
Estimation for Wireless Communications-MIMO/OFDM Cellular and Sensor 
Networks. 

Professor Aditya K Jagannatham. 
Department of Electrical Engineering. 

Indian Institute of Technology Kanpur.  
Lecture -09. 

Wireless Fading Channel Estimation-Mean And Variance Of Pilot/Training Based 
Maximum Likelihood (ML) Estimate. 

Hello, welcome to another module in this massive open online course on estimation for 

wireless communications. In the previous module, we looked at estimation of the channel 

coefficient for a wireless communication system, all right. And we had considered the 

maximum likelihood estimation of the channel coefficient in a wireless communication 

system and we had been able to demonstrate that the estimate of the channel coefficient H hat 

where H represent the the channel coefficient, is given as H hat.  
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So, we are looking at wireless so, we are looking at wireless channel estimation, in fact we 

have also said, this is a key process or a key aspect in wireless communication, this is known 

as wireless channel estimation, that is estimation of the channel coefficient.  
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And we have shown that the maximum likelihood estimate of the channel coefficient is given 

as H hat equals X bar transpose Y bar divided by X bar transpose X bar where the vectors Y 

Y bar equals the vector, the observations better, that is the vector of observations Y1, Y2 so 

on up to YN. So this is your this is your observation vector and X bar equals X1, X2 up to 

XN and this is your vector of pilot symbols. Remember we have said X1, X2… XN are the 

pilot symbols that are transmitted for channel estimation. So, X bar is the vector of pilot 

symbols, also we can call this as the pilot vector. 
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So, we are saying that the channel estimate H hat is given as X bar transpose Y bar divided 

by X bar transpose X bar where X bar is the pilot vector and Y bar is the corresponding 

observation vector, that is the output symbols corresponding to the transmitted pilot symbols 

X1, X2… Up to XN. And you can see that this can also be written as…  
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Now, now you can see, I think we have already seen this before that is if I look at X bar 

transpose X bar, that is nothing but basically your row vector X1, X2 up to XN Times the 

column vector X1, X2 up to XN which is X bar transpose X bar, this you can see is nothing, 

is basically summation this you can see is basically X square 1+ X square 2+ so on up to X 

square of N and this quantity you can see is basically nothing but the norm of the vector. 
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Norm a bar square, where X bar is your pilot vector, this is also basically your summation K 

equals to 1 to N X square of K and this is basically your norm of X bar square. So, X bar 

transpose X bar, of course this is the standard result and we have also seen this before that is 

X bar is a vector, that is a real vector remember, that is what we are considering to begin 

with. X bar transpose X bar, it is a summation K equals 1 to N X square K which is nothing 

but the norm square of the vector X bar, therefore I can also write it, the estimate, the 

maximum likelihood estimate in a compact fashion as X bar transpose Y bar divided by X bar 

transpose X bar which is also basically your X bar transpose Y bar divided by norm of X bar 

square. Okay. 
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Now, also let us go back to our model, let us go back to our pilot observation, that is the pilot 

input output model, that is the input output model, our input output model remember, recall is 

YK equals H times XK + VK where YK is the observation, H is the channel coefficient, XK 

is the transmitted pilot symbol and VK is the corresponding Gaussian noise samples. 

Therefore now I can write Y1 equals H times V1 H times X1 + V1, Y2 equals H times X2 + 

V2, so on YN equals H times XN + VN. 
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So, we have Y bar, which is basically now vectorising this, to write it in a compact fashion, 

we have Y bar equals H times X bar class V bar. We have seen that Y bar is the observation 

vector, X bar is the pilot vector, now we have V bar and this is the noise vector. So, we can 

write this in a vector fashion that is Y bar equals X bar times H + V bar where of course 

repeat once again Y bar is the observation vector, X bar is the pilot vector H is the channel 

coefficient and V bar is the… 

So, I have succinctly represented this as in a compact vector, using vector notation I have 

represented this in a compact fashion as Y bar equals X bar times H + V bar where Y bar is 

the observation vector, X bar is the pilot vector, H is the unknown channel coefficient and V 

bar is the noise vector.  
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Now, let us look at the properties of the noise vector V bar, so we have already said that each 

noise VK is Gaussian, further we are going to assume that each VK is IID Gaussian, then this 

also we have seen before, that is basically independent identical Gaussian. 

That is independent identically distributed as Gaussian each with mean 0 and variance Sigma 

square which implies again to just summarise the expected value of each VK equals 0 

expected value of V square K equals Sigma square.  
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Further, since they are independent, since the reference noise samples are independent, 

expected value of VK times VK tilde, since they are independent equals expected value of 



VK times your expected value of VK tilde, if K nought equals K tilda. And each of these 

expected values each of these expected value is 0, therefore as a result, the net product is 0 if 

K nought equal to K tilda. That is the co-relation between 2 different noise samples VK and 

VK tilde is equal to 0 if K nought equal to K tilde. Since these different noise samples are 

assumed to be independent. 

Naturally, now let us characterise the statistical properties of the noise vector, the 1st property 

is simple,  
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that is if we look at the mean of the noise vector, that is if I look at the mean of the noise 

vector, that is the mean of V1, V2… Up to VN, now naturally, each component is 0 mean, 

therefore the mean of the sectors says is 0, that is the expected value of V1, expected value of 

V2, so on expected value of VN, now each of these is basically equal to, the noise is 0 mean, 

so basically expected, this is the 0, this is simply the 0 vector. 
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So, we can summarise this as basically the expected value of V bar is simply the… Each 

noise component is 0 mean, naturally the expected value of the noise vector is the 0 vector. 

That is simply said as 0. It is understood that it is a vector, since we are talking about a 

vector, so expected value of the noise vector is 0, now let us look at the variance, of course, 

since V bar is a vector, we cannot look at the variance of a vector, we have to talk about the 

covariance of the noise vector and that is defined for a 0 mean vector as follows. 

The covariance for our 0 mean noise vector is defined as RV, that is the covariance is 

expected V bar V bar transpose for a scalar we look at the square of the random variables, 

now since it is a vector, we are looking at expected value of V bar V bar transpose, which I 

simplify this is expected value of V1, V2 so on VN. V1, V2… VN times the row matrix V1, 

V2, VN, the cloumn matrix times the row matrix,  
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it is sometimes also known as the outer product of the vector V bar V bar transpose which 

now if you can look at the entries of V bar V bar transpose, if you look on the diagonal, the 

diagonal, you have the squares of the various elements V1 square, V2 square so on V square 

N, these off diagonal entries are the cross products V2, V1… V1, V2 so this is for instance 

V2, V1 V1, V2 so on up to V1, VN, this product here will be VN V1 and so on. 

And now if you take the expected value inside, you can see that the expected value of each of 

the diagonal elements, expected value of V square 1, V square 2, V square N so on is Sigma 

square, while the expected value of diagonal elements is the different noise elements are 

independent, the expected values of diagonal elements, the expected, let me draw them in 

different colors, the expected value of off-diagonal elements, this you can see is clearly is 

clearly 0 because of different noise samples. 

So, these are independent, the only expectation that are going to survive are basically the 

expected values of the diagonal terms which are basically the squares of the different noise 

samples,  
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therefore, the covariance matrix is basically the matrix N cross M matrix with Sigma square 

on the diagonal, each diagonal elements equal to Sigma square, the rest of the entry is 0. So, 

this is equal to basically your Sigma square I. 

So, you call variance matrix RV is equal to expected V bar V bar transpose which is equal to 

Sigma square times identity. So, we have the noise vector V bar which we have defined, the 

noise vector V bar is 0 mean, so the expected V bar is equal to 0, the 0 vector and the 

covariance matrix, expected V bar V bar transpose is equal to Sigma square times the 

identity, the N cross M dimensions identity matrix. So, Sigma square times the N cross M 

dimensional identity matrix. And that is also clear because the noise variance is of size N. 

But we can also write this explicitly, so this is identity matrix of size N cross M. Now, let us 

lower the properties of the channel estimate.  
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So, let us explore the properties of the maximum likelihood channel estimate, so we will just 

start exploring, properties of your ML. Properties of the maximum likelihood channel 

estimate and we know that Y bar equals X bar H + V bar. And we know that H hat equals X 

bar transpose Y bar divided by Norm X bar square, that is the expression that we have seen 

for the maximum likelihood estimate. Now I am going to substitute the expression for Y bar 

over here. So, I will have X bar transpose divided by Norm X bar square times X bar H + V 

bar, which is equal to again now,  
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simplifying this, X bar transpose X bar divided by Norm X bar square H + X bar transpose V 

bar divided by Norm X bar square. 

Now if you look at this, this is X bar transpose X bar which is Norm X square divided by 

Norm X bar square. So, this is one and so therefore net I have H hat equals H + X bar 

transpose V bar divided by Norm X bar square. Okay. So, what we have, we have 

demonstrated that simplifying this expression for the maximum likelihood channel estimate, 

we have shown that H hat, the channel coefficient estimate of the channel coefficient H hat 

equals H + X bar transpose V bar divided by Norm X bar square where X bar is the pilot 

vector and V bar is the noise vector. 
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Now, it is easy to see that if I look at the mean of the noise, mean of the estimate, that is 

expected value of H hat, that is nothing but your expected value of H hat + X bar transpose V 

bar divided by Norm X bar square, I am sorry, this is H, not H hat. Now H is a constant, so 

therefore this is H + expected value of of course X bar transpose V bar divided by Norm X 

bar square which is equal to now H + X bar transpose expected value of V bar divided by 

Norm X bar square but now we have already said that the noise vector is 0 mean, so this 

quantity is the 0 vector, so X bar transpose 0 bar is nothing but 0. 
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So, I have net, very interesting property, that is H hat expected value of H hat equals H +0 

which is equal to H. So, summarising what we have is something that we have seen already 

in the context of your sensor network where expected value of the estimate of the parameter 

is the parameter itself that is expected value of H hat is equal to H and therefore such an 

estimate is known as an unbiased estimate. That is expected value of H hat is equal to H, 

therefore such an estimate is known as the unbiased estimate. So, this is basically an unbiased 

estimator. 

This is basically an unbiased estimate or this maximum likelihood estimate of the channel 

coefficient is an unbiased estimator. Now, let us look at the variance, now let us look at the 

variance of the channel estimator. So, let us now look at the variance of the channel estimate, 

now we know that H hat equals H + X bar transpose V bar divided by Norm X bar square 

which means H hat - H or H - H look at H hat - H if we look at H, H hat - H, H hat - H, that is 

equal to X bar transpose V bar divided by Norm X bar square. 
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Now, the variance is basically the expected value of, the variance of the estimate is expected 

value of H hat - H whole square which is basically, I can write this, now this is a scalar 

quantity H hat - H, so this is equal to its transpose, so H hat - H square, I can write it as H hat 

- H times its transpose. So, H hat - H, so what we are saying is this quantity, channel 

coefficient is basically a scalar quantity. Scalar quantity means it is basically a number. So, 

therefore, expected value of H hat - H all square is basically expected value of H hat - H 

Times itself which is expected value of H hat - H times H hat - H transpose. 

Because the transpose of a scalar quantity or the transpose of a number is basically the 

number itself. But this will help us, this trick will help us greatly simplify the variance of the 

estimate as follows. And now therefore we can write this as substituting for H hat - H from 

above, you can see H hat - expected value, H hat - H is X bar transpose V bar divided by 

Norm X bar square times X bar transpose V bar transpose divided by Norm X bar square. 

Which is equal to, now bringing this Norm X bar square outside, I have Norm X bar 4 

expected value of X bar transpose V bar times X bar transpose V bar transpose is V bar 

transpose X bar which is now equal to,  
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if I move the expected operations, the expectation operation inside, that is 1 over Norm X bar 

to the power of 4 times X bar transpose expected value of V bar transpose X bar… 

Now, this is interesting because this is your Sigma square I which we have already shown is 

the noise covariance, therefore this is 1 over Norm X bar power 4, X bar transpose Sigma 

square times identity, the Sigma square will come out, so I can write Sigma square over here, 

X bar transpose identity X bar is simply X bar transpose X bar which is Sigma square norm X 

bar square divided by Norm X bar power 4.  
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This is basically your Sigma square divided by Norm X bar square. 
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And therefore we have an interesting expression for the variance, that is the variance 

expected value of H hat - H whole square is basically your Sigma square divided by Norm X 

bar square. Sigma square divided by Norm X bar square. So, we have derived the expression 

for the variance of the estimate, we have shown that the variance of the maximum likelihood 

estimate of the channel coefficient is Sigma square divided by Norm X bar square where X 

bar is the pilot vector. Alright, so this is the expression for the variance of the channel 

estimate and further now, we can characterise the distribution of the channel coefficient, of 

the channel estimate H hat, if you go back and look at H hat, for instance you can see H hat is 

basically your H + X bar transpose X bar V bar which is a linear combination of Gaussian. 

So, this is a linear combination of an therefore it follows that H hat is in turn is Gaussian, that 

is H hat, you can see H hat is basically this Gaussian X bar transpose V bar shifted by the 

mean which is H. So, this is the mean of H hat, therefore it follows that H hat is inside 

Gaussian,  
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we have shown that the mean of H hat is H  
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and so therefore it follows that H hat is indeed Gaussian with mean and H and variance 

Sigma square divided by Norm X bar square. 

So, it follows that H hat is, this is a Gaussian random variable which is this mean and this, 

with this mean and this, so it follows that H hat is a Gaussian random variable with this mean 

and variance. H hat has a mean of H which is the true unknown channel coefficient and the 

various is Sigma square divided by Norm X bar square and this is also intuitive.  
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This shows as the energy, this is inversely proportional to the pilot energy and directly 

proportional to the noise power. The noise power part is obvious, as the noise power Sigma 

square increases, obviously the estimation error increases and also it shows that as the energy 

in the pilot increases, that is Norm X bar square increases, the variance of the estimate 

decreases. 

Which is also very intuitive, that is if you transmit more and more pilot power, naturally your 

estimate will be better and better. So, let us note that also, this is inversely proportional, that 

is variance is inversely proportional, various is inversely proportional to the pilot power.  
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Now, we have also seen that for a complex, how to extend this for complex parameter, just 

again, because we have said that frequently the channel coefficient is complex in nature, we 

have said the estimate of the complex parameter is simply, replace the transpose while 

Hermitian, that is X bar Hermitian Y bar divided by X bar Hermitian X bar, which is 

basically nothing but again X bar Hermitian Y bar divided by X bar Hermitian X bar is once 

again Norm X bar square and this we have said is estimate for complex baseband channel 

coefficient.  

That is estimate for a complex parameter estimator of your complex baseband, this is the 

estimate of your complex baseband channel coefficient. That is when the parameter channel 

coefficient H is basically complex in nature. That is, you have to replace the transpose by the 

Hermitian, this is X Hermitian Y bar divided by Norm X bar square.  
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And now, what is the variance, so again you can derive the variance, we said variance will 

remain, the variance of the complex parameter that is variance is basically expected value of, 

no, you cannot simply use the square, I have to use magnitude of H hat - H whole square, the 

magnitude of H hat - H whole square divided equals Sigma square divided by Norm X bar 

square. Yah. 
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Where we are assuming, where we are assuming that each VK, this is important, each VK, 

noise VK is complex 0 mean symmetric, remember, this is an important point, symmetric, 

which we have talked about symmetric Gaussian… Symmetric Gaussian noise of variance 

Sigma, this complex 0 mean symmetric Gaussian noise, each VK is IID, in fact let us also 

emphasise that the variance VKs are IID, independent IID complex 0 mean symmetric 

Gaussian noise of variance. 

So, in the noise vector V bar is a complex symmetric Gaussian, complex circle and 

symmetric Gaussian noise vector, which means each VK is basically IID complex Gaussian 

complex Gaussian symmetric 0 mean random variable of variance Sigma square. Which 

means the real and imaginary parts are 0 mean independent and the variance Sigma square by 

2 each. Then we can show, also show that expected, that is basically the variance of the real 

and imaginary part,  
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then it follows that, variance of real part of estimate is equal to the variance of imaginary part 

of the estimate which is equal to half Sigma square divided by Norm X bar square. 

So, what we are saying is basically it is, it can be extended to a complex parameter H, that is 

complex baseband channel coefficient H in the straightforward manner. 1st the channel 

estimate H hat is X bar Hermitian Y bar divided by Norm X bar square and further, the 

variance of estimation of the complex parameter H hat is basically Sigma square divided by 

Norm X bar square, that remains unchanged and the real and imaginary parts, that is the real 

part and the imaginary part have an estimation error of half of the net estimation error, that is 

half Sigma square divided by Norm X bar square and also one can notice that the estimation 

errors of the real and imaginary parts are uncorrelated.  
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And that is the last point, that is estimation errors of real and imaginary parts, further… Of 

real, imaginary parts are uncorrelated. Okay, that is a brief note for the estimation of the 

complex baseband channel coefficient H. So, in this basically module, what we have seen is 

basically, we had started with the maximum likelihood estimate of the channel coefficient we 

have developed in the previous module and explored its various properties. We have shown 

that… Basically we derived covariance of the noise vector V bar and based on that we have 

shown is basically that the noise estimate is missing, that the estimate of the channel 

coefficient is again basically, it is an unbiased estimate estimator, which means expected 

value of H hat, the estimate is equal to H, which is the true unknown, underlying channel 

coefficient. 

Further, the variance in the estimate of the channel coefficient H is given as Sigma square 

divided by Norm X bar square, Norm X bar square denotes the total energy of the pilot signal 

and therefore the variance is decreasing with increasing energy of the pilot signal or the pilot 

vector. So, we will stop here and continue with other aspects in the subsequent modules, 

thank you very much. 

 

 

 


