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Hello, welcome to another module in this massive open online course on estimation for 

wireless communications where we are looking at the development of a scheme for the 

estimation of the unknown channel coefficient h, 
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 so we said that in a typical wireless communication system, what we have is basically we 

have the transmitted antenna, receive antenna, the channel coefficient h, XK is the 

transmitted symbol, YK is the received symbol and  
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we have said that this can be represented as YK equals h times XK + VK where VK is the 

additive Gaussian noise and we also said that these XK, the symbols XK are, transmitted 

symbols for the, for the purpose of for the purpose of channel estimation, we transmit a 

sequence of known pilot symbols that is X1, X2,… XN which are also, which are also known 

as the pilot symbols or the training symbols. 

Yet, from the training symbols and the observed corresponding observed training outputs Y1, 

Y2… YN, we estimate the wireless channel.  
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We have described that for each Gaussian noise, that is when noise V1 is Gaussian, that is 

VK is Gaussian with mean 0 and variance Sigma square, the output YK is Gaussian with 

mean h times XK and variance Sigma square  
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and therefore we have developed the expression for the PDF of the observation, probability 

density function of the observation YK and we also said that if the noise samples V1, V2… 

VK are independent, then the observations Y1, Y2… YN are independent and therefore the 

joint PDF of the observations is given as the product of the individual PDFs or probability 

density functions which can be written as,  
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now we know an expression for the probability density function of Y1 or each YK, therefore 

I can write this as 1 over 2 pie Sigma square E raised to -1 over 2 Sigma square YK or Y1, 1st 

we have the PDF of Y1, Y1 - h X1 square times 1 over under root 2 pie Sigma square E 

raised to -1 over 2 Sigma square Y2 - h X2 whole square, so on and so forth until the product 

1 over 2 pie Sigma square E raised to -1 over 2 Sigma square E raised to -1 over 2 Sigma 

square YN - h times XN square which is basically equal to…  
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Now this is basically equal to 1 over, this can be now, combining all the terms and 

multiplying all the terms, we have 1 over 2 pie Sigma square to the power of N over 2, E 

raised to -1 over 2 Sigma square summation, all the terms in the exponent will add up. K 

equals 1 to N, YK - h XK whole square and therefore this is the probability joint PDF of the 

observations Y1, Y2… YN, this is the joint PDF of the observations Y1, Y2… YN. 

Also remember in the context of the sensor network, we said if we view it as a function of 

unknown parameter h, this is a likelihood function of the unknown parameter h.  
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So, viewed as a function of unknown parameter h, so viewed as a function of unknown 

parameter h, so as now, as a function, as a function of the unknown parameter h, this is a, 

what is this, this is your likelihood function. 

The likelihood function, likelihood function of the unknown parameter h which is basically or 

channel coefficient. This h is nothing but the unknown parameter, which is the wireless, in 

fact this is your wireless, this is your wireless channel coefficient. I can represent this 

likelihood function as P of Y bar parameterised by h by Y bar is nothing but your vector of 

observations,  
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that is Y bar equals Y1, Y2… Up to YN. So, what is this Y bar Y1, Y2… YN, this is nothing 

but the vector of observations which is also termed as the observation, this is also termed as 

your observation vector or the vector of… This is basically the vector of observations. 

N dimensional vector of observations that this is the joint PDF of the observations Y1, Y2… 

YK Y1, Y2… YN, which is viewed as a function of the unknown parameter h, this is termed 

as a likelihood function. And now I take, now the next step, similar to the sensor network 

scenario, the next step that we have to do is to take the Logarithm of this likelihood function 

which is termed as the log likelihood. 
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So, let us go through that step, then it takes the logarithm, it is similar to what we have 

already seen in the context of a sensor network, the log likelihood, this is the log likelihood 

function of the unknown parameter h which is the natural logarithm of the likelihood function 

parameterised by h, which of course now when you should take the logarithm, you can 

simplify this, you can write this as N over 2 or - N over 2, the natural logarithm of 2 pie 

Sigma square -1 over 2 Sigma square summation K equals 1 to N YK - hK whole square.  

So this basically is your log likelihood function, this is easy to see, this is your log likelihood 

function. Again following a similar procedure to that we have implied for the sensor network. 

Find the joint PDF of the observations as a function of the unknown parameter h, it is the 

likelihood function, take the logarithm of that, you get the log likelihood function. Now, one 

has to find the maximum of log likelihood function, that is find the value of h for which this 



log likelihood is maximised, that gives us the maximum likelihood estimate of the unknown 

parameter h. 
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That is to find the ML estimate, to find maximum likelihood or basically ML estimate, one 

has to basically maximise the log likelihood function, that is Y bar h. Which means basically 

differentiate this, differentiate and set equal to 0. To find the value of parameter h which 

maximises the value of log likelihood function, that is to find h which maximises your, to 

find the value of X which maximises the log likelihood function. And now if we differentiate 

the log likelihood function, if I differentiate this log likelihood function and you can check 

with respect to h what we have is when we differentiate this log likelihood function, this - N 

over 2 log 2 pie Sigma square, this is a constant, so the derivative of this is 0,  
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what remains is basically your -1 over 2 Sigma square summation K equals to equal to 1 to 

N, YK - h, twice YK - h XK times multiplied by - XK and that has to be equal to 0 and this is 

0, implies one over Sigma square goes away, that is a constant implies K equals 1 to N XK 

times YK - h XK equals 0. 
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And this implies, basically now, you can simplify this, this implies basically that summation 

K equals 1 to N XK times YK equals h times summation K equals to 1, XK into XK is X 

square of K implies the value of h for which this is maximised, is summation K equals to 1 to 

N XK YK divided by summation K equals to 1 to NX square K and this value of h, where 



this is maximised, this is the maximum likelihood estimate and this is denoted by h hat which 

is basically your ML estimate or the maximum likelihood estimate, this is the maximum 

likelihood estimate of the channel coefficient h. 

So, this h hat, with a summation K equals to 1 to N XK YK divided by summation K equals 

to 1 to NX square of K, this is the value of h for which the log likelihood function of the 

parameter h that is maximised, we obtained this by differentiating the log likelihood function 

and setting equal to 0, this value of h, that is when the log likelihood is maximised, it is 

denoted by h hat and this is known as the maximum likelihood estimate of the channel 

coefficient. 

And also one can now although we derived this expression, , one can now be present this in a 

much more comprehensive manner or in a much more compact fashion by using vector 

notation.  

(Refer Slide Time: 13:20) 

 

Consider, one can represent it in much more compact fashion using vector notation, so 

consider vectors, we already find this Y1, Y2… Up to YN, this is the observation vector, 

remember, in the previous module we have already defined as, this is the observation vector 

and now similarly let us define a pilot vector. 
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This is a vector of pilot symbols, this is your pilot symbol pilot vector or this is basically your 

vector of pilot symbols, this is the vector of pilot symbols, if I look at, I am going to denote 

this observation vector already we have represented this observation vector by Y bar, let us 

denote this pilot vector by X bar that is X1, X2,… XN. Then, now you can look at it, if I look 

at X bar transpose Y bar, that is basically equal to your row vector X1 up to XN times your 

column vector Y1 up to YN which is basically nothing but this.  

(Refer Slide Time: 15:16) 

 



You can clearly see, this can be simplified as summation K equals to 1 to N XK times YK. 

Therefore the numerator of this expression, that is if I look at the numerator of this 

expression, that is X bar transpose Y bar. 
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Similarly if I look at the denominator, consider now X bar transpose X bar, that is equal to 

the row vector X1 up to XN times the column vector Y1 sorry times the column vector X1 up 

to XN and this is nothing but summation K equals to 1 to N X square K and you can see this 

is basically the denominator, that is X bar transpose X bar, 
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 therefore the channel estimate h hat can also be written as h hat equals summation K equals 

to 1 to N XK YK divided by summation K equals to 1 to N X square of K which is basically 

as we have seen can now be simplified as X bar transpose Y bar divided by X bar transpose 

X bar and this is another interesting or another compact way to represent the maximum 

likelihood. 

Let us remind ourselves again, this is the ML estimate of channel coefficient, this is the ML 

estimate of the channel coefficient h, alright. Now, one can again simplify this extend this 

naturally to the complex parameter scenario. For the complex parameter, a simple trick is to 

replace the transposed by the hermitian operator and we will also keep using this trick often. 

To extend this to a complex parameter h, simply replace the transpose by hermitian. 
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So, to extend this to a complex parameter, to extend to a complex parameter, replace your 

transpose by the hermitian, replace the transpose by the hermitian which is basically your 

conjugate transpose operator. So, therefore for a complex parameter or a complex channel 

coefficient, this is the maximum likelihood estimate that is X bar transpose becomes X bar 

hermitian Y bar divided by X bar hermitian X bar  
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which can now naturally be simplified as summation K equals to 1 to N X conjugate K times, 

that is a conjugate or the transmitted pilot symbol divided by K equals to 1 to N X conjugate 

K times XK which is magnitude XK square, that is the magnitude of the complex symbol. 

This is the estimate of a complex parameter, maximum likelihood estimate for a, this is the 

ML estimate for a complex parameter or complex channel coefficient or a complex parameter 

or your complex baseband or basically your complex baseband channel coefficient h.  

That is X bar hermitian Y bar divided by X bar hermitian h bar where as we have seen Y bar 

is the vector of observation symbols and X bar is the vector of ah the transmitted pilot 

symbols and this is the maximum likelihood estimate, remember,  
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this expression is the maximum likelihood estimate for your complex unknown complex 

baseband channel coefficient h. 

So, what we have seen in this module is basically we have formulated, we have extended this 

maximum likelihood estimation framework for a wireless scenario or a wireless 

communications system scenario between the channel coefficient h between the transmitter 

and receiver is unknown, so we have explored all we have seen a framework where the 

transmitter transmits a sequence of pilot symbols and you have corresponding to those you 

have the received pilot outputs that is Y1 up to YN from this knowledge of the transmitted 

pilot symbols and the observed pilot outputs Y1, Y2… YN, we have basically derived the 

maximum likelihood estimate of the unknown channel coefficient h and this is known as the 

pilot based channel estimation scheme in the context of a wireless communication system or 

this is also known as the training symbol based channel estimation scheme which is very 

important in the context of a wireless communication system because the channel coefficient 

h is unknown and has to be estimated at the receiver prior to the beginning of the 

communication so that the information symbols can be decoded at the receiver.  

So, this is the maximum likelihood estimation, the procedure for maximum likelihood 

estimation of the unknown channel coefficient. We will stop this module here and look at 

other aspects and properties of this maximum likelihood estimate of the channel coefficient in 

the subsequent modules. Thank you very much.  

 


