
Indian Institute of Technology Kanpur
National Programme on Technology Enhanced Learning (NPTEL)

Course Title
Error Control Coding: An Introduction to Convolutional Codes

Lecture-7

Turbo Codes

by
Prof. Adrish Banerjee

Dept. Electrical Engineering, IIT Kanpur

Welcome to the course on error control coding, an introduction to convolutional code.

(Refer Slide Time: 00:21)

(Refer Slide Time: 00:20)

So today we are going to talk about a class of parallel concatenated convolutional code called

turbo codes.

(Refer Slide Time: 00:31)

Now what is concatenation? In concatenation we take small codes and we combine them to

create a more powerful code.

(Refer Slide Time: 00:48)

Now this idea of concatenation was proposed by David Forney and what he did was he took two

codes so there was one code called outer code and then here another code called inner code. And

so this is your – you are creating up more powerful code using two codes and you send your

coded bits through a channel and then you have the decoder for inner code.

So you have inner decoder and then you have a outer decoder. So this is your – I could also view

this as, this as your super channel, this as your super channel, these are codes on that. Now this is

a very simple idea of combining two relatively simpler code to create a more powerful code.

(Refer Slide Time: 02:08)

And these codes could be block codes, convolutional codes, we could use anyone of them. Now

in – this is one class of concatenated codes. Now there are various ways in which you could

concatenate code. This is an example where two codes are serially connected, if you see the

output of the first encoder is given as input to second encoder.

(Refer Slide Time: 02:41)

Now there could be a configuration where two encoders are connected in parallel. So we have

two encoders they are connected in parallels, this is your encoder one, encoder two, you could

have like this or you could have a combination of both. So do you have some parallel

concatenation the set is the combiner and then you have another code encoder three which is

serial.

So this is a combination of parallel concatenation and serial concatenation. This is like hybrid

concatenation, so there are various ways in which you can concatenated two codes.

(Refer Slide Time: 03:13)

There is a configuration which is called product code, so you have a – let us say k x k

information bits you add some parity bits here corresponding to each of these K bits you add

some parity bits and then you can read these information sequence column wise also and you can

add parity bits corresponding to these column.

So you can have codes like this, this is called incomplete product code and then you could also

have checks on checks. So that is the product code. So there are various ways in which you could

concatenate it or combine to smaller codes to create a more powerful code.

(Refer Slide Time: 04:07)

In this lecture we are going to talk about one such class of concatenated codes which is called

turbo codes. It is essentially a class of parallel concatenated codes.

(Refer Slide Time: 04:13)

Now if you recall Shannon in his celebrated noisy channel coding theorem has mentioned that as

long as we choose our transmission rate to below channel capacity we can reliably communicate

order communication link. And – and his prove was basically based on fact that if you randomly

select a code word of very large length then you can show that probability of error will go to zero

as long as your transmission rate is below channel capacity and you transmit with long code

words.

(Refer Slide Time: 04:55)

Now people from 1948 onwards were trying to design codes close to channel capacity, and the

problem was if you design a very random like code which does not have any decoding structure

then the decoding complexity is very, very large. However if you put lot of structure into the

code then it is not really random like and its performance is not very good.

(Refer Slide Time: 05:23)

So how do you design a code which has enough randomness into it, but then enough structure

also which can be exploited for decoding the code?

(Refer Slide Time: 05:37)

So that is basically the challenge to design a code which has good minimum distance but then

should be – we should be able to decode it also.

(Refer Slide Time: 05:46)

Now these turbo codes are a class of codes which are random like and we will show you how

this random look like because of the inherent interleaver structure fitted in this parallel

concatenation structure. And there is enough structure in the code which allows us to do efficient

decoding of these error correcting codes.

(Refer Slide Time: 06:14)

(Refer Slide Time: 06:14)

So what does an encoder of a turbo code looks like, it consist of parallel concatenation.

(Refer Slide Time: 06:26)

So maybe I will first show you the diagram. It consists of parallel concatenation of two encoders.

(Refer Slide Time: 06:31)

This is one encoder and this is second encoder. And note the same information bit is going to

two encoders, so this information bit is coming here and the same information bit after getting

interleaved, interleave is nothing but reordering of the message bits, it is entering this particular

encoder and this is your systematic code, so you have your information bits here. And then this

encoder is generating this parity bit, this encoder is generating this parity bit.

(Refer Slide Time: 07:10)

So if you notice this encoder consist of convolutional encoder

(Refer Slide Time: 07:17)

As a constituent encoder in a parallel concatenation scheme.

(Refer Slide Time: 07:23)

So the key is parallel concatenation. So the same input is going to both these convolutional

encoder.

(Refer Slide Time: 07:32)

Next thing to remember is we are using systematic convolutional encoders.

(Refer Slide Time: 07:40)

Why are we using systematic convolutional encoder, when we talk about the convergence

properties of turbo code then we will mention basically these systematic encoders have better

convergence property under iterative decoding algorithm.

(Refer Slide Time: 07:58)

And that is why initially proposed turbo codes use systematic convolutional encoder,

subsequently people have also worked on designing design of nonsystematic turbo codes, but the

ones which were initially proposed in 1993 by Berrou [indiscernible][00:08:15] used systematic

convolutional encoder.

(Refer Slide Time: 08:23)

The third thing to note very crucial is the use of recursive encoders. What is recursive encoders,

these are feedback encoders.

(Refer Slide Time: 08:34)

(Refer Slide Time: 08:35)

So there is a feedback from the output to the input.

(Refer Slide Time: 08:37)

Note here there is a feedback from the output going to the input, there is a feedback from the

output going to the input. So these are all feedback encoders, now why do we need feedback

encoders? I will just give a very simple example to illustrate.

(Refer Slide Time: 08:58)

So we know that we would like to have a large minimum distance of these codes, because larger

the minimum distance, better is the error correcting capability of the code. So let us just

considered a very simple case.

(Refer Slide Time: 09:09)

Let us just consider that you have a memory one code, so let us just say memory one code could

be G(D) so this could be, let us say 1/1+D, 1/1+D. Now usually the input weights and this is

systematic right, so this comes here, so usually the information sequence that have low weight

can create low output weight sequence also.

So let us look at weight one sequence, let us say one and all zeros, so that is just one. Now if this

input comes in here to this particular encoder, note this will produced an infinite length of one.

And same this one when it comes here after interleaving this will also create a large number of

ones whereas.

If instead of recursive encoder if we would have used a non recursive encoder, let us say if we

had used a feedforward encoder 1, 1+D then what would have happened, this would, would have

been just 1+D and of course this would have been also 1+D some or some shifted version of that,

so you can see that

We can get better distance by using feedback convolutional encoder, so that is why this is very

important that and this was a key innovation for this code that when they use two parallel

concatenated codes the convolutional encoder which was used was recursive convolutional code.

(Refer Slide Time 11:08)

It was systematic because systematic codes had better convergence property so remember these

two things, so what are the components of the turbo code. So first thing I said it is a

concatenation of 2 or more encoders in a parallel fashion as opposed to serial concatenation. In

serial concatenation

(Refer Slide Time 11:36)

What happens is so this there are bits coming in here, this output for first encoder that is fed as

input to the second encoder so this is your encoder one, encoder two, so the output of encoder

one is fed as input to the second encoder but in parallel concatenation you are sending the same

information parallely to both the encoders. Now what is the role of interleaver and what is

interleaver? As I said interleaver just permutes the bit, so it just reorders the bits, so some, some

bits

Which were there in the say bit location one maybe it will be put in bit version 56, and it just

shuffles bits here.

(Refer Slide Time 12:27)

Now the design of interleaver and the role of interleaver is very, very crucial for turbo codes, so

let us illustrate that again with a simple example. So what we are considering is this recursive or

a feedback encoders and we are conceding a very simple feedback encoders, which is memory

once two state convolutional encoder. Now as I said, now input 1 sequence cannot terminate this

encoder if my U of D is one and G of D is 1/1+D then what is my V(D) this U times V which is

1, 1+D.

And this is 1+D +D2 so this I am getting a string of ones, a same thing when you permit it does

not change the way distribution it just reorders the bit. So again the weight one sequence that you

will get here cannot terminate this encoder, so I will get a large output weight, now let us look at

weight 2 sequences let us say

(Refer Slide Time 13:53)

If I have one, one and all zeros so let us say one, one and all zero that is 1+D so if my input is

1+D then what happens to the output at the first decoder? Now this sequence can terminate this

encoder and what I will get here is I will just get a one. I will just get a one because my U(D) is

1+D and G(D) is 1/1+D so what I will get here is one so I am getting parity weight out of this

parity check bit, I am just getting one and all zeros here. Now to have a code with overall weight

large, remember my input is only to weight it is it my input is one, one and all zeros.

So here also I will get one, one and all zeros so here I am getting only weight 2, here I am getting

only weight 1, now to have an overall weight large what would you like? You would like to have

(Refer Slide Time 15:01)

A large number of one’s coming out from this parity check bit. Now how can you do that, now

remember what is interleaver, interleaver is just a per muter it is just shuffling bits so if you had

bits which are like this let us one, one and all zeros and typically the block sizes are very large I

mean 1000, 10,000 listen 10,000 or something like that and let us say your interleaver what it

did, did was it kept this one here but moved this one to last location and in between you had all

zeros, so this was your 1+D, and this becomes 1+D2, let us say N-1 because the way you design

this interleaver

(Refer Slide Time 16:05)

It rearranged the bits is such a way that let say this bit was put here, this bit was put here and

other zeros were put in between. Now if you feed in this sequence to this encoder so your U(D)

is 1+D2 N – 1, G (D) is 1+D what will you get, you will get a output sequence which will have

large number of ones, correct? So what I did was I just designed my interleaver in such a way

that 2 adjacent ones were spread out and as a result you noticed that

(Refer Slide Time 16:51)

I am getting a large number of one’s coming out from this parity bit, now contrast it with a

situation where let say instead of shuffling this bit here if I would have kept this bit let us say

here and this would have been zero so this would have been 1+D3 then what would I have get? I

would have got 1+D3 by 1+D so this would be 1+D+D2 so I would have only got 3ones here,

but now I am getting a large number of one’s so I hope I am able to convey the role of

interleaver, the design of interleaver is very, very crucial.

You should design the interleaver in such a way such that the adjacent ones are separated out far

apart so that after the interleaving when the same information sequences passing through the

encoder it generates a large parity, a parity sequence with large weight.

(Refer Slide Time 18:01)

 Ideally you would what you would like is if the parities sequence coming out here has low

weight then this should generate large weight parity sequence, and if this guy is generating parity

sequence with low weight then this sequence this should generate a parity sequence with large

weight, so again I cannot emphasize enough the role of interleaver because this a very, very

crucial component of turbo encoder and it also helps in some sense randomizing the goat leg,

make the code look random like if you, if you want to use that word so let us look at

(Refer Slide Time 18:47)

The structure of a turbo code again so you note here I have 2 encoders, this is my encoder one,

and this my encoder two, both of them are recursive or feedback encoders. You can see that each

one of them has eight states in this particular example, now the information sequences coming

here it is a systematic code so I, the same information is coming out directly as one of the output

and then the input to the second encoder this is interleaved, now interleaving is nothing but as I

said reordering of the bits.

The reordered bits are coming to the second encoder which will then generate a set of parity bits,

so this is the structure of a parallel concatenated code. In this particular example we are using

convolutional encoders as constituent encoders.

(Refer Slide Time: 19:59)

(Refer Slide Time: 20:05)

Now in this graph I have plotted bit error rate performance versus signal to noise ratio for a rate

1/3 turbo code and for block size more than sixty five thousand. Now note the typical

performance so there is a region, where there is a steep fall in bit error rate performance.

(Refer Slide Time: 20:33)

And this region we call it waterfall region, so this is called waterfall region, just like a typical

waterfall that performance is coming like this, and then there is a region where there is hardly

any improvement in bit error rate in spite of increasing the signal to noise ratio and this is known

as error floor region. Now performance in the waterfall region is governed by the convergence

behavior of the constituent encoders under iterative decoding algorithm and we will discuss this

in subsequent lectures.

(Refer Slide Time: 21:21)

And performance in the error floor region is governed by the distance spectrum of the turbo

codes.

(Refer Slide Time: 21:33)

So typically the constituent encoders, convolutional constituent encoders that gives good

performance are the ones

(Refer Slide Time: 21:45)

Which have short constraint length typically three, four like memory three, memory four, either

the ones that give good performance, if we use a more stronger code with memory five, six then

typically the performance in a waterfall region is not good.

(Refer Slide Time: 22:04)

Now what I have shown you is a parallel concatenation of two encoders, now these two encoders

can be the same encoder like what I have shown here.

(Refer Slide Time: 22:16)

If you see here both of encoder 1 and encoder 2 are same, now they could be same or they could

be different.

(Refer Slide Time: 22:26)

(Refer Slide Time: 22:29)

So if the constituent encoders are same we call it a systematic symmetric turbo code and if these

constituent encoders are different we call it asymmetric turbo code.

(Refer Slide Time: 22:44)

I already mentioned this point.

(Refer Slide Time: 22:48)

That choice of recursive and systematic encoders is very, very crucial because for a recursive

encoder a weight one pattern cannot terminate the encoder whereas for a feedforward encoder a

weight one pattern can terminate the encoder.

(Refer Slide Time: 23:10)

That is why we should use a recursive encoder and systematic encoders help in initial

performance in waterfall region and that is why they are preferred over non systematic encoders.

(Refer Slide Time: 23:24)

Especially if you are interested in performance in the waterfall region.

(Refer Slide Time: 23:34)

So what we are doing here is so this is information bits right? This is the information bit that is

coming out of an output and then you have this encoder, which is generating this parity bit,

right? Now this interleaved bit is, this interleaved information sequence is coming here and what

this encoder 2 generates, this encoder 2 generates this parity bit, please note that we are not

sending the information bit corresponding to second encoder, why?

(Refer Slide Time: 24:24)

Because the information bits correspond to second encoder is nothing but interleaved version of

the information sequence that has been fed to encoder 1 and that is why we are not sending, we

are not sending the information bits here, we are not sending the information bits of the second

encoder we are not sending it across to the channel. That is because from this information bit if

we just interleave we can get back the information bits for the second encoder.

So you can see this is a rate 1/3 code because there is one input and there are three output, this is

one output, this is one output, and this is one output, right? Now how do you get different rates

code so this is a rate 1/3 code? Now how do you get other rates let us say I want to design a rate

1 ½ turbo code, how do I do that? So I will do what I can do let us say what is called puncturing,

so what you do in puncturing? In puncturing you remove some of the bits do not send some of

the bits.

(Refer Slide Time: 25:39)

So let us say at time t=0, I transmit v1 and I transmit v2 so I am transmitting two bits I do not

transmit v3. Then at time t=1, I transmit v1 and v3, I do not transmit v2 and this I repeat so every

odd time I transmit v1 and v2 and every even at t=0, 2, 4 I transmit v1 and v2 and for other time I

transmit v1 and v3, and at the receiver what I will do is so at let us say I have received these bit

now I am since I am not transmitting all the three bits, so what I will do is for the bit which was

not transmitted I will assume that this bit is equally likely to be zero or one.

So I will put is as likely would ratio of this bit being one or zero to be same so that is what I will

do, and similarly here since I am getting receive bit corresponding to only this and this what I

will assume here is I will feed to a decoder that it is equally likely that this particular bit is zero

or one because I do not have any other information about this bit, so this is known as puncturing,

so I am removing some of the bits I am not sending some of the bits so if you are interested in

getting higher rates you can do puncturing to get higher rate codes.

(Refer Slide Time: 27:22)

And that is what I mean when I said we could, bits can be punctured from the parity sequence to

produce higher code rates.

(Refer Slide Time: 27:32)

We could also do puncturing of the information bits.

(Refer Slide Time: 27:36)

So I just showed you an example of puncturing of the parity bits, I could also decide not to send

the information bits. Now if some of the information bits are not sent that means they are

punctured, this particular code is known as partially systematic turbo code and if I do not send

any information bit then of course you already know this is a non systematic code.

(Refer Slide Time: 28:07)

Now the encoder diagram that I showed you was using two encoders and one interleaver, now

this structure can be extended for multiple encoders and multiple interleavers, so I could have a

situation

(Refer Slide Time: 28:27)

Let us say I have encoder 1, I have encoder 2, I can have encoder 3 and what I can do is I can

have information sequence coming in let us say u so this is directly going out this is v0 this is v1

then I have interleaver which I am denoting by this by so interleaved bits are coming to encoder

2, it is generating a parity bits v2 then I have another set of interleaver, I am just denoting it by

Π2 and it is being fed to encoder 3 and I get another separate, so the structure that I have shown

you for two encoders and one interleaver can be extended

(Refer Slide Time: 29:29)

For multiple encoders and multiple interleavers, so this will result in a rate ¼

(Refer Slide Time: 29:35)

What we call multiple turbo code so we use the term multiple turbo code, so this is an extension

of the convolutional turbo code which uses two encoders and one interleaver.

(Refer Slide Time: 29:56)

(Refer Slide Time: 30:00)

Now I have shown you that design of interleaver is very, very crucial and there are multiple

techniques you can use for designing interleaver. A very simple way is what is call block

interleavers, so you

(Refer Slide Time: 30:15)

The information that you want to interleave or you want to send to the second encoder, what you

can do is you can store the data block wise row wise, so you fill that data row wise so once you

come here you then fill up. So this is how you fill up the data okay. So you have, you are filling

up the data row wise. But when reading out you could read the data column wise so I can read

data like this and then I can come here read this data come here this, so this is known as block

interleaver.

A very simple example, let us say my block size is 4, so what I can do is I can put my data like

this first, data I can put it here, second data I can put it here, third data I can put here and the

fourth data I put here. But while reading instead of reading row wise I can read it column wise.

So I first read 0, then I read 2nd, I read 1, and I read 3rd right. So what did I do so this was my

original data but interleave version is now what was there in, so in location this same bit is there,

but in this location now I am having what was earlier there in this location. And in this location I

am having what was earlier I had in this location. So interleaving is nothing but just reordering of

data.

You could also design it randomly, I will decide okay first bit I will put in this location, second

bit I will put in this location. I just have to ensure that every bits are put in distinct location. No

two bits are put in the same location right. And ideally what you would like is if there are like bit

streams coming in which have consecutive ones they should be spread out after interleaving that

is,

(Refer Slide Time: 32:17)

You would like to do, and there are class of interleavers like S random interleaver which imposes

some additional constraints which will allow that two adjacent bits are at least spread by some

amount okay?

(Refer Slide Time: 32:30)

(Refer Slide Time: 32:31)

So that is interleaver, so you have seen how we are constructing the encoder. So parallel

concatenation of two encoders right and you have a interleaver, now how do we decode these

codes? We are going to use an iterative algorithm so we are first going to decode one encoder

then we are going to decode second encoder and these decoders will pass on information to

among each other. So after the first encoder decodes it will pass on some information to second

decoders saying okay I think these are the information bits.

Now the second encoder will take that input and will process and then it will give a new set of

estimates to the first encoders saying, oh no I think this are the values of information sequence.

And this process happens in a iterative fashion. In fact the name turbo codes come from the

decoding structure, the turbo engine has this feedback mechanism and the decoding structure of

this turbo code is also the feedback so from one encoder to other encoder and this is basically

going around.

(Refer Slide Time: 33:45)

So from there this name turbo codes have come. So we are going to use iterative decoding

algorithm and each of these component encoders are going to use this BCJR algorithm and we

already, when we talked about decoding of convolutional code we already talked about how

BCJR algorithm works. In the next lecture we will talk about how the turbo decoding algorithm

works.

(Refer Slide Time: 34:14)

And this decoding as I said happens by block fashion, so you wait until you receive n bits of data

because remember this interleaving operation though it can be parallelized typically done in

blocks of data. So you process, you decode the bits also in block by block fashion.

(Refer Slide Time: 34:37)

So the information can be arranged in blocks of data.

(Refer Slide Time: 34:41)

Now typically for better performance as I mentioned we typically tried initially the encoder is in

all-zero state and we like to bring back the encoder back to all-zero state after we have

transmitted our information sequence. So that is known as termination and we terminate this

turbo encoder by appending some tail bits to our information bits.

(Refer Slide Time: 35:14)

Now because of the interleaver it is not always possible to have the same tail bits terminate both

the encoders. You could design a interleaver which will allow you to terminate both the encoder,

that is possible but in general it is not possible to terminate both the encoders with same

termination bits. So you could either terminate first encoder, leave the second encoder un-

terminated, or you could send additional bits to terminate the second encoder.

(Refer Slide Time: 35:48)

So far I have shown you that we are using recursive systematic convolutional encoder in a

parallel configuration. We could also design same thing using block codes as well.

(Refer Slide Time: 36:04)

And we are not going to discuss those in this lecture. Now there are some disadvantages of turbo

code, though their performance is extremely good there are some inherent problems with turbo

code, one is they have a large decoding delay typically their performance is good for large block

size. So when you are dealing with large sizes and there is a lot delay involved because you are

doing block by block processing.

(Refer Slide Time: 36:34)

And second thing is typically if you are looking at very, very low bit error rate performance there

you, you just saw that because of error flow their performance is not very good at very, very low

bit error rate.

(Refer Slide Time: 36:55)

Now I will just conclude this lecture by giving you some references of some key early

development in turbo codes and you can read those references.

(Refer Slide Time: 37:06)

So this is where turbo codes were initially introduced by paper by Berrou Atal in ICC 1993.

When this paper came people did not actually believe the results because they were very good

performing codes but subsequently multiple research groups were able to reproduce their results.

(Refer Slide Time: 37:27)

Now the next set of papers, these two papers by Benedetto Atal “Unveiling turbo codes. Some

results on parallel concatenated coded” and “Design of parallel concatenated convolutional

codes”. These were one of the first paper to explain why the performance of turbo codes is not

very good at high signal to noise ratio and why do they suffer from error flow?

(Refer Slide Time: 37:54)

These were the first paper when they were, where they generalized by Divsalar at JPL lab where

they generalized it to multiple turbo codes and this paper also gives some design rules of well

how to design turbo codes.

(Refer Slide Time: 38:11)

This is a nice by Hagenaeur, this is a nice paper on “Iterative decoding of binary block and

convolutional code”, this explains the BCJR algorithm and turbo decoding.

(Refer Slide Time: 38:28)

 And BCJR algorithm in a very nice way, now in this lecture we talked about parallel

concatenation, now there is a different variant where you could have a serial concatenations.

(Refer Slide Time: 38:39)

So you could have a encoder 1 here then you could have one interleaver here, interleaver and

then you could have another encoder. So this variation was proposed by Benedetto and others

and this serial concatenation though has little inferior performance in the waterfall region it has

better performance in the error flow region.

(Refer Slide Time: 39:12)

And finally these three papers that you have discusses the behavior of the iterative decoding

algorithm. Why choice of some encoders is good, how should you choose the encoders so that

you have better performance in the waterfall region?

(Refer Slide Time: 39:31)

This was nicely explained in these three papers and each one of them use different technique.

Ten Brink used mutual information, Divsalar used the evolution of the densities of the extrinsic

information and El Gamal used mean and variance of the extrinsic information, and they tracked

it to get information about the convergence of the turbo code. So with this I am going to

conclude my discussion on turbo codes. Thank you.

Acknowledgement

Ministry of Human Resource & Development

Prof. Satyaki Roy

Co-ordinator, NPTEL IIT Kanpur

NPTEL Team

Sanjay Pal

Ashish Singh

Badal Pradhan

Tapobrata Das

Ram Chandra

Dilip Tripathi

Manoj Shrivastava

Padam Shukla

Sanjay Mishra

Shubham Rawat

Shikha Gupta

K. K. Mishra

Aradhana Singh

Sweta

Ashutosh Gairola

Dilip Katiyar

Sharwan

Hari Ram

Bhadra Rao

Puneet Kumar Bajpai

Lalty Dutta

Ajay Kanaujia

Shivendra Kumar Tiwari

an IIT Kanpur Production

 ©copyright reserved

