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 Hello, welcome to another module in this massive open online course on Estimation for 

Wireless Communication. So we are looking at the properties of maximum likelihood 

estimate and we have said that in our simple scenario of noisy observation in our wireless 

sensor network, we have the maximum likelihood estimate h hat, which is given as h hat 

equals 1 over n submission k equals 1 to n y of k. 
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We have said that this estimate h hat is random Gaussian in nature. And we had in fact 

characterised the mean, that is the expected value of this estimate h hat, we had said is equal 

to the true value of the underlying parameter h and this is known as, to such an estimator so 

therefore such an estimate, this estimator the sample mean is basically an unbiased estimator.  

That is the average value of the estimate is equal to the true value of the underlying 

parameter. That characterises the mean of the estimate, that is the expected value of h hat. Let 

us now look at the other aspect, that is the variance of the estimate. So let us now look at 

what is the variance of h hat what is the variance of h hat, remember the variance is always 

also a measure of the spread or the deviation about the mean. 



The spread or the deviation about the mean remember, although on an average the estimator 

is the true underlying parameter if the spread about the mean is too much, then the estimator 

has a very poor performance. He would like the estimator that is the average to be equal to 

the true value of the underlying parameter; at the same time we would also like the spread 

that is the deviation of around the true parameter to be as low as possible. 

So characterising this variance about the true underlying parameter of the spread of the 

estimate around the true underlying parameter h is also important, yeah. And this variance is 

basically nothing but a measure of this spread, the spread about the mean. So what is the 

variance, the variance of h hat if you might remember for any random variable, the variance 

of h hat for a random variable h hat is the expected value of the squared deviation. 
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That is h hat squared deviation about the mean that is h hat minus expected value of h hat 

whole whole square, this is the expression for the variance. That is expected value of h hat 

minus the expected value of h hat minus expected value of h hat whole square. But we know 

that this expected value of h hat this is equal to h that is the true parameter itself. So this is 

simple, so this is nothing but expected value of h hat minus h whole square, yeah. 

So this is the expected value of h hat minus h whole square. But recall that we have shown 

previously that this h hat, now recall that we had shown previously that is we had 

simplified.If you just go a little bit above. 
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 We had simplified h hat equals, that is your h hat equals h + h + 1 over n submission k 

equals 1 to V k. We will use that again, so I have h hat equals h + 1 over n submission k 

equals 1 to V k. 
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Which basically implies that h hat minus equals 1 over n submission k equals 1 to n V k. 

Therefore now I can compute this expected value of h hat minus h whole square is nothing 

but the expected value of 1 over n submission k equal to 1 to n V k whole square because h 

hat minus h is nothing but submission 1 over n V k. And this is basically equal to 1 over n 

square, the 1 over n is a constant, so 1over n square can come out. 
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Expected value of submission k equal to 1 to n V k whole square. Now the square of the 

term, square of something, I can write it as its product with itself. Therefore, I can change, I 

can as submission k equal to 1 to n V k with submission k tilde equals 1 to n, that is the 

product of 2 terms. Just changing the index and rewriting the terms, submission k equal to 1 

to n V k times submission k tilde k equal to 1 to n V k. 
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Which I can now write as basically your 1 over n square, expected value of submission k 

equals 1 to n submission k tilde equals 1 to n V k V k tilde. And now taking the expectation 

operator inside, I can rewrite this as 1 over n square submission submission k equal to 1 to n 



submission k tilde equals 1 to n expected value of V k V k tilde, yeah. So this is what is this, 

this is your simplified expression for expected value of h hat minus h whole square. 

That is the expected value of h hat minus h whole square equals 1 over n square submission k 

equal to 1 to n submission k tilde equals 1 to n expected value of the product terms all terms 

of the form expected value of V k V k tilde yeah. Now we are going to use an important 

property of the Gaussian noise samples that we are we had assumed that is the Gaussian noise 

samples are independent and identically distributed. 

What does it mean to say that the Gaussian nice samples are independent, so recall that recall 

that these are IIDs. 
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That is what are these, these are independent distributed, which means if I take any 2 noise 

samples, expected V k into and look at the product expected value of the product V k V k 

tilde, this is equal to the expected value of V k times expected value of V tilde k. 
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If when is if k is not equal to, that is expected value of the product V k V k tilde is expected 

value of V k times expected value of V k tilde. However, we know that the noise samples are 

0 mean, therefore expected value of V k and expected value of V k tilde are both equal to 0. 

Therefore we have this is equal to 0, each expected value of V k tilde equal to 0 therefore the 

expected value of the product is 0 if k is not equal to k tilde. 

On the other hand, if k equal to k tilde we have expected value of V k times V k tilde equals 

basically your expected since k equal to k tilde, this is basically expected value of V square k 

and expected value of V square k is nothing but the variance or basically the noise of the 

power sigma square, that is what we had also noted earlier.  

Therefore, we have this beautiful property because the noises the noise samples are 

independent and we can identically distributed, we have expected value of V k V k tilde 

equals sigma square if k equals k tilde and 0 if k is not equal to k tilde, therefore to 

summarise this we have expected value of V k, the product V k V k tilde equals sigma square 

if k equal to k tilde, 0 if k is not equals k tilde. 
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Which means, this can be basically summarised as being equal to sigma square Delta 

function of k minus sigma square delta function of k minus k tilde. Where delta of k minus k 

tilde that is [eq] that is equals 1 if k equals k tilde and 0 otherwise this is sigma square Delta k 

minus k tilde. Therefore now my variance which is remember expected value of h minus h 

hat minus h square.  

Recall, expected value of, I can use this property to simplify the variance of the estimate as. 
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This is equal to, remember to this variance is equal to 1 over n square submission k equal to 1 

to n submission k tilde equals 1 to n expected value of V k times V k tilde. And remember 

and this we have simplified as sigma square Delta k minus k tilde. 

Therefore this is equal to 1 over n square submission k equals 1 to n submission k tilde equals 

1 to n sigma square Delta k minus k tilde and this term will only survive if k tilde equals K, 

therefore one of the submissions in this will go away, because only terms for each K, I will 

have only one term which survives where k tilde equals K. Therefore, for each k I have k 

equals 1 to n sigma square. 

Which is basically your n times sigma square divided by n square, which is basically sigma 

square divided by n and therefore what is this quantity sigma square divided by n, this is the 

variance of the estimate. 
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 That is expected value of h hat minus h whole square or in other words basically also the 

variance of, the variance of the estimate. So we have derived this elegant expression for 

variance of the estimate.  

We have shown that the variance of the estimate is sigma square divided by n where what is 

sigma square; remember sigma square is the variance or the noise power of each of the 

individual noise samples V 1, V 2 up to V n. So we are saying that if the noise samples V 1, 

V 2, V n R IIDs with mean 0 variance sigma square, the maximum likelihood estimator and 

estimate which is unbiased. 



That is the mean of the estimator is equal to the true parameter h and the variance of the 

estimator is sigma square divided by n, that is 1 over n times the variance of the individual 

noise samples. So this is the variance of the estimate and therefore we have variance of 

estimate equals 1 over n times sigma square where sigma square equals your variance of the 

IID. 

So what is this; so we are observing variance decreases by factor of n with respect to the 

noise. So what this tells us that by a factor of the variance of the estimate is 1 over n times the 

variance of the noise. And as n increases, and the important thing to observe is the following 

thing as n increases, the variance progressively keeps decreasing, that is the important thing. 

As n increases, sigma square over n decreases and this is an important. 
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And lets us see what this let us see what this implies, therefore to summarise what we have is 

h hat is Gaussian, that is the estimate is random Gaussian, the mean of the estimate expected 

value of h hat is equal to h and the variance, that is expected value of h hat minus h whole 

square is equal to Sigma Square divided by n. And I can also denote this as basically h hat is 

your estimate h hat is Gaussian with mean h. 
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Remember, n is the symbol for the normal distribution or the Gaussian distribution that is 

Gaussian with mean h and variance sigma square divided by n. That is this compact notation 

shows that h hat is normally distributed or Gaussian distributed with mean given by the true 

parameter h and variance given by sigma square over n where sigma square is the variance of 

the of each of the IID noise samples. 

And why is this important? This is important for the following reason, because now let us 

plot the PDF of h. This h is random in nature, but you will observe something interesting 

when you will plot the PDF of h. So let us say, the PDF of h for a certain n is given by this 

Gaussian with spread sigma square by n. Remember the mean, it is centred around the true 

parameter h. 
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That is this what is h this is the true parameter which is the mean, the true parameter which is 

the, now as you increase n what happens, the centre remains the same because remember the 

mean does not depend on n, but what happens to the spread? Remember the spread which is 

sigma square divided by n, this decreases.  

So you can observe as n increases, the spread that is the deviation or the variance around the 

true parameter h around the true parameter h decreases and this is a very important property. 

That even though the estimate is random in nature, on an average it is equal to the mean h and 

the variance of the estimator h hat which is sigma square over n progressively decreases as n 

increases. 

Which means that Gaussian corresponding to h hat shrinks that is it becomes more and more 

picky around the mean, that is h. Which means the deviation from the true parameter that is, 

all though h hat remember we said h hat is not necessarily equal to h. Although h hat is not 

necessarily equal to h, the deviation from h, right the deviation from the true parameter h 

progressively decreases as n increases and that is an important point. 

That is the deviation of h hat from h, the variance or basically your deviation of h hat or the 

spread of h hat from h progressively decreases, remember. 
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 Progressively decreases and increases, therefore as n increases the estimate becomes more 

and more accurate in the sense that the variance decreases. 

Therefore this is an important property. What we are saying is, because the estimate is 

random, we cannot exactly say that it is equal to the true it is never going to be equal to the 

true parameter h. However, what we can do something very important that basically because 

the variance is decreasing as n is increasing therefore progressively it is getting closer. 

That is, it is a Gaussian distribution but it is getting more and more picky around the true 

parameter h. Therefore, in some in a certain sense it is becoming closer and closer to the true 

parameter h. And in fact if an n tends assume (()) (22:36) when n tends to infinity, in fact in 

the event n tends to infinity, we have Sigma Square over n tends to 0, that is variance tends to 

0 which basically implies that your estimate coincides with the of the of the underlying 

parameter h. 
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So what we are saying is, that is in when n becomes very large that is n tends to infinity, then 

sigma square by n tends to 0, that is the variance is 0 which means the estimate h hat 

coincides with the true parameter h. And this is the behaviour of the maximum likelihood 

estimate which is very interesting behaviour. That is first what we have demonstrated is this 

maximum likelihood estimate on average is the true parameter. 

Not only that, the spread or the variance around the true parameter h is basically sigma square 

divided by n which means, as the variance as n the number of samples or the number of 

observations increases, the variance become smaller and smaller, that is the deviation 

becomes deviation around the true parameter become smaller and smaller.  

That is the error that is remember the error or this deviation decreases progressively and as in 

(())(24:26) as n becomes infinity, the variance becomes 0 and therefore the estimate coincides 

with the dynamiter and this is the interesting behaviour exhibited by the ML estimate or the 

maximum likelihood estimate.  

Alright, so what we have done so far in this mooch, we are at a point where we have derived 

them maximum likelihood estimate based on the likelihood function and not only that, but we 

have characterised the behaviour and the properties, interesting behaviour exhibited by this 

maximum likelihood estimate. We will explore other expects of this estimate in the future 

module. Thank you very much. 

 


