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Welcome to the course on error control coding, an introduction to convolutional code.
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Lecture #5C: Problem solving session-11

So today we are going to continue with some more problems related to convolutional code. So

let us solve some more problems and then we will move to our other topic.
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Convolutional codes

@ Problem # 1: Feedforward encoder inverse: How do we find an
estimate of the information sequence from the received sequence
without decoding?

So first question is on feedforward encoder inverse.



(Refer Slide Time: 00:39)

b Es'©0 SHCNEY

=3 E
o T A o BENEETDEEDT M i

Convolutional codes

@ Problem # 1: Feedforward encoder inverse: How do we find an
estimate of the information sequence from the received sequence
without decoding?

So what is encoder inverse, we will talk in a minute. So many times we are interested in
estimating the information sequence directly from the received sequence without decoding it. So
for example if we are encoding a sequence using systematic encoder then you can directly from

the received bits you can get back your information bits.

However, if we are using a nonsystematic encoder then you cannot directly get the information
bits. So we are talking about an encoder inverse which will allow us to recover back the

information bits directly without decoding.
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Convolutional codes

@ Problem # 1: Feedforeard t‘l’1{.‘t.)tjt‘l' inverse: How do we find an
estimate of the information sequence from the received sequence
without decoding?

So in this problem we will look into what is an encoder inverse and under what condition the

encoder inverse exist.
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@ Problem # 1: Feedforward encoder inverse: How do we find an

estimate of the information sequence from the received sequence
without decoding?

@ Solution: Since v(D) = u(D)G(D), we need an inverse matrix
G (D) such that G(D)G (D) = D' for some positive /.

——

So as we know that our coded bits can be written as our information bits times is generator
matrix encoding matrix, and the problem that we are looking at is finding out the encoder
inverse, and we will talk about whether a feedforward inverse for this encoding matrix exist or
not and under what condition it exist.
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Convolutional code

@ Problem # 1: Feedforward encoder inverse: How do we find an
estimate of the information sequence from the received sequence
without decoding?

@ Solution: Since w(D) = u(D)G({D), we need an inverse matrix
G YD) such that G{D)G 150! = D' for some positive /.

. [hen1u{DE (D) = u(D)G(D)G (D) = u(D)ID' = ju(D)!

So if there exists a feedforward inverse then if we from the received sequence if we just multiply
by the encoder inverse we can get back our original information bits without decoding after some
delay. So this DI is some delay DI. So what we are saying is we are interested in finding this
encoder inverse does this encoder inverse exist, a feedforward encoder inverse does it exist such

that G(D)G™ is some delay element.

And what is the use of this, so if you have your information sequence v(D) if it passes through
this encoder inverse circuit, we can directly get back our information sequence. And in many
cases for example, if the channel conditions are good you may directly want to first guess or
check whether the information bits are directly estimate information bits. So you may want to

pass it through this encoder inverse circuit.
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Convolutional codes

@ Problem # 1: Feedforward encoder inverse: How do we find an
estimate of the information sequence from the received sequence
without decoding?

@ Solution: Since w(D) = u(D)G(D), we need an inverse matrix
G (D) such that G(D)G (D) = O for some positive /.

@ Then w(D)G (D) = u(D)G(D)G YD) = u(D)ID" = u(D)L
@ For a rate R=1/n code, a feediorward inverse exists if and only if

GCD{g"(D).g'(D).--- .g" (D)} = D'

So I am now stating without proof the condition under which these encoder inverse exist.
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Convolutional codes

@ Problem 3 1: Feedforward encoder inverse: How do we find an
estimate of the information sequence from the received sequence
without decoding ¢

@ Solution: Since w(D) = u(D)G{D), we need an inverse matrix
G YD) such that G(D)G (D) = D' for some positive /.

@ Then v(D)G (D) = u(D)G(D)G YD) = u(D)ID' = u{D}L
@ For a rate R=1/n che_Fﬁedlmward invers.eiexists if and anly if

GCD{g"(D).g'(D).. - g '(D)} = 0! Az O

A feedforward encoder inverse exist, so for a rate 1/n code a feedforward inverse will exist if the
greatest common deviser between these n generator sequences of this rate 1/ n code. If the
greatest common deviser among these generator is some delay element this | is something which

is greater than equal to zero.

So they do not have many term common in them, just some D times, basically some delay
element. So we do not want these generator sequences to have any term common between then.
If they have any term common between them, then a feedforward inverse would not exist. Then

there will be a feedback inverse.
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Convolutional cades

@ Problem 3 1: Feedforward encoder inverse: How do we find an
estimate of the information sequence from the received sequence
without decoding?

@ Solution: Since w(D) — u(D)G{D), we need an inverse matrnix
G YD) such that G{D)G (D) = D' for some positive |
a Then v(D)G (D) — u(D)G(D)G YD) — u(D)ID' — u(D)D'

@ For a rate R=1/n code, a feedforward inverse exists if and only if
GCD{g"(D).g'(D),- - .g" (D)} = D
@ For a rate k/n code, a feedforward inverse exists if and anly if

GCD{Aa(D) = D'}

where {£;(D)} is the set of all determinants of k x k submatrices.
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Convolutional codes

@ Problem # 1: Feediorward encoder inverse: How do we find an
estimate of the information sequence from the received sequence
without decoding?

@ Solution: Since w{D) — u{D)G(D), we need an inverse matrix
G (D) such that G(D)G (D) = D' for some positive |

@ Then v(D)G (D) — u(D)G(D)G (D) — u(D)ID' — u(D)D'

& For a rate R=1/n code,. a feedforward inverse exists if and anly if

GCD{g"(D),g'(D).--- .g" (D)} = D'

@ For a rate k/n code, a fPﬂdEmnerﬂ: if and only if
Gen{aq(o) =o'} Lzo

where [Ai(D)} is the set of all determinants of k = k submatrices.

Similarly for a rate k/n code a feedforward inverse will exist if and only if the greatest common
deviser. If you look at set of all determinants of k x k submatrices of this generator matrix, then
the GCD of these set of determinants should be again some D' where | is a positive number. So
we do not want the determinants of this k x k all possible k x k submatrices to have any common

term among them. If this condition is satisfied a feedforward inverse exist.
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Convolutional codes

aletGID)=N+P2+0 1+0+ 07+ DY

So let us take an example where feedforward inverse exist.
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Convolutional codes

%,[D-) ca__{n_}
o i
sl GD)=+02+0° 1+D+ 0+ D

So we are considering a feedforward rate ¥ is the rate %2 encoder. So go(D) is this one and g1(D)
is this.
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Convolutional codes

aletGD)=[1+D*+D% 1+D0D+ 0+ DY
@ GCD {1+ D% + D1+ D+ D° + D'} = 1. Hence feedforward
inverse exists

And what is the common deviser between them?
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Convolutional codes

@ Let GD)=[1+ D2+ D° 1+D+D°+ D
e GCD {1+ DR+ 1i+D+ D2+ D“i = [_ Hence feedforward
inverse exists -

We can check basically they do not have any common terms so the greatest common deviser is 1.
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Convolutional codes

@ Problem # 1: Feediorward encoder inverse: How do we find an
estimate of the information sequence from the received sequence
without decoding?

@ Solution: Since w(D) — w{D)G(D}, we need an inverse matrix
G YD) such that G(D)G (D) = D' for some positive /.

a Then v(D)G (D) — u(D)G(D)G (D) — u(DJID' — u{D)D

@ For a rate R=1/n code, a feedforward inverse exists if and only if

{ED{ED(D}-E’{D}-"' e =0 |

@ For a rate I-cl,-f; cade, 2 feedEmnerﬂ: if and only if
cen{ayn) =} Lzo

where {A;(D)} is the set of all determinants of k = k submatrices.

So if we go back and look at our condition for encoder inverse to exist this condition is satisfied.
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Convolutional codes

i
~H

%.,[D-J' 9.(2)
+ ¥ ;
aletGD)=N+D*+D 1+D+ 07+ D

So for this particular code with G(D) given by this.
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Convolutional codes

I-ID+D-’-D-‘]

aletG(D)=[1+D*+D°
1_ Hence feedforward

a GCD {1+ D+ D41+ D+ D* + D%} -
inwerse exists

Will have a feedforward encoder inverse.
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aletGD)=[1+D0*+ 0% 140D+ 07+ D7
@ GCD {1+ D?+ D31+ D+ D7 + D) = 1. Hence feedforward
inverse exists.

@ In this case,

@)= (1505

And in this particular case the feedforward inverse is given by this okay. So you can check G(D),
G(D) inverse will be 1.
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@ letGD)=[1+D0*+D* 1+D+ D%+ DY
@ GCD {1+ 0%+ D1+ D+ D% + D?} = 1. Hence feedforward
inverse exists (i+o i) l'_'n-urD

@ In this case, , , Q100 4D ){QH’ 2
1+ D4
¢ '(o)= ( —ﬁﬁf‘z )_ BT o
_‘(_J' =l +p}"9**' i
win) G (o J () frie v
P’z+pa‘+£’.!*rﬂi
=t

So we can just do a simple check (1+D*+D%) x (1+D+D?) + (1+D+D*+D%) x (D+D?) this is, so
this is 1+ D?+ D*+ D times D® + D* +D? times D*+ D” then multiply this with this you get +D
times D>+ D3+D*+D? +D*+D* +D° okay and let us see so D°, D° cancels out D*, D* cancels out
then this D*, D* cancels out D° D?® cancels out D D? cancels out D, D cancels out D*, D®
cancels out D? D? cancels out so what we are left is basically 1 okay, so and you can see this is
a feedforward.

Inverse so if you have your v(D) and if you pass it though this, this thing what you will get is

your get back your information sequence okay, get back your information sequence.
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Convolutional codes

@ Let

Now let us look at example for rate



(Refer Slide Time: 08:38)

. . - LD I
>
@ Let J:Jp er]

R= 2/3, so in this case we first have to find the determinant of all to 2 x 2 submatrices so what
are those 2 x 2 submatrices, one of them is this 1+D D D 1 next one is 1+ D D 1+D 1 and the

third one is D 1 1+D 1, so these are the three 2 x 2 submatrices.
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Convolutional codes

@ Let
1+ D 1+D
G{D}'( D 1 1 )

@ 2 x 2 determinants are given by {1+ D + D%, 1+ D21}

And we can
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@ Let

Find out the determinant in this case, in this case is just call it A, B and C, in case of A the
determinant is 1+D+D?, in case of B the determinant is 1+D+D+D?, so that is1+D?and Cis D +

1+D so that is 1, so these are the determinants of these 2 x 2 submatrices.
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Convolutional codes

@ Let
1+ D 1+D
G{D}'( D 1 1 )

@ 2 x 2 determinants are given by {1+ D + D%, 1+ D21}

And that is what | have listed here.
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Convolutional codes

@ Let
1+0 D 1+0D
th):( o 1 1 )
& 2 x 2 determinants are given by {1+ D+ D2 14 07,1}
s GCO{1+D+ D1+ 0211 =1
=

1+D+D? 1+D+D? and 1. Now we need to check what is the greatest common deviser among
them and in this case the greatest common deviser is again 1, so they do not have these
determinants of these 2 x 2 submatrices, do not have any term common on them, so in this case

also



(Refer Slide Time: 10:31)

BrExo0: ¢wepmiaaanfs

Pa rTeow usn e - vERREEEEREE ] W] oo

Il

@ Let

1+0 D 14D
B = ( B 3 2 )
@ 2 x 2 determinants are given by {1+ 0+ D%.1 + D% 1}
e GCD{1+D+ D1+ 021} =1
@ Hence, feedforward inverse exists and is given by
0
G YD) 1+D

oo
U
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@ Let
1+0 0O 140
Gl = =
©- (5 52),.,
@ 2 « 2 determinants are given by {1+ D + D%, 1+ D% 1}
@ GCD {1+D+ D21+ 21} =1
@ Hence, feedforward inverse exists and is given by - I L
- aw G © 40
1z2e
- T
sen GG (-

- 0- =
. ‘j G (D) ( ¥ e
() 1 = i

1D
——— =0

D

|
|
i
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A feedforward inverse exist and this is given by this okay, and again we can check that G(D)
inverse is basically will be some delay elements wireless greater then equal to zero with
something like this, we can verify this quickly. Let us see this, this will be 1 +D times 0 and then
this will be D 1+D, this is 2 x 3 and this will be 3x2 matrix so what we will get is a 2x2 matrix
and so this will be some | times 2x2 matrix so let us just workout, so this will be 1+D times 0
that is 0, and then you have D times 1 and this is 1 + D so that is 1, first term will be 1 and then
this will be multiply this by this.

So that is 1 + D into O that is 0 D into 1 + D so that would be D+D? and then 1+D into D so that
is again D+ D? so this will be 0. Next multiply this row by this column so what we get D times 0
1times 1, 1timeslsothatis 1+ 1is0, and if you multiply this by this the second row by second
column what you get is 0 times D 1 times 1+ D and 1 time D so that is 1+ D +D so that is 1.

So again what we are getting for this case is G(D), G (D) is identity matrix so | is 0 essentially
here okay, so this is a inverse for this generator matrix and we can see that this, all the terms are
feedforward terms is 1 1 /D and 1 1, so this a feedforward inverse for this conversional code
with this generator matrix okay. So now in to recap basically so the condition under which the

feedforward
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@ Problem # 1: Feedforward encoder inverse: How do we find an
estimate of the information sequence from the received sequence
without decoding?

@ Solution: Since w(D) — w(D)G(D), we need an inverse matnx
G (D) such that G(D)G (D) = D' for some positive /.
@ Then v(D)G (D) = u(D)G(D)G (D) = u(D)ID' = u(D)D’

@ For a rate R=1/n code, a feedforward inverse exists if and only if

IED@{D).g‘tm.- o)) =o' |¥

@ For a rate k/n code, a@ if and only if

GCO{A(D) =Eﬂv’ Lzo

where {8:(D)} is the set of all determinants of k  k submatrices.

Inverse for convolutional code whose generator matrix is given by G(D) is given by this
condition for rate 1/ n code and for a k x n code is given by this condition.
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Convolutional codes

@ Catastrophic encoders do not have a fesdforward inverse.

Now catastrophic encoders do not have a feedforward inverse, so for a catastrophic encoder we

will just show you that their inverse has feedback terms.
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Convolutional codes

@ Catastrophic encoders do not have a feedforward inverse.

e e —
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Convolutional codes

@ Catastrophic encoders do not have a feedforward inverse.

@ Example. Consider a convelutional encoder with
GID)=(1+D 1+
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@ Catastrophic encoders do not have a feedforward inverse.

@ Example Consider a convolutional encoder with
— + 0. =1
60)=[1+D 1+D°. R=3
ﬁ.m} %,l:ﬂ}

So let us look at one example, so let us consider a convolutional code whose generator matrix is
given by this, so this is a rate R = % convolutional code and it has four states because the
maximum degree of D is two, so the generator sequence is go(D) is given by 1+D and g1(D) is

given by 1+D?.
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Convolutional codes

@ Catastrophic encoders do not have a feedforward inverse

@ Example. Consider a convelutional encoder with
GD)=[1+D 1+D7

@ GCD {1+D.1+ D% =1+D.
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Convolutional codes

@ Catastrophic encoders do not have 3 feedforward inverse

@ Example. Consider a convelutional encoder with
G0)=[1+D 1+07 L
e GED {1+ D1+ D%} =1+0. 'r’=D L2e

Now first thing that we check is, what is the greatest common divisor among g0 and g1, as it turn
out in this case the greatest common divisor is 1+D so that is not same as D' for some | > 0, so

that means for this generator matrix we do not have any feedforward encoder inverse.
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Convolutional codes

@ Catastrophic encoders do not have a feedforward inverse.

@ Example. Consider a convelutional encoder with
&D}:[1+D 1+ D).

@ GCD {1+ D.1+D'}=1+D.

@ There doesn't axist any fesdforward inverse,

e —

So there does not exist any feedforward inverse for this particular convolutional code with
generator matrix given by this.
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Convolutional codes

@ Catastrophic encoders do not have a feedforward inverse.

@ Example. Consider a convolutional encoder with
GID)-[1+D 1409

e GO {14 D14 P} =1+D.

@ There doesn't exist any feedforward inverse,

@ Letu(D) =111 +D)=14+D+D*+---, then

w(D) = u(D)G(D) = L/(L+ D)1+ D 1+ D% =[1 14 D]
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Convolutional codes

@ Catastrophic encoders do not have a feedforward inverse.

@ Example Consider 3 convolutional encoder with
GO)_[1e0 1407

s GCD1+D01+D0%=1+D.

@ There doesn't exist any feedforward inverse. i o

nL.ntu{Dj_¢1+D}_]+D-—DE'—---.lheeu 4

¥(D) = w(D)G(D) = 1/(1+ D)L + D 1+ D% =1 14 D]

So let us take an example of u(D) given by 1/ 1+D this is a typo, thisis 1 1/ D, now 1 1/D can be
written as 1+D+D2+D3 so this is an all one sequence so our input is all one sequence which can
be written as in this D notation it can be written like this, this may u(D), now if I give this input
to my convolutional code whose G(D) is given by this what is my output? My output is u(D)
times G(D) so this will be given by this. So note I just, my input has infinite weight but the
output only has weight three and this is precisely an example of a catastrophic encoder.
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jolutional codes

@ Catastrophic encoders do not have a feedforward inverse.

@ Example. Consider 3 convolutional encoder with
GID=RN+D 1+

e GCD (14 D140 =1+0D.

@ There doesn't exist any feediorward inverse.

@ letu(D)=1{1+0)=1+D+D*+--, then

v(D) = u(D)G(D) = 1/(1 + D)1+ D 1+0% =[1 1+ D]

@ This is a catastrophic encoder since infinite input weight sequence
wiill result in hnite weight output seguendce.
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Convolutional codes

@ Catastrophic encoders do not have a feedforward inverse.
@ [xample Consider 3 convalutional encoder with
G -[1+D 1+
2 GCD(1+D1+ 0P} =14D.
@ There doesn't exist any feedforward inverse.
o Let u(D) =1{1 +D)—1+D4-Dz—---, then

v(D) = u(D)G(D) = L/(1 1 D)L+ D 1+ 0% =1 1+0]

@ This is a catastrophic encoder since infinite input weight sequence
will result in hinite weight cutput sequence. :

So you can see my input has infinite weight but my output has finite weight, so catastrophic

encoder would not have a feedforward inverse as this condition is violated.
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Convolutional codes

@ Catastrophic encoders do not have a feedforward inverse.
@ Example Consider 3 convolutional encodaer with
G =1+0 1+ D4
@ GCD {14+ D14+ D) =1+D.
@ There doesn't exist any feediorward inverse.
@ Let u{DJ—](I+D)—I + 0+ D2+, then

v(D) = u(D)G(D) = 1/(1+ D)1+ D 1+ 07 =[1 1+ 0]

@ This is a catastrophic encoder since infinite input weight sequence
will result in hinite weight output sequence.

S
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Convolutional codes

@ Problem # 2: If a class of rate 1/2 nonsystematic feedforward
convalutional encaders with G(D) = [g"(D) g'(D)] satisfy

(D) + D'g'(D) - 0"

They are known as quick look in (QLI) encoders. Show that QLI
encoders are noneatastrophic encoders,
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Convolutional codes

@ Problem # 2: I a class of rate 17 nonsystematic feedforward
6D) - [&'(D) g!(D) sisy

convalutional encoders with

[Fo0p)-0n) €7

s w0
They are known as quick look i [QLI) encoders. Show that QLI
encoders are noncatastrophic encoders, wea, feo

Next we look at a class of rate 1 % nonsystematic encoders so we are looking at a rate 1 %
nonsystematic feedback feedforward encoders whose generator matrix is given by this, and these
generators g°D and g1D satisfy this property. So what is this property, it says g°D plus some
delay thus B > 0 so some delay of g'D is given by D ® where o is also something greater than 0,
okay. Now let us take a simplified case am I let us say a = 0, B = 0 so what does it says, it says
¢°D +g'Dis 1.

So then I can essentially, looking at these generators | can essentially find out that this encoder
has a very simple encoder inverse so which is just one and one, if a is this so these are known as
quick look in encoders, why they are called quick look in encoder because quickly looking at this
encoder you can actually easily find the encoder inverse and essentially encoder inverse just

consist of two tabs, so in some sense for a systematic encoder the inverse is a form 1 and 0.
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Convolutional codes

@ Problem # 2: If a class of rate 1/2 nonsystematie foed forward
) = (D) g'(D)] satisfy

canvalutional encoders with G{n E

mn} - 0°'(D) - ﬂ gz

o i
They are known as quick-look in !:QLl! encaders. Show that QLI
encoders are noncatastrophic encoders, W=a, F-n
1 I
o 0

For a rate % code and here at they are of the form 1 and D" so they are in some sense closest to
systematic code if you want, like to call them.
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Convolutional codes

@ Problem # Z: If a class of rate 1/2 nonsystematic feedforward
convolutional encoders with G(D) = [g*(D) g'(D)] satisfy

¢'(D) + D'g'(D) = 0”

They are known as quick-loak in (QLI) encoders. Show that QLI
encoders are noncatastrophic encoders.
@ Solution: QLI encoders have a simple feedforward inverse

o (4)

hence are noncatastraphic
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Convolutional codes

@ Problem # 2: If a class of rate 1/2 nonsystematic feedforward
convolutional encoders with G(D) = [g(D) g'(D)] satisfy

g'(D) + 0°g'(D) = 0"

They arc known as quick-look in (QLI) encoders. Show that QLI
ancoders are noncatastrophic encoders.
@ Solution: QLI encoders have a simple feedforward inverse : =
] i w6 @:D

hence are nancatastrophic

So this quick looking encoders have a very simple encoder inverse, a feedforward encoder
inverse and that is given by this and you can verify that G(D), G(D)™ is your D*, okay. Now
note that the encoder inverse of quick looking encoder has just two tabs 1 and this D*and it has a

feedforward inverse so this cannot be a catastrophic encoder.
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Convolutional codes

Carastrophic encoders do not have a feedforward inverse.

L ]

Example Consider 3 convolutional encoder with
G0)=[1+D 1+D7

GO 1+0140°) =140
@ There doesn't exist any feedtorward inverse.
Letu(D)=1{1+D)=1+D+ 2+ -, then

v(D) = w(D)G(D) = 11 + D)1+ D 1+ D=1 1+ 0

This is a catastrophic encoder since infinite input weight sequence
will result in finite weight cutput sequence. o

S

We just showed in the previous slide that a catastrophic encoder does not have a feedforward

inverse.
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Convolutional codes

@ Problem # 2 If a class of rate 1/2 nonsystematic feedforward
convolutional encoders with G(D) = [g%(D) g'(D))] satisfy

g'(D)+D'g'(D) = 0"

They are known as quick-loak in (QLI) encoders. Show that QLI
encoders are noncatastrophic encoders.
@ Solution: QLI encoders have a simple feadforward inverse

= s
6(0) (ﬁl__ GG WD

hence are nancatastrophic

And since this has a feedforward inverse this cannot be a catastrophic encoder so because they

have a feedforward inverse they are not catastrophic.
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Convolutional codes

@ Problem # 2: If a class of rate 1/2 nonsystematic feedforward
convolutional encoders with G(D) = [g%(D) g'(D)] satisfy

g'(D) + D'g'(D) = D"
They are known as quick-look in (QLI) encoders. Show that QLI

encoders are noncatastrophic encoders,
@ Solution: QLI encoders have a simple feedforward inverse

hence are noncatastrophic
@ Further, the information sequence u{D) can be recovered directly
from w(D) = V(D) v'(D)] using an encoder inverse with only two

taps.
v(D)G YD) =v"(D) + 0'v'(D) = D"u(D)

And as | said you can very easily recover back your information sequence.
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Convolutional codes

@ Problem # 2: If 3 class of rate 1/2 nonsystematic feedforward
convolutional encoders with G(D) = [g%(D) g'{D])] satisfy

g'(D) + 0"g'(D) = 0

They are known as quick-look in (QLI) encoders. Show that QLI
encoders are noncatastrophic encoders.
@ Solution: QLI encoders have a simple feedforward inverse

o ( )

hence are noncatastrophic
@ Further, the information sequence w(D) can be recovered directly
from v(D) = W"(D) v'(D)] using an encader inverse with only two
taps. = E——— ‘rﬁ“ﬂ}“E -~ '#’l:b.‘i‘u
v(D)G (D) =v"(D) + O'v!(D) = D"u(D)

p——— S e ————

By making your coded sequence pass through this encoder inverse, so if your output sequence is
given by v(D) which is this then once v(D) passes through this encoder inverse may encoder
inverse what we get is V(D) + D*v'(D), now we know that quick looking code have this property
that g°%(D) + Bg*(D) is D* and V°(D) is this is equal to g°® “® similarly this one is g*(D) times
u(D). So from this condition and from here this will come out to be D*u(D). So among this class

of nonsystematic encoders quick looking encoders have a very simple encoder inverse circuit.
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Convolutional codes

@ Problem # 2: If a class of rate 1/2 nonsystematic feedforward
convalutional encaders with G(D) = [g'(D) g'(D)] satisfy

g'(D) + D’g'(D) = D*
They are known as quick-look in (QLI) encoders. Show that QLI

encoders are noncatastrophic encoders,
@ Solution: QLI encoders have a simple feedforward inverse

co-()

hence are noncatastrophic
@ Further, the information sequence u{D) can be recovered directly
from w(D) [vu{D) 1.'1(D)] using an encoder inverse with only two
g = === glayel) - Puiuin)
v(D)G (D) \IGM Du(D)

i

And one can easily find out what the information bits are from the coded bit without decoding.
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Problem # 3: An important distance measure for convalutional
codes is the column distance function. Let

(o) 1 (n-1) (0} (1) -1 o) (1) n-1)
(vl ':"'a]"UJ""’l ]-"1HV1 }'-"f b iy ]'-‘,F‘ )

denote the ith truncation of the codeword v and let

[tl], = {“éﬂluéi:l_ 3 _“iﬂ-H_“*LD]uEI-:' S5 uiﬂ-”.--- .l:J[O’IuE”} uj"_”]

denote the fth truncation of the information sequence u. The
column distance function of order | o) s defined as

d — [rllﬂ‘m,,:{d(lv']r-[\r"l:]rJU'ln.l[u"ln}

rE-:Iilll-l{w|v|g : |ula # 0}

where v is the codeword corresponding to the information sequence
u. Prove that for noncatastrophic encoders

j|iT di = dfl'l-.‘ﬁ'

The next problem that we are going to talk about is about a distance measure for convolutional

code. So we will first define what we mean by column distance function. As we know a

convolutional encoder can continuously encode an information sequence. So we can have an

infinite length input sequence and correspondingly an output sequence.
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@ Problem # 3: An important distance measure for convalutional
codes is the column distance function. Let

(o) 11 a-1) (o)1) (i1 a} (1 w1}
= 7 2, ) ) fe)
denote the /th truncation of the codeword w and let
[H], = {Jléo] r:lgl':I i -uin_ I':. u'i_ol ug_” it uiﬂ- H. ik ”}O!“EI :I:} l.r}n-”}
denote the /th truncation of the information sequence u. The
column distance function of arder |, o & defined as

di —  min, {([W]i e 10) < 'l £ [u']o)

Tilﬂ'lw|vla fula # 0}

where v is the codeword corresponding to the information sequence
u. Prove that for noncatastrophic encoders

Jim di = dfree

Now we define the column distance function for a convolutional code as follows. So before that |
am describing output code sequence v which is truncated to up to length I. So this notation that
you see [Vv]; it shows essentially our code word up to time | and what is our code word up to time

1?
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@ Problem # 3: An important distance measure for Er:mmlm:ion.n_i:C

codes is the column distance function. Let =

o 1 1 ] L 1 a 1 L
a0 T SR v 00 R T i, L

a;ate the Ith truﬁcatlon of the codeword v and let
[Ili, — {HJJO] r:é‘:I - :rik- I':I. “ili)] rrg_k:I s ugk- I':I. e u_.[g}ult;l ]} se !r}k- ”]
denote the Ith truncation of the information sequence u. The -
column distance function af arder |, o, & defined as

di — min {d(e) v ) : [u'lo £ [u']e)

= ol

}ﬁiﬁwlvl; uls # 0}

where v is the codeword corresponding to the information sequence
u. Prove that for noncatastrophic encoders

Jim dy = dyee

So this will be vo™® v, then vy v, because it is a rate, this is a rate let us say this is a rate 1/n
code then this is for first time instance you have n bits, second time instance you have n bits, and
then for | time instance you will have n bits. So this is your truncated code word up to time |.
Similarly I can define my truncated information sequence okay, so just a minute, this is a typo,
this should be k-1, this should be k-1, k-1 and of course if k is 1 there will be just 1, input so you
have for first time instance you have k inputs, second time instance you have k input as similarly
for | time instance you have k input.

Now note that both your information and coded sequence is truncated up to length I. Now we
define column distance function of order | as follows. It is the minimum distance between two

truncated code words of length 1.
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Convolutional codes

a Problem # 3 Animportant distance measure for convolutiona

codes is the column distance function. Let R
(0] A1) Le=13 400 (1] [#=1] (o [} [n=1}

[w)e = (g vy " oo g N7 T EERR T Tt SRR ]

dencte the Ith truncation of the codeword v and lat

[ua] r[..'é,n:'wé:;l . |f-[|'# L] |f{mui_” [ Ifi.h: Ea— .rar'”r.'f.-'l] . |.'|r'k 1y

dencte the /th truncaten of the mformation sequence u. The
column distance function of order |, o is defined as

g~ min {dli]p [ ]): B0 # [ )o)
— "] fun ) = = — —

——

e

where w is the codeword corresponding to the information sequence
w. Prove that for noncatastrophic encoders

[ ¢ = doe

Such that so you can see it is a minimum distance between two code words v and v~ both of
length | such that uand u~ they are not same, so it is, it is essentially hamming distance between
two truncated code sequences. Now we know that hamming distance between two sequences
minimum distance can be written as minimum weight of a non zero code word. So the same
thing we can write as minimum weight of a | th truncated code word belonging to a non zero
information sequence.

So we can define our column distance function of order | as minimum weight of | th truncated
code sequence belonging to a non zero information sequence. Now the thing that you have been
asked to prove here is show that as | goes to infinity this column distance function tends towards
free distance of the convolutional code. In fact after three or four constrain length you will see

the distance reaches d free and then its remains there.
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a Solution: By definition, di.. 15 the mimnimum weight path that has
diverged from and remerged with the allzero state

Column distance function, so by definition what is a free distance of convolutional code it is the
minimum weight path that has diverged from an all zero state and merged back into all zero
state. How do we find minimum weight code word, minimum length code word so it is, so if you
have convolutional code without loss of generating let us say we are transmitting all zero code
word, then minimum weight code word will be the length of the minimum weight along all non

ZEero.
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Convolutional codes

a Solution: By definition, dy,.,. 15 the minimum weight path that has
diverged from and remerged with the all-zero state

T _GGD

0
o & b P
ol
e BB

A part that goes through non zero state, so let us say you have some convolutional encoder, some
four set convolutional encoder and this is let us say your all zero state, all zero state. So, so all
zero state, and let us say you have some diversion from this and then you coming back so this is

your all zero state and what is your
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Convolutional codes

@ Problem # 3: An important distance measure for mnvalutmna_‘lr
codes is the column distance function. Let

(1] a1} (1]’ 1 1 (1] ] w1
[l = (DD 0y ety ey

EHGLE thi‘ ith LI’IJ'1C3_UI.‘|I“'I l:lr Lhe CQIJ&WGIIJ. yoand let
ful = (. ”10'1 LU M Dy “‘E# h
dencte the /th truncation of the ||1rl‘.lrr1|1slr.‘lr1 sequence u. | he
column distance function of o-de- I, di is defined as

di i {d([ ] v o) - o/ [ )

= Tl fu -

=

TAlal] [l £.0)

where v is the codeword corresponding to the information sequence
u. Prove that for noncatastrophic encoders

| Jim = dire

Column distance function, it is a minimum weight of your code word belonging to non zero

information sequence.
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Convolutional codes

& Solution: By debmitien, \'.I'fr 15 L L TR0 1T W'EllﬁhL path that has

diverged fram and remarged with the all-zero state

e o o0

And what are the paths through the trellis diagram, these are all our valid code words so we need
to find a path through the trellis which has minimum weight, so and that would be our free

distance so it is the free distances minimum weight path that has divert from all-zero state and
merge back right.
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Convelutional codes

a Solution: By dehnition, '”'fr is the munimum weight path that has
diverged fram and remerged with the all-zern state

_ 2 g o B

So that to get a non zero weight you essentially diverged from all, all-zero state and then merge
back to all zero state.
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Convolutional codes

@ Solution: By debnition, dg.. is the minimum weight path that has
diverged from and remerged with the all-zero state

@ Assume that [w|; represents the shortest remerged path through the
state chagram with weght "Iiree

Now let us assume that at time T=J so [V]j represent the shortest re-emerged path through this
trellis diagram or straight diagram which has weight of d free so if T=J is the smallest times
which represent the shortest re-emerged path through this trellis diagram.
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Convolutional codes

@ Solution: By debnition, dy . is the minimum weight path that bas
diverged from and remerged with the all-zero state

@ Assume that [w]; represants the shortest remesged path through the
state dhagram with weight oy .

@ Lot [fJ.jw be the minimum weight of all remerged paths of length |,

it follows that [dire = gy forall { = f.

And what does it mean, it means if we denote by DL the minimum weight of all re-emerged path
what is re-emerged path, so these paths which are diverging from all zero state and then merging
back into all zero state, these are our re-emerged path. Now what we are saying is for T=J that is
the smallest re-emerged path which has weight equal to dfree, so if you have any time any J
which is > than any time just > than this J.

Then your column, this is column function will be equal to the free distance. Why this is so
because we have said that for time = J that is the shortest re-emerged path through this trellis
diagram which has free distance which has rate = free distance, so if we take any time larger than

that then of course we will have a re-emmerge path having minimum distance.
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Convolutional codes

@ Solution: By definition, dy . is the minimum weight path that has
diverped from and remerged with the all-zero state.

@ Assume that [v]; represents the shortest remerged path through the
state diagram with weight o

@ Let [dijre be the minimum weight of all remerged paths of length |,
it follows that [di|re — df., forall [ 2=

@ Alsa, for a nnnc;tastmphié encoder, any path that remains
uulug:Ed sl accumuolals wenphl

Please d free, now if there are any non merge path what are non merge path, so these paths which
are diverged from all zero state but have not yet merged to all zero state so those are unmerged
path. Now for a non-catastrophic encoder any path that is not merge must accumulate to it, so

only for the catastrophic encoder we have situation where input weight is higher and output.
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@ Solution: By definition, dy . is the minimum weight path that has
diverped from and remerged with the all-zero state.

@ Assume that [v]; represents the shortest remerged path through the
state diagram with weight o

@ Let [dijre be the minimum weight of all remerged paths of length |,
it follows that |dire — dp, for all £ 2= §

# Alzo, for a noncatastrophic encoder, any path that remains

urreerged musl accuimolale wenghl

Weight is smaller but if it is a non-catastrophic encoder it will accumulate weight.
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wolutional codes

@ Solution: By definition, dy . is the minimum weight path that has
diverped from and remerged with the all-zero state.

@ Ascume that [v]; represents the shortest remerged path through the
state diagram with weight o

@ Let [dijre be the minimum weight of all remerged paths of length |,
it follows that [di|re — df., for all [ 2= §

@ Alsa, for a nnncatastmphié encoder, any path that remains
uuluﬁd sl accumuolals wenphl

So if we have one non systematic encoder any path which has not yet merged with all zero state

will try to accumulate more and more weight.
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Convolutional codes

@ Solution: By definition, dy . is the minimum weight path that has
diverped from and remerged with the all-zero state.

@ Ascume that [w]; represents the shortest remerged path threugh the
state diagram with weight dp.. .

@ Let [ch]re be the minimum weight of all remerged paths of length |,
it follows that [di|re — df.. forall [ 2§

@ Also, for a noncatastrophic encoder, any path that remains
urimerged must accumulale weghl,

@ Let ld't'-"" be the minimum weight of all unmerged paths of length |,
it follows that

J“:“. [ ]un —;-. s

So what is going to happen, so if we look at distance for column distance for unmerged path then
as L tends to infinity this distance will also grow, this also go to infinity because it is a non
catastrophic encoder. So what we have shown is so for L greater than J, for all re-emerged path
this column distance function is dfree and for unmerged path this is going to be infinity as L goes

infinity.
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Convolutional codes

@ Solution: By definition, dg_ is the minimum weight path that has
diverged from and remerged wath the all-zero state,
@ Assume that [w]; represents the shortest remerged path through the
state diagram with weight dp.. .
@ Let [dijre be the minimum weight of all remerged paths of length |,
it fallows that [di]ra dFr'#e forall [ = §
# Al=a, for a noncatastrophic encoder, any path that remains
unimerged mush accumulals weght
@ Let |dijyn be the minimum weight of all unmerged paths of length |,
it follows that
Ili:n. [ un —+ o
@ Therefore
Iim'h—' min { lim [dy]re. lim [ } —
LIS L .l'.-\. |T1 fr_i

Hence we can say that limit D(L) is minimum of the column distance for re-emerged path or
unmerged path. This is infinity, this is d free, so we know that as L tends to infinity the columns

distance, column distance function will be.
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Convalutional codes

@ Problem # 3: An important distance measure for r.unwluLlurl.:ll
codes is the calurnn digtanca function Ler R -.-.
ML l!1] = 1 [n—1] {u, (2] [a—1)
[vfr = vy vy LR B SR i e

I:-nnho the ith fr‘lmra—;mn of the codeword w and let
l“h—f‘ﬁgl:l]“ il ':H 1] I‘:u [i' (K- 1) _ JIIC']“" j [l“ |..‘-:I

i)

denate the (th truncation of the infarmation sequence W The
column distance tunction of order |, o) is defined as

& = _we DVE 1) : e # [u ]}

= ulu‘_

i

mm{ w|u'|,| |ulg _|

h =
where v i5 the codeword corresponding to the information sequence
w. Prove that for noncatastrophic i:nr.'ud:j

J I|bl1‘| di = dgan

dfree so this proves that columns distance function will go to dfree as L goes to infinity, thank

you.
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