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Welcome to the course on error control coding, an introduction to convolutional code.  
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So today we are going to continue with some more problems related to convolutional code. So 

let us solve some more problems and then we will move to our other topic. 
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So first question is on feedforward encoder inverse.  
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So what is encoder inverse, we will talk in a minute. So many times we are interested in 

estimating the information sequence directly from the received sequence without decoding it. So 

for example if we are encoding a sequence using systematic encoder then you can directly from 

the received bits you can get back your information bits. 

 

However, if we are using a nonsystematic encoder then you cannot directly get the information 

bits. So we are talking about an encoder inverse which will allow us to recover back the 

information bits directly without decoding.  
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So in this problem we will look into what is an encoder inverse and under what condition the 

encoder inverse exist. 
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So as we know that our coded bits can be written as our information bits times is generator 

matrix encoding matrix, and the problem that we are looking at is finding out the encoder 

inverse, and we will talk about whether a feedforward inverse for this encoding matrix exist or 

not and under what condition it exist.  
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So if there exists a feedforward inverse then if we from the received sequence if we just multiply 

by the encoder inverse we can get back our original information bits without decoding after some 

delay. So this Dl is some delay Dl. So what we are saying is we are interested in finding this 

encoder inverse does this encoder inverse exist, a feedforward encoder inverse does it exist such 

that G(D)G-1 is some delay element. 

 

And what is the use of this, so if you have your information sequence v(D) if it passes through 

this encoder inverse circuit, we can directly get back our information sequence. And in many 

cases for example, if the channel conditions are good you may directly want to first guess or 

check whether the information bits are directly estimate information bits. So you may want to 

pass it through this encoder inverse circuit. 
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So I am now stating without proof the condition under which these encoder inverse exist.  
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A feedforward encoder inverse exist, so for a rate 1/n code a feedforward inverse will exist if the 

greatest common deviser between these n generator sequences of this rate 1/ n code. If the 

greatest common deviser among these generator is some delay element this l is something which 

is greater than equal to zero. 

 

So they do not have many term common in them, just some D times, basically some delay 

element. So we do not want these generator sequences to have any term common between then. 

If they have any term common between them, then a feedforward inverse would not exist. Then 

there will be a feedback inverse.  
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Similarly for a rate k/n code a feedforward inverse will exist if and only if the greatest common 

deviser. If you look at set of all determinants of k x k submatrices of this generator matrix, then 

the GCD of these set of determinants should be again some Dl where l is a positive number. So 

we do not want the determinants of this k x k all possible k x k submatrices to have any common 

term among them. If this condition is satisfied a feedforward inverse exist. 
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So let us take an example where feedforward inverse exist.  
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So we are considering a feedforward rate ½ is the rate ½ encoder. So g0(D) is this one and g1(D) 

is this.  
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And what is the common deviser between them?  
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We can check basically they do not have any common terms so the greatest common deviser is 1.  
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So if we go back and look at our condition for encoder inverse to exist this condition is satisfied.  
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So for this particular code with G(D) given by this.  
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Will have a feedforward encoder inverse.    
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And in this particular case the feedforward inverse is given by this okay. So you can check G(D), 

G(D) inverse will be 1.  
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So we can just do a simple check (1+D2+D3) x (1+D+D2) + (1+D+D2+D3) x (D+D2) this is, so 

this is 1+ D2+ D3+ D times D3 + D4 +D2 times D4+ D5 then multiply this with this you get +D 

times D2+ D3+D4+D2 +D3+D4 +D5 okay and let us see so D5, D5 cancels out D4, D4 cancels out  

then this D4, D4 cancels out  D3, D3 cancels out D2, D2 cancels out D, D cancels out D3, D3 

cancels out  D2, D2 cancels out so what we are left is basically 1 okay, so and you can see this is  

a feedforward. 

Inverse so if you have your v(D) and if you pass it though this, this thing what you will get is 

your get back your information sequence okay, get back your information sequence. 
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 Now let us look at example for rate 
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 R= 2/3, so in this case we first have to find the determinant of all to 2 x 2 submatrices so what 

are those 2 x 2 submatrices, one of them is this 1+D D D 1 next one is 1+ D D 1+D 1 and the 

third one is D 1 1+D 1, so these are the three 2 x 2 submatrices. 
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 And we can  
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Find out the determinant in this case, in this case is just call it A, B and C, in case of A the 

determinant is 1+D+D2, in case of B the determinant is 1+D+D+D2, so that is1+D2 and C is D + 

1+D so that is 1, so these are the determinants of these 2 x 2 submatrices.  
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 And that is what I have listed here. 
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1+D+D2, 1+D+D2 and 1. Now we need to check what is the greatest common deviser among 

them and in this case the greatest common deviser is again 1, so they do not have these 

determinants of these 2 x 2 submatrices, do not have any term common on them, so in this case 

also 

 

 

 

 

 

 

 

 

 

 

 

 

 



(Refer Slide Time: 10:31) 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



(Refer Slide Time: 10:33) 

 

 
 

A feedforward inverse exist and this is given by this okay, and again we can check that G(D) 

inverse  is basically will be some delay elements wireless  greater then equal to zero with 

something like this, we can verify this quickly. Let us see this, this will be 1 +D times 0 and then 

this will be D 1+D, this is 2 x 3 and this will be 3x2 matrix so what we will get is a 2x2 matrix 

and  so this will be some I times 2x2 matrix so let us just workout, so this will be 1+D times 0 

that is 0, and then you have D times 1 and this is 1 + D so that is 1, first term will be 1 and then 

this will be multiply this by this. 

So that is 1 + D into 0 that is 0 D into 1 + D so that would be D+D2 and then 1+D into D so that 

is again D+ D2 so this will be  0. Next multiply this row by this column so what we get D times 0 

1 times 1, 1 times1 so that is 1 + 1 is 0, and if you multiply this by this the second row by second 

column what you get is 0 times D 1 times 1+ D and 1 time D so that is 1+ D +D so that is 1. 

So again what we are getting for this case is G(D), G -1(D) is identity matrix so l is 0 essentially 

here okay, so this is a inverse for this generator matrix  and we can see that this, all the terms are 

feedforward terms is 1 1 /D and 1 1, so this a feedforward  inverse for this conversional code  

with this generator matrix okay. So now in to recap basically so the condition under which the 

feedforward  
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Inverse for convolutional code whose generator matrix is given by G(D)  is given by this 

condition for rate 1/ n code and for a k x n code is given by this condition. 
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Now catastrophic encoders do not have a feedforward inverse, so for a catastrophic encoder we 

will just show you that their inverse has feedback terms. 
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So let us look at one example, so let us consider a convolutional code whose generator matrix is 

given by this, so this is a rate R = ½ convolutional code and it has four states because the 

maximum degree of D is two, so the generator sequence is g0(D) is given by 1+D and g1(D) is 

given by 1+D2.  

 

 

 

 

 

 

 

 

 

 

 

 

 



(Refer Slide time:  14:42) 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



(Refer Slide time:  14:45) 

 

 
 

Now first thing that we check is, what is the greatest common divisor among g0 and g1, as it turn 

out in this case the greatest common divisor is 1+D so that is not same as Dl for some l ≥ 0, so 

that means for this generator matrix we do not have any feedforward encoder inverse. 
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So there does not exist any feedforward inverse for this particular convolutional code with 

generator matrix given by this.  
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So let us take an example of u(D) given by 1/ 1+D this is a typo, this is 1 1/ D, now 1 1/D can be 

written as 1+D+D2+D3 so this is an all one sequence so our input is all one sequence which can 

be written as in this D notation it can be written like this, this may u(D), now if I give this input 

to my convolutional code whose G(D) is given by this what is my output? My output is u(D) 

times G(D) so this will be given by this. So note I just, my input has infinite weight but the 

output only has weight three and this is precisely an example of a catastrophic encoder. 
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So you can see my input has infinite weight but my output has finite weight, so catastrophic 

encoder would not have a feedforward inverse as this condition is violated. 
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Next we look at a class of rate 1 ½ nonsystematic encoders so we are looking at a rate 1 ½ 

nonsystematic feedback feedforward encoders whose generator matrix is given by this, and these 

generators g0D and g1D satisfy this property. So what is this property, it says g0D plus some 

delay thus ß ≥ 0 so some delay of g1D is given by D α where α is also something greater than 0, 

okay. Now let us take a simplified case am I let us say α = 0, ß = 0 so what does it says, it says 

g0D + g1D is 1.  

So then I can essentially, looking at these generators I can essentially find out that this encoder 

has a very simple encoder inverse so which is just one and one, if α is this so these are known as 

quick look in encoders, why they are called quick look in encoder because quickly looking at this 

encoder you can actually easily find the encoder inverse and essentially encoder inverse just 

consist of two tabs, so in some sense for a systematic encoder the inverse is a form 1 and 0. 
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For a rate ½ code and here at they are of the form 1 and Dß so they are in some sense closest to 

systematic code if you want, like to call them. 
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So this quick looking encoders have a very simple encoder inverse, a feedforward encoder 

inverse and that is given by this and you can verify that G(D), G(D)-1  is your Dα , okay. Now 

note that the encoder inverse of quick looking encoder has just two tabs 1 and this Dß and it has a 

feedforward inverse so this cannot be a catastrophic encoder.  

 

 

 

 

 

 

 

 

 

 

 

 

 



(Refer Slide time:  19:39) 

 

 
 

We just showed in the previous slide that a catastrophic encoder does not have a feedforward 

inverse. 
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And since this has a feedforward inverse this cannot be a catastrophic encoder so because they 

have a feedforward inverse they are not catastrophic. 
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And as I said you can very easily recover back your information sequence.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



(Refer Slide time:  20:06) 

 

 
 

By making your coded sequence pass through this encoder inverse, so if your output sequence is 

given by v(D) which is this then once v(D) passes through this encoder inverse may encoder 

inverse what we get is v0(D) + Dßv1(D), now we know that quick looking code have this property 

that g0(D) + ßg1(D) is Dα and v0(D) is this is equal to g0(D) u(D), similarly this one is g1(D) times 

u(D). So from this condition and from here this will come out to be Dαu(D). So among this class 

of nonsystematic encoders quick looking encoders have a very simple encoder inverse circuit.  
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And one can easily find out what the information bits are from the coded bit without decoding.  
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The next problem that we are going to talk about is about a distance measure for convolutional 

code. So we will first define what we mean by column distance function. As we know a 

convolutional encoder can continuously encode an information sequence. So we can have an 

infinite length input sequence and correspondingly an output sequence. 
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Now we define the column distance function for a convolutional code as follows. So before that I 

am describing output code sequence v which is truncated to up to length l. So this notation that 

you see [v]l it shows essentially our code word up to time l and what is our code word up to time 

l? 
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So this will be v0
(1), v1

(n-1) then v1 vn because it is a rate, this is a rate let us say this is a rate 1/n 

code then this is for first time instance you have n bits, second time instance you have n bits, and 

then for l time instance you will have n bits. So this is your truncated code word up to time l. 

Similarly I can define my truncated information sequence okay, so just a minute, this is a typo, 

this should be k-1, this should be k-1, k-1 and of course if k is 1 there will be just 1, input so you 

have for first time instance you have k inputs, second time instance you have k input as similarly 

for l time instance you have k input.  

Now note that both your information and coded sequence is truncated up to length l. Now we 

define column distance function of order l as follows. It is the minimum distance between two 

truncated code words of length l.  
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Such that so you can see it is a minimum distance between two code words v׳ and v״ both of 

length l such that u׳and u״ they are not same, so it is, it is essentially hamming distance between 

two truncated code sequences. Now we know that hamming distance between two sequences 

minimum distance can be written as minimum weight of a non zero code word. So the same 

thing we can write as minimum weight of a l th truncated code word belonging to a non zero 

information sequence. 

 So we can define our column distance function of order l as minimum weight of l th truncated 

code sequence belonging to a non zero information sequence. Now the thing that you have been 

asked to prove here is show that as l goes to infinity this column distance function tends towards 

free distance of the convolutional code. In fact after three or four constrain length you will see 

the distance reaches d free and then its remains there.   
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Column distance function, so by definition what is a free distance of convolutional code it is the 

minimum weight path that has diverged from an all zero state and merged back into all zero 

state. How do we find minimum weight code word, minimum length code word so it is, so if you 

have convolutional code without loss of generating let us say we are transmitting all zero code 

word, then minimum weight code word will be the length of the minimum weight along all non 

zero. 
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A part that goes through non zero state, so let us say you have some convolutional encoder, some 

four set convolutional encoder and this is let us say your all zero state, all zero state. So, so all 

zero state, and let us say you have some diversion from this and then you coming back so this is 

your all zero state and what is your 
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Column distance function, it is a minimum weight of your code word belonging to non zero 

information sequence. 
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And what are the paths through the trellis diagram, these are all our valid code words so we need 

to find a path through the trellis which has minimum weight, so and that would be our free  

distance so it is the free distances minimum weight path that has divert from all-zero state and 

merge back right. 

 

 

 

 

 

 

 

 

 

 

 

 

 



(Refer Slide Time 27:38:2) 

 

 
 

So that to get a non zero weight you essentially diverged from all, all-zero state and then merge 

back to all zero state. 
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 Now let us assume that at time T=J so [V]j represent the shortest re-emerged path through this 

trellis diagram or straight diagram which has weight of d free so if T=J is the smallest times 

which represent the shortest re-emerged path through this trellis diagram.  
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And what does it mean, it means if we denote by DL the minimum weight of all re-emerged path 

what is re-emerged path, so these paths which are diverging from all zero state and then merging 

back into all zero state, these are our re-emerged path. Now what we are saying is for T=J that is 

the smallest re-emerged path which has weight equal to dfree, so if you have any time any J 

which is > than any time just > than this J. 

Then your column, this is column function will be equal to the free distance. Why this is so 

because we have said that for time = J that is the shortest re-emerged path through this trellis 

diagram which has free distance which has rate = free distance, so if we take any time larger than 

that then of course we will have a  re-emmerge path having minimum distance. 
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Please d free, now if there are any non merge path what are non merge path, so these paths which 

are diverged from all zero state but have not yet merged to all zero state so those are unmerged 

path. Now for a non-catastrophic encoder any path that is not merge must accumulate to it, so 

only for the catastrophic encoder we have situation where input weight is higher and output.   
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Weight is smaller but if it is a non-catastrophic encoder it will accumulate weight. 
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So if we have one non systematic encoder any path which has not yet merged with all zero state 

will try to accumulate more and more weight. 
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So what is going to happen, so if we look at distance for column distance for unmerged path then 

as L tends to infinity this distance will also grow, this also go to infinity because it is a non 

catastrophic encoder. So what we have shown is so for L greater than J, for all re-emerged path 

this column distance function is dfree and for unmerged path this is going to be infinity as L goes 

infinity.   

 

 

 

 

 

 

 

 

 

 

 

 



(Refer Slide Time 31:17:7) 

 

 
 

Hence we can say that limit D(L) is minimum of the column distance for re-emerged path or 

unmerged path. This is infinity, this is d free, so we know that as L tends to infinity the columns 

distance, column distance function will be. 
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dfree so this proves that columns distance function will go to dfree as L goes to infinity, thank 

you. 
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