P 5T Y = Y

So if this is my input block the interleave block is given by u' and corresponding parity for the
first encoder is given by this and the parity due to second encoder is given by this. So I use
notation p*) to denote the parity coming from the first encoder p® to denote the parity coming
from the second encoder, used my information sequence u' is the interleave versional

information sequence which has been fed to encoder 2.

(Refer Slide Time: 47:44)

| & = QR A R R
Fg »TohmMu &g gfaw OONECOMN umnmeml

Turbo decoding

@ The 12 transmitted bits are represented in a rectangular array, as
shown in Figure in the next trame, where the input vectar u
determines the parity vector pit in the first two rows and the
interleaved input vector u’ determines the parity vector ple! in the
first bwo colurmns.

@ For purposes of illustration, we assume the particular hit values
shown in Figure.

@ We alse assume o channel SME of B/ 0Ny = 174 (—6.02dB), so that
the received channel -values corresponding to Lhe received vecior

(00 40) () () 1) (@) (w) (a) gE (e () @
r=|rm oo :'":: 1"'! j-":: 7o :'"[l]’:1 :']

are given by

[} Ej K U i
Lort =4 (N_r i =¢f; I=®133 (=012 @)
— '

—_— g —

So I will just show you basically I will just, and I am assuming a channel % so the likelihood
channel like reliability factor L will be basically 1. So Lcr; will be in my case would be same as
a received value for this particular signal to noise ratio. This is just a toy example to illustrate

how this decoding works.

(Refer Slide Time: 48:15)

ISP e R =

g »rrmmx @ o MEAEEEOCEEC O W s i

So these are my information bits u(), Uy, U), Ue), SO as | said if it isa 0 | am mapping it to -1 if
itis a + | am mapping to +1. So the information sequence here uy is 0, Uy is 1, ug) is 0 and ug
is 1. These are the corresponding parities for this information sequence from the encoder 1 and
these are the corresponding parities from the encoder 2. Now what | have here is the received
values. So you can see here, so this was transmitted as + | received a +, this transmitted as + |
received a +, this was transmitted -1, this was received as -. But here the sign has changed, note
here this was transmitted as -1, but what | received is + point 8. So this bit is received in error.

Now let us see using this turbo decoding how we are able to correct this error.

(Refer Slide Time: 49:39)

1 =&d =g
fg rThe

@ In the first iteration of decoder | (row decoding), the BEIR
algorithm is applied to the trellis of the 2-state (2,1, 1} code to
computs the a posterior Lvalues L) for sach of the four input
bits and the corresponding exlrnsic a postenon L-values .f.i-“fu.:l.

So of course, the first half of decoding will be I will decode, | will have decoder 1 work first and
then decoder 2.

(Refer Slide Time: 49:50)

T e A & @) 4
fg rTTHh=n MWW

@ In the first iteration of decoder 1 (row decoding), the BCIH
algorithm is appled w Lhe rellis of the 2-state (2.1, 1) code Lo
compute the a pesterion L-values L'V w) Tor each of the four input
hits and the correspanding extrinsic a posteriori [-values .I':;\.n[r.lrJ

@ For iterative decoding, extrinsic a-posterion L-values are computed
T all input bits, Lermination bits as well as information bils.

@ Before the first iteration of decading, the a-prier L-values of tha
termination hits are assumed to be zern

@ Similarly, in the first iteralion of decoder 2, Lhe BCIR algorithm uses
the extrinsic o posteriori L-values LI.'.']{u.:} received from decoder 1 as
the a prior {-values, IE?'LJJ.J to compite the a posterar [-values
L) for each of the four input bits and the corresponding
wtrinsic a posterion Lvalues L5 (0) to pass back to decoder 1,

So I will just directly come to the values because | have already explained the whole procedure, I

will just show you

(Refer Slide Time: 49:59)

EEea rmesmaaaanl

EESOEEC W e o

— — aiol
== T —____\"
LESAERIR] | [ULES -Da liAil§-0.07! '| HT‘.’-.%
=i} FF | =47 |z =) 15| = 20 -
I i | | ot e “Thertine
r bl e Laonmge adllsr SulL CI
I reew dewalug Ira coumn deoudig Lt ey s desuilag
e —— e ——
| |
HEER 0 {FwE] 8 | —an ol g 0=
A - —ipei| =1 | =1 1
1 1 == -
Eoarinmx L values aficr Lorirac L vaine afier
o me heeneing woermd vedume deesding wervnd noseoan
Tetada D cadian - 2=

The extrinsic information value and the APP values at the end of each iteration. So this is the

extrinsic information after | have decoded using decoder 1. This is the extrinsic information after
decoder 2, and this is the APP value after decoder 1. Note that | have transmitted 0101 so there

the sign is okay, there the sign is not okay, this is after first decoding this is in error, this sign is

okay, this sign is okay.

Now next so this whole thing was my first iteration, this is my first iteration, fine? Now what

about second iteration so, so again | will first compute the extrinsic values this is after | do

decoder 1 this is extrinsic information after | have done decoder 2 and this is the APP value L

value, APP L value after decoder 2 and note here this was 0, this is 1, this is 0, this is 1. So I,

after 2 iteration I am able to correct the transmission error. So with this I am going to conclude

our discussion on turbo decoding. Thank you.

Acknowledgement

Ministry of Human Resource & Development

Prof. Satyaki Roy
Co-ordinator, NPTEL T Kanpur

NPTEL Team
Sanjay Pal
Ashish Singh
Badal Pradhan
Tapobrata Das
Ram Chandra
Dilip Tripathi
Manoj Shrivastava
Padam Shukla
Sanjay Mishra
Shubham Rawat
Shikha Gupta
K. K. Mishra
Aradhana Singh
Sweta
Ashutosh Gairola
Dilip Katiyar
Sharwan
Hari Ram
Bhadra Rao
Puneet Kumar Bajpai
Lalty Dutta
Ajay Kanaujia

Shivendra Kumar Tiwari

an 11T Kanpur Production

©copyright reserved

