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Hello! Welcome to another module in this massive online open course on ‘Estimation for 

Wireless Communication Systems’. So, in the previous module, we have looked at sequential 

estimation, that is how to keep continuously updating the estimate based on the received 

observations, that is sequentially updating the estimate and also the variance of the estimate, 

alright? So today, let us look at an example to understand this paradigm better. So what we want 

to look at today, is an example for sequential; we want to look at an example for sequential 

estimation, alright? 

So let us start by considering our, the same paradigm that we are considering before, that is 

‘Wireless Channel Estimation’. Let us start by considering N is equal to three samples. 

Remember, sequential estimation in involves, com, computing an initial estimated N, and then 

later updating it to the estimated time instant N plus one once the N plus oneth observation is 

derived. Or once the N plus oneth observation is made. So we have considered the same example 

that we’ve seen previously for ‘Wireless Channel Estimation’, except now, we will estimate the 

Wireless Channel sequentially. 

So previously we considered example with N equal to four symbols. Now what we’re going to 

do, we’re going to modify the same example, to basically start with N equal to three symbols, 

that is a transmitted N equal to three pilot symbols, received N equal to three pilot observations. 

Compute the estimate at N equal to three, alright? And then consider the arrival of the N plus 

oneth observation at N equal, that is N plus one equal to four, and how, and then demonstrate 

how the update, or how the estimate H hat N plus one, that is H hat four is computed as an 

update of H hat three, the estimate at time N is equal to three. Okay? 

So let us consider the three pilot symbols. Consider, consider the three pilot symbols. Rather 

consider the N equal to three pilot symbols. The N equal to three pilot symbols, let’s say they are 

given as, similar to what we’ve considered before, that is x one equals one plus j, x two equals 



one minus j, and x three equals two minus j. Now one important observation that you can make 

here is that we’re considering complex pilot symbols.  
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However, in the, in the framework for sequel sequential estimation, we considered only, um, real 

symbols and real parameters, okay? So what we’re going to do now, is, is, um, during this 

example I’m going to illustrate how to extend the framework of sequential estimation to a 

complex parameter, and that is going to be fairly simple, alright? So, just to bring to your notice, 

we’re considering complex symbols, so the framework of sequential estimation. So we will see 

how to extend; we will see later how to extend to complex symbols, okay?  

So therefore, our vector, pilot vector x bar, remember x bar, what is this x bar? This is the pilot 

vector, and this is given as x one, x two, x three, that is basically one plus j, one minus j, two 

minus j. This is your pilot vector, which is basically N cross one or basically three cross one. 

And similarly let the received symbols be; let the received output symbols be y one equals, well 

y one equals three plus five j, y two equals minus five minus three j, and y three equals two plus 

three j, alright? So we have, corresponding to the tree, three transmitted pilot symbols, x one, x 

two, x three, we have the three received pilot symbols y one, y two, y three; and therefore, we 

have the received vector y bar, which is formed from y one, y two, y three, and that is given as, y 

bar equals three plus five j, minus five minus three j, two plus three j. 
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Therefore the estimate H hat, we already know how to compute this. Therefore the estimate H 

hat, is given as, we have, H hat of three is x bar hermitian y bar divided by x bar hermitian x bar, 

that is basically again, you can write this as x bar hermitian y bar divided by x bar hermitian x 

bar is basically, your norm of x bar square. Okay? And therefore now you can see norm of x bar 

square is simply the sum squared of the maxum magnitude squares of each of the components. 

One plus magnitude one plus j square plus magnitude one minus j square plus, magnitude two 

minus j square, that is, well two plus two plus five, which is equal to nine, okay? 
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So norm x square equals nine, and x bar hermitian y bar again, hermitian is nothing but the 

transpose and conjugate of each element, that is one minus j, one plus j, two plus j times your 

vector y bar, that is the same as before, that is a column vector y bar. So what is this? This is 

your x bar hermitian times y bar. y bar is basically three plus five j, minus five minus three j, and 

two plus three j. This is your vector y bar, and therefore this can be simplified as this, is equal to 

well, that is your, one minus j, times three plus five j plus one plus j times minus five minus three 

j, plus two plus j into two plus three j equals seven plus two j.  

  



(Refer Slide Time: 08:56) 

 

Therefore we have, um, evaluated x bar hermitian y bar, as seven plus two j, and we’ve also 

evaluated, um, norm x bar square or x bar hermitian x bar, which is nine, and therefore, the ML 

estimate at time instant three, that is H hat three is given as x bar hermitian y bar divided by 

norm x bar square, which is equal to so we have H hat of three, which is basically your ML 

estimate at time instant three, that is basically seven plus two j divided by nine, which is nothing 

but seven divided by nine plus two divided by nine j. So what is this? This is your ML estimate 

at time instant three. ML estimate at time instant three. ML estimate of the channel co-efficient 

of course, yeah?  

Now the other thing, remember the other thing that we’ve to compute in the sequential process, 

the sequential estimation process is basically the variance at time instant three. The variance 

P(N) at time instant three is sigma square divided by norm x bar square, alright? We know that 

also. So the variance P(N) at time three, that is P of three. Variance of the estimate, at N equal to 

three, that is basically P of three, equals sigma square divided by norm x bar square.  
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Let us consider similar to the previous example in the Wireless Channel Estimation, let sigma 

square, let the dB variance, let the dB noise variance be three dB, which implies ten log ten 

sigma square equals three, which basically implies your sigma square equals ten power point 

three, this is approximately two, okay? So three dB noise variance, right, three dB noise variance 

basically corresponds to a sigma square value of two. Okay? So now, the noise variance P three 

at time N equal to three is sigma square divided by norm x bar square, so this P three equals 

sigma square divided by norm x bar square, which is sigma square is two, divided by norm x bar 

square is nine, so this is basically your value of P three. 
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So, we have calculated H hat of three, which is a estimate at time instant N equal to three and P 

three which is the variance at time N equal to three. Now, let us assume that now, consider the 

received transmitted pilot symbol x N plus one at time instant N plus one, that is N equals three, 

therefore N plus one is four. Let us consider the transmission of x four, and the reception of the 

pilot sa, output pilot symbol y four that is y N plus one and now, basically using H hat of three, 

we would like to estimate it to H hat of four, okay, at time instant N plus one. So consider now, 

consider now the transmission of pilot symbol x N plus one that is, x of four.  

Remember, N equal to three, so we’re considering the transmission of x of four. Corresponding 

received symbol is, corresponding received symbol is y N plus one, that is, y of four. Okay? So 

let x N plus one equals, remember, let x N plus one equals x of four. Let this be equal to one plus 

two j, and let the corresponding output symbol y N plus one equals y of four, and let this be 

equal to minus three minus two j, and therefore the prediction error; therefore the prediction error 

N plus one equals e four, equals y N plus one minus remember, we said H hat N times x N plus 

one. Remember, for the sequential estimation process, we have to compute the prediction error, e 

N plus one at time instant N plus one that is e four, which is basically, that tells us how accurate 

is the estimate H hat N computed at time instant N. 
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And it’s defined as y N plus one minus H hat N times x N plus one, okay? And therefore now, 

I’m going to substitute y N plus one. y N plus one we know, y N plus one is given as, well, that 

is already given, that is minus three minus two j minus H hat of N, H hat of N is seven plus two j 

divided by nine, that is what we already computed, remember this is H hat of three. Just to write 

it a little bit more explicitly, this is basically your y four minus H hat of three times x four. So 

seven plus two j over nine times one plus two j, and this is equal to, this is equal to well I can 

simplify this. This is minus three minus seven by nine plus four by nine minus j times two plus 

two by nine plus fourteen by nine, which is equal to minus thirty by nine minus thirty four by 

nine times j, and what is this?  
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This is your prediction error e hat N plus one, that is e hat of four. This is your prediction error at 

time N equal to four. Prediction error at time; this is your prediction error at time N equal to four. 

So for the the complex quantities, now we have to come up with a update equation. Remember 

the update equation which we said previously, let me first write the update equation for the real 

symbols. Right? The update equation. This is the update equation for H hat N plus one, which is 

the estimate at time N plus one.  
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Which is the estimate at time N plus one and the update equation remember, is given as, H hat N 

plus one equals H hat N plus k N plus one, where k is the ‘Gain’ times e N plus one, where e N 

plus one, this is the prediction error. So k N plus one remember k N plus one is the, gain at time. 

So naturally for complex symbols what I’m going to do is, I’m going to do a simple 

modification. I’m going to simply replace this k N plus one by k conjugate, for complex 

symbols, where the conjugate. That’s it. That is a simple modification that we have to do, that is, 

replace the gain k N plus one by k N plus one conjugate, because we’re considering complex 

symbols x N, and complex received output symbol y N. 
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And similarly complex symbols x N plus one, and received output symbol y N plus one. So I’m 

replacing the gain k N plus one by the complex conjugate, okay? And one more small 

modification you’ll if you look at the expression for k N plus one, we have k N plus one equals 

remember, we had defined k N plus one as P(N) the variance at time instant N divided by x N 

plus one, divided by sigma square, the noise variance, plus, P(N) times x square N plus one. Now 

I’m going to replace this by the magnitude square. All I’m going to do, is I’m going to replace by 

the magnitude square, that is magnitude square; replace this by the, replace this by the magnitude 

square for your complex symbol x N plus one, alright? 
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So there are two changes basically, one is k N plus one is replaced by the complex conjugate, 

alright? That is k N plus one conjugate in the update equation, and in the expression for k N plus 

one, instead of x square N plus one I have magnitude x N plus one whole square, okay? So now 

using this, let us compute k N plus one, the gain at time four set at, that is N equal to three, so k 

N plus one equals k four, so k four equals basically P three times x four divided by sigma square, 

plus P three times magnitude x four square, okay? We have computed P three before. P three is 

the variance at time three, that is two over nine times x four, that is one plus two j divided by 

sigma square which is two plus P three which is two over nine times magnitude, one plus two j 

whole square, which is equal to, which is equal to two over nine times one plus two j over two 

plus two over nine times magnitude one plus two j square is five. 
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This is basically one plus two j divided by fourteen, okay? And what is this this? This is your k 

four, that is gain, complex gain at time N equal to four, n plus one equal to four. Okay? Complex 

gain at time N plus one equal to four. And now the update equation therefore is H hat, therefore, 

the update is H hat four equals H hat three plus, a conjugate four into e four, we know H hat 

three, H hat three is seven plus two j divided by nine, plus k four we’ve already calculated that 

here, so I’ve to take k conjugate four, that is one minus two j divided by fourteen times e four, 

which is basically, the prediction error minus thirty by nine minus thirty four j divided by nine.  
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And this, is basically equal to, now I’m going to simplify this seven by nine minus thirty divided 

by nine into fourteen, you can check the calculation minus sixty eight divided by nine into 

fourteen plus j times two by nine plus sixty divided by nine into fourteen minus thirty four 

divided by nine into fourteen. This can be simplified as, this is equal to, well, this is ninety eight 

minus thirty, minus sixty eight divided by nine into fourteen, um, plus j times twenty eight plus 

sixty minus thirty four, divided by nine into fourteen. This you can see, this quantity zero, so this 

is basically, and this reduces to fifty four times j divided by nine into fourteen, which is basically 

six j divided by fourteen and what is this? This is the, estimate at time instant four. 
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And this is, similar, and what you observe interestingly is it is exactly identical to the maximum 

likelyhood estimate we calculated in the previous example, um, in, in the um, previous example 

for Wireless Fading Channel Estimation, considering four transmitted pilot symbols that is N 

equal to four transmitted pilot symbols, and N equal to four received output pilot symbols, and 

what we, what we observe, is that using this sequential estimation procedure, we basically get 

back the same estimate H hat four, alright? So let me, just highlight that H hat four equals, what 

is that, six j or six divided by fourteen times j, which is basically ML estimate, identical to ML 

estimate, over N equal to four. 
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This is identical to the ML estimate for N equal to four pilots computed previously. In previous 

example. By previous example I mean the previous example for maximum likelyhood estimation 

of the Wireless Fading Channel co-efficient, okay? Alright? So now, we have to compute the 

variance, remember we have to compute the variance. At every step, we have to compute both 

the um, estimate, and the variance in the sequential estimation procedure, okay? And the 

variance update, you remember variance update for the real case, is given as P(N) plus one 

equals, P(N) into one minus k N plus one into e N plus one.  

k N plus one is again e N plus one is a prediction error. Now for the complex scenario, naturally 

all I have to do is replace this gain by the conjugate, for, for your complex symbols. For complex 

symbols, k N plus one is replaced by k N plus one conjugate, and that’s the only change, and 

therefore, P of four equals P of three, one minus k conjugate four into prediction error e four, 

which is P of three, we know  
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this is two over nine times one minus k conjugate four, which is one minus two j divided by 

fourteen times one plus two j, which is equal to, well two over nine into one minus, one minus 

two j into one plus two j is magnitude one plus two j square which is five divided by fourteen 

equals two over nine times, well fourteen minus five, that is nine divided by fourteen equals two 

over fourteen equals one by seven. And what is this? This is P four, prediction error at time N 

equal to four, and this is basically the prediction, I’m sorry, this is the variance at time N is equal 

to four. 

That is basically the variance in the estimate H hat of four, that is this quantity is basically 

nothing but, you all know, this is the variance in the estimate, that is expected value of H hat four 

minus x square. That is variance in estimate computed at, at time N equal to four or N plus one 

equal to four, basically N plus one is the next time instant. Correct? So what we’ve calculated, 

what we’ve shown in this example is basically we have calculated the estimate H hat four, which 

is six j by fourteen, which is identical to the previous ML estimate, and in fact, you can also 

check, the variance P of four equals one by seven is also identical to the variance computed for 

the previous maximum likelyhood estimate. And in fact, we had proceeded further to derive that 

the variance of that, the errors of the real and imaginary parts are uncorrelated, and the variance 

of the real and imaginary parts of the estimates, um, of the estimate is basically half of the total 

variance. 
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That is the variance of the real part of the estimate is one over fourteen, and variance of the 

imaginary part is also one over fourteen, and that also holds again, um, it is natural that that also 

holds basically in this sequential estimation procedure. Alright? So, what we’ve described here, 

what we’ve shown in this module is a detailed example of basically, the paradigm of sequential 

estimation illustrated in the context of estimation of a Wireless Fading Channel co-efficient. 

Naturally this can be extended to other scenarios also, for instance, the Wireless Sensor Network, 

very easily. It may also be extended the vector estimation scenario, that is the Downlink Multiple 

Antenna Channel estimation, OFDM and other scenarios, although, extension to the vector case 

is not very straight forward, but it has a similar structure, which we will defer to a slightly later 

course, probably, because it’s slightly more complicated than this. 

But basically, what we’ve shown is we’ve shown, described this paradigm of sequential 

estimation which is very interesting, because we don’t need to recompute the estimate at every 

time instant; rather simply update the latest or the previous estimate. Alright? So we’ve shown 

how to compute, update the estimate, the update equation in terms of the gain, the prediction 

error how to compute the updated estimate, and also how to update the variance at every time 

instant. So this, and basically we’ve also shown that this yields exactly identical results, um, as 

that of the ML estimate, which is basically, the one shot estimate computed at every time instant.  



And naturally, because the sequential estimation procedure itself was derived from the ML 

estimate, alright? So we’ll stop this module. Yeah. Thank you.    

   


