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Welcome to the course on error control coding, an introduction to convolutional code.  

 

(Refer Slide Time: 00:21)  

 

 
 

 

 

 

 

 

 

 



(Refer Slide Time: 00:23)  

 

 
 

So before we go to concatenated codes let us spend some time solving some problems. 
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So the first question is.  
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You are given a rate 1/3 convolutional code with generator matrix G(D) which is given by this. 
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The first question is, is this a catastrophic encoder? Will an encoder which has a generator matrix 

like this will this result in a catastrophic encoder?  
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So if you recall, what is a catastrophic encoder? A catastrophic encoder generates the finite 

weight output corresponding to an infinite weight input sequence. Now if you try to look it in 

terms of state diagram, in a state away from all zero state there is a self loop around a state where 

a nonzero input results in all zero output right. 
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Now let us look at this generator matrix and let us try to simplify, put it in a minimal form. So 

we can see the denominator this 1+D2 is common. So if we take that out we get here 1+D+D2 

and this is 1+D2, this is 1+D2+D4/1+D2 and this is 1+D+D2. Similarly we see in the numerator 

there is a common term 1+D+D2, if we take that out, what we get here is then this is 1 1+D+D2 

and 1+D2. Now how do we know whether this will result in a catastrophic encoder or not?  
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So look at this particular generator matrix, now what is my output sequence?  
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My output sequence v(D) is u(D) times G(D). Now is there any input sequence which is of 

infinite weight, but can result in a finite output weight for v(D), now if you pay close attention to 

G(D) we notice that if our input u(D) is chosen as 1+D4, 1+D+D2.  

If our input is chosen in this particular fashion then what will be the corresponding output v(D). 

If the input is chosen this way then output will be u(D) times v(D), so this term will cancel these 

term, so what you will be left with is this. So your v(D) would be 1 1+D+D2 and 1+D2 and what 

is the weight of this [Other language ][00:03:27]..जीतकर �दया वो गन्धा वो - Jeet Kar diya, woh 

gandha woh  
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So note here, so the input that will cause this output is given by 1+D4/1+D+D2 right. Now we 

can expand this, so let us say 1+D4 this is 1+D+D2, so let us just take 1 1+D+D2 this will be 

D+D2+D4, now this will be +D, this will be D+D2+D3 then this will be D3+D4 we can write D2, 

so like that basically we can see that this is a infinite series.  

The input is an infinite series, 1+D+D2 is essentially are infinite series; we can expand it like 

that. Whereas output is the finite series, it is just 1 1+D+D2 and the third bit is 1+D2. So you can 

see input has lots of ones in it, but the output has finite ones. So this is a case of catastrophic 

encoder.  

 

 

 

 

 

 

 

 



 

(Refer Slide Time: 05:08)  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

(Refer Slide Time: 05:11) 

 

 
 

Now the second question is what would be the minimal encoding matrix for the generator matrix 

given in the previous example. 
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So if I ask you find out the minimal encoding matrix for this encoder, so what do we do, we take 

out all the common factors, so if we take out common factors when we basically what we get is 

like this is our minimal encoding matrix.  
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And if we can write, if I ask you to draw this encoder.  
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We can – this is case 1, n is 3, the maximum memory is two, so I am drawing two memory 

elements here. 

The first coded bit is just 1, so this is the information sequence that goes in, second one is 

1+D+D2, so that is your let us call it v0, this is v1, this is u0 and the third bit coded bit is 1 and 

D2 this is your v2 okay. So this is the minimal encoder for the same generated matrix given in the 

previous example.  
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So consider a rate 2/3 nonsystematic feedforward encoder. So this is a generator matrix for a 

nonsystematic code rate 2/3 and it is a feedforward encoder, there are no feedback polynomials 

here.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

(Refer Slide Time: 06:57)  

 

 
 

The first question is draw the controller canonical form realization for this generator matrix. 

Now in controller canonical form realization we have one set of shift register for input. Now how 

many inputs do we have here, case 2. 
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So we will have two sets of shift registers for this. One for this and second set of shift register for 

this. Now what should be the maximum memory for each of this shift register, you can see here 

the maximum power of D is 2. So we should have two memory elements for the first input. 

Similarly for the second input also we should have two memory elements. Let us call it u0 and 

u1.  

Now there are 3 outputs so the outputs are this is 1 output D times the first and 1 times u1 so D 

times the first input is this and 1 times second input so that is this, so this is your first coded bit 

let us call it v0, now what is the second code bit, this is this term D2 u0  is this term, and D2 u
1 is 

this is term so this is your V1, and the third output is this so this is just a minute u1 and 1 D term 

and D2 term so this is your controller canonical form realization for this generator matrix. 
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 So this is precisely what we have here we can see 
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So this shift register is for this input and this shift register is for this input, maximum memory 

element for the first one is 2, second one also 2, and we can see now the first output is D times u1 

which is this plus u2 times this, the second output is D2 times u1 and D2 times u2 so that is this, 

and the third output is u1 which is this and this is u1 D times u1 D2 times u1 so that is your third 

output okay.   
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  Now this was a non systematic encoder can we find an  
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Equivalent systematic encoder or systematic encoding matrix for this generator matrix, the 

answer is yes so how do we find a systematic encoding matrix, so this has to be put in the form 

like this 10 01 and some matrix here, let us call it a1 D times a2 D and b1 D times  b2 D, so we 

will have to bring this matrix in this particular form so we have to get this to 1, this 2 this has to 

be changed to 1, this has to be brought to 0, this has this we have to brought to 1 and this we 

have to brought to bring to 0. 

Now we will do elementary row operation to get an identity matrix here so let us do that. 
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So first thing that we do is we make this a 1, how do we make this a 1, we do this transformation. 
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That Row 1 is Row 1/D so we divide this whole thing by D, what we get is 1 D 1/D, next we 

would like to get a 0 here.  
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Here we would like to get a 0, how can we get a 0 here, so we will do this transformation.  
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Row 2 is Row 1 + Row2 if we do that so.          
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We add these two this will become 0, this will become D + D2 and what we will get  
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Is this, next we would like to get a 1here, like to get a 1 here, how can we get a 1 here, we divide 

Row 2 by this so we do this transformation that Row 2 is Row 2 / D+ D2, and once we do that we 

get this, next we would like to get a 0 here right, how do we get a 0 here, we multiply Row 2/ D 

and add it to Row 1 so we do this transformation that Row 1 is Row 1 + D times Row 2 and 

when we do that we get this, so this is our equivalent systematic encoder.     
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For the generator matrix this okay.  
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Next is this equivalent systematic generator matrix is it realizable, if it is not find out an 

equivalent realizable generator matrix and draw its corresponding minimal encoder realization  

now note here.  
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This generator matrix has a term 1+D2 in the denominator now this cannot be realizable, so any 

denominator term that we have it has to be of the form 1+, some polynomial here but here this 1 

is not here so we cannot realize of a rational function of this form using our shift register, so this 

particular equivalent systematic encoder is not realizable however if you multiple this by D 2  
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What we get if we do this transformation, what we get is this. This is no longer so what we are 

getting now is basically a new equivalent encoder which is in the feed forward form and it is 

realizable.          
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So how do we realize it again if we are using controller canonical form realization we will have 
one set of shift register for this input another set of shift register for this input. What is the 
maximum memory for the first row, the maximum power of D is 1 so we will have 1 memory 
element for the first input and what is the maximum power of D for the second that is 2 here, 2 
here, 2 here, so we will use 2 memory element for the second input and again what are our 
outputs, there are three outputs the firsts output is this. This is u1 times this is just u1 so this is 
this second one is D2 of u2, so D2 u2 is just this term so this is my second output and the third 
output is this, D times u1D. Which is this one and one times u2D and D2 times u2d so that’s this, 
this is our 3rd output. Now given below is a rate to third 

  

 

 

 

 

 

 



 

 (Refer slide Time 16:26.1) 

 

 

Systematic convolution encoder please note this is leader in the controller canonical form 
realization, odd in the absolver canonical form realization. Note here the feedback terms that are 
coming here are not only coming from the same encoders likes this, feedback is not only so if 
you look at the feedback, feedback from this is going to this encoder and feedback from here is 
going to this encoder, so not only in feedback is coming to the same encoder but it is also going 
to the other encoder, so this realization is a very compact realization the question that is been ask 
is. 

 

 

 

 

 

 

 

 

 



 

(Refer slide Time 17:09.6) 

 

 

Can you find out the generator matrix code of warning to this encoder, so how do we find the 
generator matrix? 
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We know this is a relation between the input and the output, so how this inputs are getting map 
to the output that is governed by this generator matrix. So what we are going to do is we are 
going to write the output VD in terms of input UD, and then that would give us our generator 
matrix. So our objective is to write V1, V2, V3 in terms of U1 and U2. Find V use some 
auxiliary variables x and y which basically will help us find the contents here, so if  this is X of 
D this term will be D times X of D and this will be D squared times X of D. 

Similarly if this is Y this term will be D times Y of D. So what is V1 of D, V1 of D is U1 of D, 
you can see U directly goes, this input directly goes here, so V1 of D is U1 of D. Similarly this 
input UD directly goes the output here so V2 of D is U2 of D. Now what is V3 of D, V3 of D is 
this term which is X of D, this term D times X of D and this term which is D square X of D. So it 
is this term plus this term, so it is these 3 terms, now what is this term, this is Y of D so we have 
written V1 of D, V2 of D, V3 of D in terms of U1, U2 X of D and Y of D. 

Now note we need to get rid of X of D and Y of D and we have to write these in terms of U1 and 
U2. Now what is X of D, X of D is this and this, similarly what is Y of D, Y of D is this term, 
this term, sorry this term and this term okay. So we can write two more equations for X of D and 
Y of D.  
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So again Y of D as I said is U1 of D, Y of D is U1 of D which is this one, this is U1of D.  
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Plus D ². 
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X of  D. 
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 D ² X of D is this term, D ² is X of D is this term which is coming here, this term and there is another term here. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 



 

(Refer slide Time 20:47.8) 

 

 

Which is D times Y of D. 
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So D times Y of D note here the third input here is this one which is D times Y of D. Similarly X 
of D is first one is this term which is U of D. 
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So this is U of D and the second term is. 
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This term which is D times 
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Y of D this one okay? So now we have got equations of Y of D, of X of D, in terms of U1D and 
U2 D so let us write bring Y of D at one side and X of D of one side and write them in terms of 
Y of D and X of D in terms of U and D and U2 D. So if you solve this what we get is Y of D is 
given by this and X of D is given by this, now we plug these values of Y of D and X of D given 
by this. 

 

 

 

 

 

 

 

 

 

 



 

(Refer slide Time 21:54.3) 

 

Into here, into this expression of Y3 of D, so we plug this value of XD and YD which we just 
compute it, we plug those values in here if we do that. 
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We will get the expression of Y3 of D, okay? 
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Now so if we do that 
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Finally this is 3 of D okay, so if we do that what we get is then V3 of D is this times U and D 
plus this time U2 of D. 

So now we are 

 

 

 

 

 

 

 

 

 

 

 



 

(Refer slide Time 22:37.3) 

 

 

In a position to write the generator matrix the first equation that we will require is this one, 
second equation we will require is this one and 
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The third equation that we will require is this one. 
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Right, so you can think of it as like this so we have 
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3 output V1, V2, V3, two input U1 U2. 
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So we are writing V1 (D), V2 (D), V3 (D) in terms of U1 (D) U2 (D) and this G matrix so what 
is V1 (D)? 
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V1 (D) is  
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U1 of D. 
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So then our G 
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Matrix here, again this G matrix is 2 cross 3 so V1 (D) is U1 of D so we got one zero V2 of D is 

U2 (D) so we get 0 1, and what is V3 of D, V3 of D is this, this times U1 of D and this time U2 

of D, so this will be our final generator matrix corresponding to the encoder that is shown in this 

figure, okay? 
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Now the next question is, can we realize this encoder in the controller canonical form? So the 

answer is yes we can realize it. 
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We already have the expression for generator matrix so to realize it in controller canonical form 

again. 
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So there is one set of shift register for each input so these, this is one input, this is second input 

right? Please note this is a feedback polynomial so we would require a feedback a polynomial 

and now maximum degree here is three and maximum degree here is also three so.  
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We will require two set of shift register first one is this one, please note this has three memory 

elements and similarly second shift register, this also has three memory elements.       
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That is because the maximum degree of this rational function is three and similarly maximum 

degree of this rational function is three and we just implement this. 
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So, v1D is just u1D so that is this, v2D is u2D that is just this.  
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Now what is v3D? 
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v3 (D) is 1+D+D2+D3 /1+D+D3, u1 (D) +1+D2+D3 /1+D+D3 u2 (D) right? So relationship 

between v3 and u1D is given by this so let us implement this so numerator has 1+D+D2+D3. 
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So you can see here this is my 1, this is my D, this is my D2 and this is my D3. 
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And similarly the denominator has 1+D+D3. 
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So the denominator this is the one term, this is the D term, and this is the D3 term, so this part is 

implemented, next is this. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

(Refer Slide Time: 26:38) 

 

 
 

Following the same procedure we can find out the mapping between u2 (D) and v3 (D), the feed 

forward connections are 1, D2 and D3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

(Refer Slide Time: 27:09) 

 

 
 

So then this is 1, this is D no connection, D2 is this and D3 is this.  
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Similarly the feedback connections are 1, D and D3. 
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So feedback connections so this is the 1, this is D and this is D3, and v3 is a combination of these 

two so this is my v3. So I hope this is clear how we can realize this encoder using controller 

canonical form realization. 
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Now the next question is how many termination bits are required to bring this encoder back to all 

zero state, now what does termination means? Termination means we are bringing, bringing this 

encoder back to all zero state, so no matter what the state is if you want to bring them back. 
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Into an all zero state the number of termination bits required is equal to how many memory 

elements we have, so in the controller canonical form realization to bring this shift register the 

first shift register if you want to bring it to all zero state we would require three bits because we 

have three memory elements here, 1, 2 and 3, similarly for this shift register we require 

additional three bits, so 4, 5 6. So total we require six termination bits, three to terminate this 

encoder and three to terminate this encoder.     
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So we require six termination bits.  
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Finally let us come to the Bezier algorithm that we talked about so the first question is.  
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Can you write the a-priori probability in this particular form and also the branch metric in log 

domain can it be written in this particular form. Now ul is my input La, is the APP value for the 

a-priori inputs, Lc is a reliability factor which is given by 4Es/ No, other notations are same as 

which are used in the lecture, v is code word, r is a received sequence, so can we write these in 

terms like this? So let us look at it. 
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So what is the P(ul = ±1) let us take like +1, let us say what is the P( ul = +1) now this can be 

written as this by 1 so I can write this P(ul = +1)/ P(ul = +1) + P(ul = -1) now write it this way, 

right? And if I divide by a P( ul = -1) then what I get is P(ul = +1)/ P(ul = -1)/ 1+ P(ul = +1)/P(ul 

= -1). So this is what I will get of the form here, you can see here the form for when ul is +1 I get 

P(ul = +1) I get in this particular form. 

Now let us look at what is the P(ul =-1) again I can follow the same procedure I can write this as 

same as this by 1 or I can write P(ul =-1)/ P(ul = +1) + P(ul = -1) and I can divide this by P(ul = 

1) so this will be P(ul = -1)/P(ul = +1)/ 1+ P(ul = -1)/P(ul = +1), right? Now this I can also write 

as this is equal to [P(ul = +1)/P(ul = -1)]-1 / 1+ [   ]-1 . So if I combine this and this what I get is 

the first step here okay? I can write by combining this and this, I will get this. Now if I write this 

ratio of probabilities in terms of L values so what is this L value of ul this is log of P(ul) being 

+1/ P(ul) being -1. So this can be then written as e La (u
l
), so if I do that if I plug this in first line 

what I get here is this term okay? 

Now note I can further simplify this into this expression, you can see when ul is +1 when ul is +1 

what do we get, when ul is +1 this is eLa (u
l
)/2 and e-La/2 so this is will be basically 1 so this will be 



one times 1+e-La(u) which can be written as eLa(u)/1+ eLa(u), this is precisely what I have written 

here. And if ul is -1 this will be e-La (u)/2 and e-La/2 so this term will become in that case e-La(u)  

1+e-La(u
l
). So this term can be written in terms of this right? And what is this term, what is this 

term, this I can simplify this term, let us make some space. 
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I can simplify this term as e-La(u
l
)/2 and I have e-La(u

l
)/2 this is eLa(u

l
)/2 + e-La(u

l
)/2 so what I am doing 

here is I am writing this particular term. So this I can write as this and this, so this cancel out and 

this is ex +e-6 this will be cause of x and that is the symmetric function. So it does not depend on 

sign of ul, whether ul is +1 or -1 does not depend on that. So I can then write this in terms of this 

expression. 
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So will use the expression that we derived in the previous slide for a-priori value which was ul 

being +1 or -1 as Al e u
l
 La (u

l
)/ 2, we will use this expression to simplify the expression for 

branch matrix for our BCJR Algorithm. Now note if you recall we have written the expression 

for branch matrix as a-priori P (ul) and then we had for AWGN channel we had this expression 

and of course there was some constant factor, we did not depend on u(n) right. So what we did 

just now was we derived that this a-priori probability can be written in this particular fashion 

right. 

Now let us further simplify the expression for branch matrix. So this we can expand as r2 + vl
2 

plus two times dot put it of rn vl. Now this does not depend on choice of v(l) and if v(l) is 

mapped to +1 and -1 vl
2 will be 1 so this also will be a constant term, so this term would then not 

depend on choice of v(l). So what then we will be left with is, so this term we can just take out as 

some sort of constant which does not depend on choice of v(l) and what will be left is this term 



which we are writing here, which we are writing here and the next term that will be left is this 

term which we are writing here.  

 

 

Please note Lc is four time Es/N0 so that is why we are writing it is, it is e Lc/2 and dot product 

between rn vl. So then we can just simplify this expression as some constant terms multiplied by 

this a-priori, this a-priori term and this is a term which depends on received channel values. So 

this is a simplified expression for branch matrix computation for our BCJR algorithm. 

(Refer Slide Time:  38:52) 
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If we are considering additive white cosine noise channel. Now if we consider branch matrix in, 

in the log domain then log of this term will be some sort of constant we just ignore it because this 

does not depend on choice of v(l), u(l), so then this will become ul L value a-priori L value by 2 

plus Lc/2, and dot put at between the receive sequence and the transmitted code word. So this 

will be then our simplified expression for branch matrix computation for BCJR algorithm over 

additive white cosine noise channel. Thank you.  
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	Plus D ².
	X of  D.
	D ² X of D is this term, D ² is X of D is this term which is coming here, this term and there is another term here.

