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Welcome to the course on error control coding, an introduction to convolutional code.
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So in this lecture we are going to talk about performance bounce for convolutional codes.
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& We will analyze the performance of maximum likelihood decoding
for a convolutional code over binary symmetric channel

In particular we are going to analyze the performance of viterbi decoding which is maximum
likelihood decoding for convolutional code. And as an example we will consider a simple binary

symmetric channel. Now if you recall what is a binary symmetric channel?



(Refer Slide Time: 00:46)

54 S0 . MER N o |
G 2To=WM ol -+BNENEEINEOT M s

@ We will analyze the performance of maximum likelihood decoding
for a convolutional code over binary symmetric channi:l.a O F a

1O 1
t-f

So there are two inputs 0 and 1, 0 and 1 and with some probability 1-P we receive the bits
correctly and with the crossover probability of P the bits get flipped, that is our binary symmetric

channel. So we are going to analyze the probability of error, a probability of error.
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@ We will analyze the performance of maximum likelihood decoding
for a convolutional code over binary symmetric channi:l.a Ot =F a

1O 1
t-f

When we are doing Viterbi decoding of convolutional code over a binary symmetric channel.
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@ We will analyze the performance of maximum likelihood decoding
for a convolutional code over binary symmetric channel.

@ Without loss of generality, we assume that the all zero codeword 0 i
transmitted from a (3, 1, 2) nonsystematic feedforward encoder with

GD)=+D 1+D* 1+D+D7

So as an example we will consider one particular convolutional code.
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@ We will analyze the performance of maximum likelihood decoding
for a convolutional code over binary symmetric channel.

GD)=[1+D 1+D% 1+D+ DY

In this case we are considering a rate 1/3 convolutional code which has memory 2, so it is a four
state convolutional code whose generator matrix is basically given by this. So these are my
generators 1+D 1+D? and 1+D+D?. And without loss of generality we will assume that all zero
codeword was transmitted.

So all zero codeword is transmitted over a binary symmetric channel and we receive the bit, we
applied maximum likelihood decoding, Viterbi decoding, and now we are interested to find,

characterize a performance of the Viterbi decoding algorithm.
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@ We will analyze the performance of maximum likelihood decoding
for a convolutional code over binary symmetric channel.

@ Without loss of generality, we assume that the all zero codeword 0 is
transmitted from a (3. 1, 2) nonsystematic feedlorward encoder wilh
GID)=[1+D 1+0* 1+0+ D9

@ The Input Output Weight Enumerating Function {IOWEF) of this
encoder is given by

XTwy?
1— XWL(1 + X2L)
= XTWLS £ XEWRLY £ X0 X0 - Wt

A(W, X L)

Now we would require one more concept which we discussed in lecture 2C which is input output
weight enumerating function. So what does input output weight enumerating function tells us, it
tells us about what is a input that will cause, or what is the corresponding output that it will cause
and what is the length of that particular sequence.

So as you can see these all zero parts through the trellis are all valid code words. So this weight

enumerating function essentially enumerates all nonzero code words.
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@ We will analyze the performance of maximum likelihood decoding
for a convolutional code over binary symmetric channel.

@ Without loss of generality, we assume that the all zero codeword 0 is
transmitted from a (3, 1. 2) nonsystematic feedforward encoder with

GID)=[1+D 1+0* 1+D+D)

@ The Input Output Weight Enumerating Function ({OWEF) of this

encoder is given I:w
Xwed 49/ \19*

A(W, X, L)
( xwuma_}
= )(WL +XPWLY 4 XOWOLS 4 XL 4 WAL

-

So for this particular example the input output weight enumerating function is given by this
expression and which we can expand, we can divide this by this. So this will — we will get our
terms. Now here X is my, the exponent of X will give me the overall weight, the exponent of W
will give me the information sequence weight and this length will give me the length of this path
like of this.

So the time weight diverges from all zero state to the time, it demerges at all zero state. So
X"WL2 means there exist a code word of distance 7 which has information weight 1 and the time
it diverges from all zero state to the time it merges back to all zero state that is 3. And there is
one such code word. This can be interpreted as there is a code word of weight 8 and

corresponding input weight is 2 and it has length 4, length 4 meaning again by this L denotes.

So you have your code word which diverging from all zero state and then after staying in some
nonzero state it is merging back into your all zero state. So this L denotes the time from which it

moves away from all zero state to the time it takes to come back to all zero state.
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@ A first event error happens at an artibrary time t if the all zero path
is eliminated for the first time in favor of an incorrect path.

Vi o ity v

S—

Tinun: ! Coenect path ¥

So let us talk about, what do we mean by error here. So since we considered an all zero sequence
we expect that our correct path should be the one which goes through all zero state, because our

transmitted code sequence that we assumed.
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@ We will analyze the performance of maximum likelihood decoding
for a convolutional code over binary symmetric channel.

@ Without loss of generality, we assume that the all zero codeword 0 is
transmitted from a (3. 1, 2) nonsystematic feedforward encoder with

GD)=[1+D 1+D* 1+D+ D

If you recall we assumed that an all zero code word was transmitted.
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@ We will analyze the performance of maximum likelihood decoding
for a convolutional code over binary symmetric channel.

@ Without loss of generality, we assume that the all zero codewaord O is
transmitted from a (3, 1, 2) nonsystematic feedforward encoder with

GID)=[1+D0 1+D* 1+ D+ D7
@ The Input Output Weight Enumerating Function (IOWEF) of this
encoder is given I:W
el —a e
M50 = xm_{l + X2L)

= X"wi? +x"‘w1 + XMW XL 4 WL
¥ 1

So what is the correct path?
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@ A first event error happens at an artibrary time t if the all zero path
15 eliminated for the first time in favor of an incorrect path.

Tt Cownect gt ¥

The correct path is 1 that goes through all zero state, so this is the correct path.
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@ A first event error happens at an artibrary time t if the all zero path
i eliminated for the first time in favor of an incorrect path.

Now when will error happen, an error will happen if at a particular time instance let us just say
this is the time instance | am looking at. If at this time instance instead of deciding for this path,
instead of deciding for this path if I go for this path, then error will happen. Why? Why is this an
incorrect path, why is this an incorrect path?

This is an incorrect path, because my transmitted code word was all zero sequence. So if | decide
in favor of this path instead of this path, then | make an error. So | say a first event error happens
at some arbitrary time t, if the all zero path is eliminated in favor of a nonzero path which is our

incorrect path.

So the first instance when | do that, so the instance when | do that, that is basically my event
error, because | should have chosen all zero path, but at this instance what happened was, the
metric corresponding to this path was better, so | chose this and | eliminated this path. But this is

a wrong path, because my transmitted code word was all zero sequence.
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@ The incorrect path must have diverged from all zero state at some
time and has now remerged at time t for the first time.

Now what does in, we know that all paths through this trellis are essentially valid code word,

now what does this
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First Error Event

@ The incorrect path must have diverged from all zero state at some
time and has now remerged at time t for the first time.

Incorrect path does it diverges from an all zero state at some other time before this time t and has

merged back
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@ The incorrect path must have diverged from all zero state at some
time and has now remerged at time t for the first time.

Into all zero state at time t for the first time so that is what we call first error event, so at the time
t when we are deciding in favor of some other path other then the all zero path so that means this
is the time when this other path the incorrect path has merged into all zero state, so at some time
in the past it would have diverged from all zero state and now at time t it is merging back into all

zero state.
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First Error Event

@ The incorrect path must have diverged from all zero state at some
time and has now remerged at time t for the first time.

@ So, ot must be one of the path enumerated hy the codeword \nﬂ"lE’.h!’
qnumr:ra.tlng F'|||'|ctu_1n

Now can we find out what is the weigh corresponding to this incorrect path, yes we can because
when we write the weight enumerating function of a convolutional code it enumerates weight
distribution of all valid code word. Now any path through, through this trellis diagram is a valid

code word so we can
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@ The incorrect path must have diverged from all zero state at some
time and has now remerged at time t for the first time.

@ 5Sa, it must be ane of the path enumerated by the codeword mip_-.h!'
crlurru:ratlng ﬁ_lnctmn n

Easily enumerate what is a code weight corresponding to any path through this trellis.
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First Error Event

@ The incofrect path must have diverged from all zero state at some
time and has now remerged at time t for the first time.

@ So, it must be one of the path enumerated l'ry the codeword wt‘lghl
enumerating function

@ Assuming that the incorrect path has weight d. a hirst event error
happens with probability

) Bl ( ‘ )p"'(l pp* odd

f iz d e
3 /2 )-”ﬂ"d“ i o 4] ( 5 )Pef,' — p)?7c  even|

Now when will we decide in favor of this incorrect path and not the all zero path? We can take
this example of the same code that we are considering.
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@ We will analyze the performance of maximum likelihood decoding
for a convolutional code over binary symmetric channel.

@ Without loss of generality, we assume that the all zero codeword O is
transmitted from a (3, 1, 2) nonsystematic feedforward encoder with

GO~ [1+D 1L+0° 14D+ D7
@ The Input Qutput Weight Enumerating Function (IOWEF) of this
encoder is given by
| XTwi? /{;{—\‘E;f
MR = Lrgxwm I-X"'IJ

Tuﬁ‘ A2 8w X W) -

Let us just this code has dfree seven, then it has one code word of weight eight, one code of
weight nine, there are two code words of weight ten like that, so minimum distance dfree is

seven here so let us say
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First Error Event

@ A first event error_happens at an artibrary time t if the all zero path

is eliminated for the first time in favor of an incorrect path.

Let us assume that this incorrect path had weight seven, now when will you decide in favor of
this path rather than this path? When the number of errors are such that when they are more than
four errors such that your receiver sequence is closer to this sequence rather than this right then
you will make an error or let us say if this path was weight eight then of course when your error
is more than four bits you will decide in favor of this path, and whenever error has happened in
four bit location there is a equal probability you can either choose this path or you can choose

this path.
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@ The incorrect path must have diverged from all zero state at some
time and has now remerged at time t for the first time.

@ So, it must he one of the path enumerated by the codeward weight
r:nl,lmr;ratlng ﬁlnct:gn

@ Assuming that the incorrect path has weight d, a first event error
happens with probability —

d=7
= e=4, 567

2 2)ra o] -
(g ) -t (8 ) st —pre even

| =

Py =

So we can calculate the probability of this first event error, we can find out its probability, what
is this probability let us say this incorrect path has weight d so d is the weight of this incorrect
path which has diverged from all zero state at some other time and has merged back at all zero
state at time t. Now if d is odd then this probability is given by sum of this probability and where
¥ takes place over all error pattern which are greater than (d +1/ 2) 9 50 in the example we just
considered let us say if we had a incorrect path of weight seven then we should look at error
pattern of 4, 5, 6 and 7. If 4 errors happen maybe it will bring us closer to this incorrect path

rather than all zero path okay? Now if
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@ The incorrect path must have diverged from all zero state at some
time and has now remerged at time t for the first time.

@ So, it must be one of the path enumerated by the codewaord weight
enumerating function

@ Assuming that the incorrect path has weight d, a first event error

happens with probability d=T
T 2=8.5€7
o o : : i
i wl &) pa-pr L odd

Fli=

2 T2 )70 mrm st (4 ) - pre e

Fdie=

P is the cross over probability of changing, flipping of the bits, so P times e will give us a
probability that e number of bits have flipped and
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First Error Event

@ The incorrect path must have diverged from all zero state at some
time and has now remerged at time t for the first time.

& So_ it must be ane of the path enumerated by the codeward wﬂlf_!.h'r

enumerating function
@ Assuming that the incorrect path has wc'rght d, 3 first event error

h.appens with pmh:nbuhty =7
ﬁ e=a,5E,7

4 odd

. . d
== ) J.-"E PR - ;.1}*’ +3 . :—|( : )p"l{l —p}* % even

1- P*C will tell us the probability that d-e bits have not flipped and d e d choose e is number of
possible combinations of in which we can have these error patterns, e error patterns among these
set of d weight so this will give us the probability of first event error. Again we will make a
decision in favor of incorrect path if our received sequence is closer to the incorrect path and we
know what is the maximum likely would role for binary symmetric channel, it is we choose a
code word such that the hamming distance between the received code word and this chosen cord

word is minimized so
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If there are more than, there are four or more errors for the case when incorrect path has weight
seven then you are going to choose, basically go for this incorrect path. What about when d is
even when d is even for all error patterns from d/2+ 1 to d you will decide in favor of incorrect

path and whenever the error is
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d/2 then there is a 50/50 chance because you can just then the, there is a tie in the matrix so you
can just flip and choose either of the path and that is why.
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& We will analyze the performance of maximum likelihood decoding
for a convolutional code over binary symmetric channel.

& Without loss of generality, we assume that the all zero codeword O is
transmitted from a (3, 1, 2} nonsystematic feedforward encoder with

GD)~[1+D 1+D* 140+ D7

@ The Input Qutput Weight Enumerating Function (IOWEF) of this

encoder is given h*,r
1 XTI j E@{—\G—

AW, X 1) =

“XWI(1 7 X7
— B B B xS - wt)

o

For d/2 | have written here it is half times this probability plus all error patterns of weight more

than d/2. So for example in this case we had one path

(Refer Slide Time: 13:27)
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@ We will analyze the performance of maximum likelihood decoding
for a convolutional code over binary symmetric channel.

@ Without loss of generality, we assume that the all zero codeword O is
transmitted from a (3, 1, 2) nonsystematic feediorward encoder with

GD)-1+D 1+D° 1+ 0+ DY

@ The Input Cutput Weight Enumerating Function (IOWEF) of this

encoder is given by -
' X Wi f —‘@Z—-\‘éf

ARy =
( ) 1 XWE{ ¢ X°0) |
= B W B X w s - wens)y

T 11

Of weight eight right so if our incorrect path was of weight eight

(Refer Slide Time: 13:27)
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@ The incorrect path must have diverged from all zero state at some
time and has now remerged at time t for the first time.

@ So. it must be ane af the path enumerated by the codeward weight
enumerating function

@ Assuming that the mcorrect path has we E d, A first cvent error
happens with pmh::bmty e a=T

P e
¢_-- !p(l H L odd

n’
= J’:! )p‘j I:{"I - p}d 24 Z ( i )pe{l - p}"'"':lv.uten

T LE{.J’Q

Then all error patterns of 5, 6, 7, 8 they would have cost decision in favor of this incorrect path

and whenever there is an error pattern of.

(Refer Slide Time: 13:52)
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@ The incorrect path must have diverged from all zero state at some
time and has now remerged at time t for the first time.

@ So, it must be ane of the path enumerated by the codeward weight
enumerating function

@ Assuming that the incorrect path has we g d, A tirst event error
happens with probability = d=T

e = 4'5‘ 7
LTM& 4. ogg
e . L ode
i 5

d — p)e? . ( % )pe(i — p)7 % | even

- e_,-E,'r

Weight four there is a 50/50 probability that I may choose an incorrect path or I may choose a all

zero path because the hamming distance is same from all zero path or this incorrect path

(Refer Slide Time 14:09)
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@ The incomect path must have diverged from all zema state at some
time and has now remerged at time tlor the birst time.

@ 5o, it must be one of the path enumerated by the codeword weight
enumerating function,

# Assuming that the incorrect path has weiEhr. d, a +_|r5t et arrar

happens with probability d=17
- _—_——T e 5 &7
| — (o . - I
fl. afl o Jp(1-vp) - pdd
P, — = _| F d =
= T ; ]
I\ = il g JE R Ry L( . )P‘I.'l It even
TE=a 2:5671

So that is why | have a half here, so this is the probability of first event error.

(Refer Slide Time 14:17)
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Convaolutional codes

@ Al incormect paths of length t branches ar less can cause a first
event error at time t.

Now if we are looking at time t then all incorrect path lengths of length t or less can cause first

event error.

(Refer Slide Time 14:29)
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@ Al incormect paths of length t branches ar less can cause a first
event error at time t.

(Refer Slide Time 14:31)
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Convolutional ¢

@ Al incorrect paths of length | branches ar less can cause a first
event error at time t.

@ Thus the first event error probability at time t can be bounded wsing
wingn baund by the sum of the errar probalilities of each of these
paths. ' :

So we will now use union bound to essentially upper bound this probability of first event error
probability. So what does union bound says probability of union of errors is basically upper
bounded by union of probability some error so we are going to upper bound this first event error

probability by sum of error probabilities of all these incorrect paths.

(Refer Slide Time 15:06)
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Convolutional «

@ All incorrect paths of length t branches ar less can cause a first
event error at time t.

w Thus the first event error probability at time t can be bounded using
urion bound by the sum of the error probabilivies of each of these
paths.

& If all incorrect paths of length greater than t are also included, then
the first event error probability at any time t can be bounded by

PE) = Y. AaPu
b 17

where Ay is the number of codewords of weight d

Now if we also allow incorrect path of any length even greater than t.

(Refer Slide Time 15:13)
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Convolutional codes

@ All incorrect paths of length | branches or less can cause a first
event error at time t.

@ Thus the first event error probahbility at time t can be bounded using 1
uimicn Bound by the sum of the error probabilities of each of these
paths.

@ If all incorrect paths of length greater than t are also inclueed, then
the first avent error probability at any time t can be bounded by

S =y

Pr{E} = E AqFa
r!—r|'|'r'.,:le

P

where A, is the number of codewords of weight d

[E3

Then in that case the first event error probability can be upper bounded by this, so this is the
probability of first event error of weight d and how many such weight D paths exists, that is
given by this and you sum a word, your D which goes from free distance of initial code to
infinity. So this will give you an upper bound on probability of first error event probability, now
can we make use of the weight enumerating function of the convolutional code to calculate this,

and this is what

(Refer Slide Time 16:11)
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# [or odd d, we can write

-:.l_| o
|”-:|' — = ( " )p-r[l_p]d [
1

=ty

Z {: i )P.r.':-“ )
P

i

wr gy ()

=0
— EI'P-'I._'IJ{ 1 P]u_-'."'

We are going to show so let us first try to simplify the expression for probability of first event

error.

(Refer Slide Time 16:20)
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@ All incormect paths of length t branches or less can cause a first
event srror at time t

@ Thus the first event error probability at time t can be bounded using
uiign beund by the sum of the error probabilities of each of these
paths.

@ If all incorrect paths of length greater than t are also included, then
the first event error probability at any time t can be bounded by

PE) = Z Afr’f

o= "'rrﬁ'@

e
where A, is the number of codewords of weight d

(Refer Slide Time 16:22)
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@ The incorrect path must have diverged fram all zera state at same
timme and has now remerged at time t for the Birst time

@ 5o, it must be one of the path enumerated by the codeword weight
enumerating hunctisn.

@ Assuming that the inLt:-rre:I: path has weiEhL d, a tirst event error
Imppem with probabi |||,}r
\—l-l_'__——

———

___[—— — .
NPJ = 0 | i
| g—w Pt ¢

B 5 5,67, )

So this was the expression for, this was the expression for first event error probability so let us

try to simplify this expression, so we will first do it for when D is odd and then we will do it for
when D is even.

(Refer Slide Time 16:41)
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@ [or odd d, we can write

Py = }:(‘: jl&:'[l Py
SE(
o2 E--:-zlr%‘ d "-'II
= p"H1-p %:_L(\E )|
< p“"'“t_pa’jlti% f)g
N ioTae

So when D is odd the expression is given by this, now note that this crossover probability is
typically small. So this is our, again this is our number between zero and one so if you raise it by
a higher number you get smaller quantity. So the first upper bounding that we are doing is
instead of raising it to E we are raising it to D/2 and again because this is a number between zero
and one, see the actual expression would have been this P raised to power d+1/2 then d+3/2/2

and like that it basically this number will go on decreasing because

You are raising it to a higher value now I can just fix instead of varying it as fixed | keep it fixed
and | kept it as d/2 so that is the first upper bound that we are getting. Next this term does not
depend on E so | can take this out, so what | am left with this, this D choose E where E goes
from D+1/2, 2D. Now next upper bounding what I did was | replaced it by equal to zero so
instead of E= D+1/2 | am adding more terms | added from equal to zero. So that is why this
upper bound came and what is this, this is nothing but to this P*so then for odd D I can write this

first event error probability as upper bounded by this quantity.

(Refer Slide Time 18:47)



ud ) "] e v L B AL | w.l_"
PO 2T Qe @0 g Fif- e e L] W Sesmens 5

@ Similarly, for evan d, we have

(e e e . 4 o
- 3 )rumae 3 (raspre
== e : (i :
- =
i E ( i j.'."lfl — )"
= {d s .-!
< E L = )p {1 —p)
e={d/2)

p'f".zlfl - p]e,-".' E( d ) =:,_.:p:'-".i-i1 = p«]:-":

Next let us do the same thing for even D, so for an even D the expression for first event error is
given by this expression, so first thing that | do was | upper bound this by changing this exponent
from E/2+ one two E/2. Note that in this expression when the error pattern is D/2 | consider a

50% probability of making an error, now | just remove that and | added that here.

(Refer Slide Time 19:27)
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@ Similarly, for even d, we have

I removed that 50% thing here so that is why | am getting an upper bound here, next same as
infuse expression | replace previous power of E by previous power D/2 and again because P is a

number between zero and one if you raise it to a higher number it decreases so | just.

(Refer Slide Time 19:46)
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@ Similarly, for even d, we have

Kept it at D/2 this is the smallest value of E, third thing which I do is again like in for the odd
case this term does not depend on E, so | can bring it out so | brought it out and what | am left is
with this right and then I add terms from E zero to up to D/2, so | replace this by this so again
then | am upper bounding, |1 am adding additional terms here so this quantity would be less than
this quantity, and finally this is 2 is P? so I get my expression for first event error probability for
D being odd given by this expression, so PD is upper bounded by this for when D is even.

(Refer Slide Time 20:50)
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@ All incorrect paths of length t branches or less can cause a first
event error at time t.

@ Thus the first event error probability at time t can be bounded using
uinan bound by the suin of the error probabilities of each of these
paths.

@ If all incorrect paths of length greater than t are alse included, then
the first avent error probability at any time t can be bounded by

- = fd
FlE)= Y Aalu
r'_n'fréé

where Ay is the number of codewords of weight d.

And we showed

(Refer Slide Time 20:51)
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# For odd d, we can write

Even for when D is odd it is upper bounded by the same quantity.

(Refer Slide Time: 21:00)
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@ Hence,

PAE) = 3 Ad2y/p(1—p))
L

A(X) K=/ el )

So then what we can do is we can write that our first event error probability is upper bounded by
this.

(Refer Slide Time: 21:04)



Event error probability

Fi(E) = E Ag|2+/pl1 - )

@ Hence,

*ree -
A(X)

X=2,/pl1-p)

We just showed this for d equal to odd and d equal to even separately. So we can upper bound

this probability by this.
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@ Hence,

Y A2/l - )]

fres e

AX)I X=2,/pl1- g}

Now what we are going to do is we know our weight enumerating function so we will give us the

distribution.

(Refer Slide Time: 21:41)



Event error probability

@ Hence, o= ——
: 7
PAE) = 3 ARvili-o)l |
= i
T
X=2y/ol1p) dedie

So if we have some weight enumerating function it is essentially will give us from d = dyee t0
infinity it will give us how many code words of weight d are there and x° okay, so we are
essentially making use of this weight enumerating function and we look at the form of our first
event error probability so looking at these two we can write then that first event error probability
can be computed from the weight enumerating function by replacing the weight that x by this

quantity. So this we obtain by comparing this equation with this equation, okay?

(Refer Slide Time: 22:35)



Event error probability

@ Hence,
PUE) < Y Ad2/oll )l
d_lj'F".'L‘
= ANy mra
2 We have event error probability at time t upper bounded by

first avent error probabulity, hence

P(E) = A(X)|

X=2y/pll—p)

Now what sort of error events can happen? So let us just spend some time on that.

(Refer Slide Time: 22:43)



Event error probability

@ Hence,

PHE) < S AdVAT PP
= ron
= A{X):x_gm

@ We have event error probahbility at time time t upper bounded by
first event error prabability, hence

P(E) < A(X)|

A=ty pl1-p)

@ For small p, the bound is dominated by the first time, thus event
errar probability can be approximated as

P(E) = Agg,[2V/o(1 - p)]free
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Bit error probability

@ The hit error prohability can be bounded by

Po(E)< ) BaPy
*-lfrge

where By is the total number of nonzero information bits on all
weight-d paths, divided by the number of information bits k per umt
time

What is the type of error events can happen?

(Refer Slide Time: 22:46)
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@ The bit error probability can be bounded by

PUE) < Y BaPy
#=ifroe

where By is the total number of nonzero information bits on all
weight-d paths, divided by the number of information bits k per unit
time

@ Then we can write

P(E) < Z B.:i?v'Ji-‘{l = J’"d = Bf.x}'x-zv wl-p)
m=d
frea
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@ Multiple error events

Diecndest Paik

Enrect path

So of course you can have a scenario where you have multiple error event.

(Refer Slide Time: 22:50)
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@ Multiple arror events

Deceded Paik

U'nrreet parh

So you had, you diverged from all zero state you merge back then you again diverged you merge
back, you diverged you merge back this can happen, now when will you, so if your decoded path
is this that means the metric that you are getting here is better than the metric value for all zero
state and that is why you are deciding in favor of this.

(Refer Slide Time: 23:19)
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@ Multiple error events

Deraedd Paiby

Urnirraet poth

Now there are multiple ways in which these errors can happen, so error can happen error events

can happen in multiple ways so let us say.

(Refer Slide Time: 23:30)
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@ Multiple error events

Decreed Paih

Enrrect paih

There might be situation when you have diverged from all zero state and then merged back into
all zero state and then after some time you again diverge from all zero state, stay away from all
zero state and then you merge back and again then you stay away from all zero state diverge and

then again merge back, so you can have multiple error events happening.
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Different error events configuration

P

Now let us look at whatever various types of error configuration you can have.

(Refer Slide Time: 24:08)



Different error events configuration

Tz

So for example you could have a scenario like this, so you diverge from all zero state and then
you merge back and at this time since, let us say your metric corresponding to this path was
better than metric corresponding to all zero state path so you have discarded all zero state path
and decided in favor of this path.

(Refer Slide Time: 24:36)



Different error events configuration

Tz ¥ G i ;
: )

Now further up when you came here you are here and there was one path which was going like
this and when you came to this time is this t then again the metric corresponding to this was
worse than the metric value corresponding to this path so you decided to go for this particular
code word just calling this all zero state as vector V having code word V this is code word V' and

this is code word V".

So the point which I am trying to make is whenever you have these kinds of multiple error events
you can always upper bound your event probability by error probability of the first event error.
So when you decide in favor of this particular code word that means this has better metric
corresponding to V' or V, right? So we can upper bound the probability of event error by first

event error probability.

(Refer Slide Time: 25:51)
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And this could have multiple configuration for example.
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Different error events configuration

This is your all zero state so you are here all zero state when you came to this point you notice
that this metric was better than this metric so you discarded this and you decided in favor of this
particular code word, which is your code word V' but then when you came here again this metric
was better than this so you discarded this and you decided in favor of this, so this another way
multiple error events can happen.
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Different error events configuration

Time

Or you could have a situation like this.

(Refer Slide Time: 26:28)



Different error events configuration

Time

You are at all zero state when you are at this particular instance you notice this has a better
metric so you decide in favor of this incorrect path, but then when you reached here you noticed
this path has a better metric so you discarded this and then you decided in favor of this, now for
each of these cases we can upper bound the event probability by the first event error probability

which we have already computed.

(Refer Slide Time: 26:54)



Event error probability

@ Hence,

PHE) = Z Ag2/p(1 - p)]*
R T
A{X}'x_;m

@ We have event error prabability at time time t upper bounded by
first event error prabability, hence

P(E) = AX) a o

@ For small p. the bound s dominated by the first time, thus evenl
error probability can be appraxmated as

P(E) = Aq. __[2:/p(1 - p)]free
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3 L] (v ' R \E
G /Teg=sad clf-eIENEEONONED W w0

Event error probability

@ Hence, |
PIUE) < D, AVl -plff
i
- A{x}-'.lc_:l v r1—p)
@ We have event error probability at time time t upper bounded by |

first event error probability, hence

[7E <01 |

@ For small p, the bound is dominated by the first time, thus event
error probability can be approximated as

e — dfrne
Fqs} .r;]A,.,Fm [2v/a(1 — p)lfree 1

So this event error probability can be upper bounded by the first event error probability so we
can write a probability of error in this particular fashioned, now note here you had terms
corresponding to various d’s so you had terms correspond to dyree, Ofree, +1, direet2 SO SiNce the
value of p is typically very small the most dominating term in this error probability expression is

your first term which is the dee term.

So you can also approximate your probability of event error by how many such events are there
which have paths which have A dsee and this raised to power dsee, SO case when p is very small
this bound is dominated by the first term which is the term corresponding to dse and in that case

we can write down an approximate expression for probability of error like this.

(Refer Slide Time: 28:28)
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Bit error probability

@ The bit errar probability can be bounded by

PoE)< Y BaPa
#=dfrop
where By i5 the total number of nonzero information bits an all

weipht-d paths, divided by the number of information kits k per unit
iirm,-

Now can we modify this expression to calculate bit error rate probability the answer is yes. So

you know what is a weight corresponding to an incorrect path, now if we can find out what is the

information weight corresponding to these incorrect path and then.

(Refer Slide Time: 28:54)
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Bit error probability

@ The bit arror probability can be bounded by

‘(PH(E} Z Bu P,._‘

H-drﬂ_‘[‘ l

where By s the total number of nonzero information hits on all
weight-d paths, dvided by the number of information bits k per unit
tirme = i

We divide it by total number of information bits, we can find out what is the bit error rate
probability. So bit error rate probability can be computed from this first event error probability
this is given by this expression where By is the total number of nonzero information bits on all

these weight-d incorrect paths, divided by k information bits per unit time.

(Refer Slide Time: 29:31)
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Bit error probability

@ The bit error probability can be bounded by

P(E) < Z BuPy

R T

where By is the total number of nonzero information bits on all
weight-d paths, divided by the number of information bits k per unit

time
@ Then we can write e
e e g+ WEF
{Pa{E} < Y BRVAT- PN = B o/
4 pe

So if we plug that value of bit error rate probability we can see that, we can similarly write the
expression for bit error rate probability it is the bit, this is bit weight enumerating function. And

in a minute we will talk about how to generate bit weight enumerating function from.

(Refer Slide Time: 30:02)
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Bit error probability

@ The bit error probability can be bounded by

PE) <= Y BuPy

d=dfran

where By is the total number of nonzero information bits on all
weight-d paths, divided by the number of information bits k per unit
time TowsF
@ Then we can write et

—— S g4 WEF

Pn{E} = X Bﬂlz‘b:p{l T P]IIf = S(X}lx ?U;Pll p‘]
4 e =

WEF

Input, output weight enumerating function or from weight enumerating function we will talk
about this so this can be computed from bit weight enumerating function by substituting x equal

to this quantity okay. Let us just take an example to illustrate this.

(Refer Slide Time: 30:23)
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Example: Computation of Event error probability

@ For the (3, 1, 2) encoder calculate the event error probability for
crossover probability of p = 1072 for binary symmetric channel.

So let us consider the same encoder that we have considered so it is a (3, 1, 2) convolutional
encoder it is a feedforward encoder and what is given to us is the crossover probability is point
01, you were asked to compute what is the event error probability. Now we know the expression

of event error probability the bound on event error probability that is given by this expression.

(Refer Slide Time: 30:52)
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@ Hence,

PUE) < 3 Adpvali—pll
B 1

= X i

@ We have event error probability at time time © upper bounded by

first ewvent error probability, hence
— e—————

E’{E} e Iy — Vg

@ For small p, the bound is dominated by the first time, thus event
error probability can be approximated as Clp
g brn
3 A ;
TP[E} --*]Adrm VAT~ Al free ] v

In this particular example p is very small, p is point 01, so we can approximate we can get the
approximate expression of event error probability from this. Now what is the free distance of this
convolutional code again if you go back the minimum weight sequence was 7. So dsee for this

particular example was 7.
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Example: Computation of Event error probability

@ For the (3, 1. 2) encoder calculate the event error probability for
crossover probability of p = 1077 for binary symmetric channel

e e

8 digp :? and Ay = L. then we have

PE)=~27p"* =128 x 1077

So free distance was 7, and there was only one such sequence of weight 7, so we plug those
values of dsee and Adsee in the expression for probability of event error and we get probability of
event error to be roughly 1.28 x 107.

(Refer Slide Time: 31:46)
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Example: Computation of bit error probability

a Calculate the bit error probability for the same encoder for p = 1077,

Now how do we compute the bit error probability so first we have to generate bit weight
enumerating function. We know how to compute weight enumerating function it has been

explained in lecture 2C.

(Refer Slide Time: 32:00)
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mple: Computation of bit error probability

a Calculate the bit error probability for the same encoder for p = 1077,

(Refer Slide Time: 32:01)
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Example: Computation of bit error probability

@ Calculate the bit error probability for the same encoder for p = 1077,

@ The bit weight snumerating function is given by

. i
B(x}) (IM}:JAE’P:;;X}_W 1

AXTW/(1 - XW - X2W)]

‘JW s
( X+X!_’)X1+"}Xﬂ_xh}

- ,.: +

So assuming you have the weight enumerating function which tells you and you have the input,
output weight enumerating function which will tell you what information bit causes what is the
corresponding output weight, so you could compute bit weight enumerating function by partial
derivative of your input, output weight enumerating function with respect to W and putting W=1
and 1 by k times that, if you do that you will get the expression for bit weight enumerating

function.

So for the example, that we have considered we already had the expression of input, output
weight enumerating function so if we plug that in we get the expression for bit weight
enumerating function like this. And then we can divide this by this so we will get X’ + some,

some terms like that. So in this case also what iS Ofree, Ofree 1S 7 @and Bdsee is also 1.

(Refer Slide Time: 33:11)
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Example: Computation of bit error probability

@ Calculate the bit error probability for the same encoder for p = 10 2
& |he bit wr_!ight Qnumerating function is giucn by

dAW._ X
B(X) = (L/k) f}W )

AW (1 - xw — xPw)]
. |-

w=1

AW
X.I’
0 —2X+XZI_9X01 05" 1 X9)
a dﬂ'E = 7 and E"Frm- = 1, then we have

P(E) = e 128 1070

—

So this quantity is 1, dsee IS 7 SO We can approximate the expression because the first term
corresponding to the free distance will be the dominating term so we can write probability of bit
error to be this okay.

(Refer Slide Time: 33:31)
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Example: Computation of bit error probability

@ Calculate the bit error probability for the same encoder for p = 10 2
& [he bit w\cight q\numcrating function is g'wen by

AW X
80 = (A,
AXTW (1 — XwW - xPw)]
T aw L
X.I’
(1T —2X + X2 —2X3 1 2X% + XP)
@ dyo, =7 and Bd}-rm =1, then we have

PE) =2~ 198 = 107°

So with this I will conclude this discussion on performance analysis of convolutional code over
binary symmetric channel. Now similar analysis can be done for other channels as well. Thank

you.
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