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  Hello, welcome to another module in this massive open online course on Estimation Theory 

for Wireless Communication Systems. And we are looking at OFDM that is Orthogonal 

Frequency Division Multiplexing. And we said that OFDM very efficiently overcomes the 

Inter symbol interference in a wireless channel, all right. 
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So we are looking at basically OFDM, which is your Orthogonal Frequency… Orthogonal 

Frequency Division Multiplexing and we are considering, as an example, we are considering 

a system with N equal to 4 subcarriers and we said that X 0, X 1,X 3 these are the N equal to 

4 symbols loaded onto the subcarriers. 
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 These are basically your N equal to 4 symbols loaded, which are basically loaded onto the, 

which are loaded onto the subcarriers. 

Basically, which means that we are looking at the N equal to 4 point N equal to 4 point IFFT 

Inverse Fast Fourier Transform of this to generate the samples. So we loading capital X 0, 

capital X 1, capital X 2, X 3 onto the subcarriers which is, we are taking the N point or 4 

point IFFT to generate the samples. And the samples are basically your X 0, X 1, X 2, X 3 

where your kth sample. 
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These are the samples in time domain which are actually transmitted over the channel and 

therefore, basically kth sample X k equals some L equal to 0 to N minus 1 x L e power 1 over 

N since this is an IFFT, e power j 2 pie k L divided by N. Now substituting N equal to 4, I 

have N equal to 0 to N minus that is 3 x L e power j 2 pie k L by 4 which means your sample 

x k equals 1 over 4 submission L equal 0 to 3 x L e power j pie by 2 k l. 

So this is the kth sample which is generated by the IFFT. So the kth sample generated by the 

IFFT, correct. And now we have not simply transmitting the samples, we are adding a cyclic 

prefix that is we are taking some samples from the tail of the block and prefixing them at the 

head of the block and this is known as the cyclic prefix. 

Precisely in this example we have taken one sample, but one can take more also, alright. Or 

that depends on the length or the number of taps in the channel response, okay.  
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So basically, what we are doing is, we have X 0, X 1, X 2, X 3 and what I am doing is 

basically now I take X 3 and prefix and this is termed as your cyclic prefix or CP are 

basically the CP. 

And now when you take this block with cyclic prefix, this is your block of samples. So the 

OFDM transmission takes place in blocks. So this is the block of samples with your cyclic 

prefix and you transmit these across the ISI channel. Transmit this across the Channel with 

inter symbol interference and what is the channel; we are considering the 2 tap inter symbol 

interference channel that is y k equals h 0 x k plus h 1 x k minus 1 plus V k. 
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This is the 2 tap, this is your basically L equal to 2 tap ISI channel. This is your L equal to 2 

tap ISI channel. And now when you transmit the samples with the cyclic prefix, that is a 

cyclic prefix block of samples across this ISI channel, what you get is that the channel action 

becomes a circular convolution.  

So the output basically y is a circular convolution of the channel with the transmitted samples 

plus the noise and that is what we have also seen yesterday. That is also what we have seen in 

the previous modules that is, y equals h times x h and where this is basically your circular 

convolution in a time domain that is, in a domain of the circular convolution. 

And it is important to remember that this is the circular convolution in the time domain for 

the samples. 
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 Okay, this is the circular convolution and the time domain that is the time domain for the 

sample. So there is still inter sample interference that is, the inter sample interference is still 

there, that has not been removed. 

However, now once you take the FFT and convert it into a frequency domain. Now you take 

the whole system, you take the Fast Fourier Transform FFT or basically which is the same 

thing as your TFT and convert it into the frequency domain. And once you convert it into the 

frequency domain, what you have is that the circular convolution becomes a multiplication 

that is, FFT of h times FFT of x plus FFT of your noise. 

Let me write this multiplication explicitly. So in the FFT domain, this becomes a 

multiplication. Multiplication in FFT domain or basically your frequency domain. Let us call 

this, rather than FFT, probably a better word for this is the frequency or subcarrier domain. 

Remember, in the frequency we are talking about the various subcarriers in the frequency 

domain. 
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So in the frequency domain, it is a multiplication which means now basically if you look at 

the Lth subcarrier that is, I have y L that is in the frequency domain across Lth subcarrier is 

the product h L times x L which is the symbol transmitted across the Lth subcarrier plus V L 

where y L is the output symbol. Remember, this we said is the output; this is your output 

symbol across Lth subcarrier. 

This is your channel coefficient for your Lth carrier, okay. This is the symbol loaded onto the 

Lth subcarrier. This is something that we have already seen the capital l. This is the symbol 

loaded onto the Lth, this is the symbol loaded onto the Lth subcarrier and V L is basically the 

on, this is your noise on the Lth subcarrier; this is the noise on the Lth subcarrier, so this is 

the model. 
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And therefore what you are saying on the subcarrier, on each subcarrier there is no… And 

this is important to observe that on each subcarrier there is no ISI. That is there is no Inter 

Symbol Interference on each subcarrier because y L equal the coefficient h L times the 

symbol x L on the subcarrier plus V l. So basically there is no interference Inter Symbol 

Interference on the symbol x L capital x L which is basically the symbol loaded onto the 

subcarrier. 

Therefore, it very efficiently removes ISI using simply the IFFT at the transmitter and the 

FFT operation at the receiver. And now since we have N equal to 4 subcarriers, we may 

simply expressively write it down so that we can formulate the system model, then see how 

the estimation of this of this channel coefficient can be done. And that is indeed going to be 

very simple. So if I write the system for the N equal to 4 subcarriers. 
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 So remember we said we have N equal to 4 subcarriers are responding to L equal to 0, 1, 2, 3 

which means across subcarrier 0 I have y 0 equals x 0 h 0 just writing h x as x h because this 

is convenient. y 1 equals x 1 h 1 plus V 1 by the same token, again this is very simple, 

something that you can already guess y 2 equals x 2 h 2 plus V 2 and y 3 equals x 3 h 3 plus 

V 3, this is across your… 

N equal to 4, this is across your N equal to 4 this is across your N equal to 4 subcarriers. And 

now I can write this as a matrix, so basically what I can do now is I can basically make a 

vector out of this, I can use it, I can model it, I can represent it using vector notation. That is 

what we have done many times before and it is going to be very simple.Now if I write it as a 

vector, now we can clearly see, write it is as a vector.  
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That is, I have y 0, y 1, y 2, y 3, let me call this vector y bar. You can see this is basically this 

diagonal matrix of x 0, x 1, x 2, x 3, this is basically.  

Let us call this matrix x which is your diagonal matrix, times the matrix of channel 

coefficients h 0 or the vector of channel coefficient across each subcarrier rather h 2, h 3 plus 

again the noise vector it is the noise across each sub carrier capital V 0, capital V 1, capital V 

3, so this is your channel vector, this is your noise vector. 

And remember, this whole model is basically in the frequency domain because we are writing 

it across each subcarrier. This whole model represents the frequency domain representation 

of this OFDM system. That is y L equals x L the symbol loaded onto the subcarrier times h l, 

the channel coefficient across subcarrier plus capital V l, which is the noise sample on 

subcarrier l. 
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And now we have converted into matrix model where y bar equals x times h bar plus V bar 

where x equals, you can see this is an N cross N that is in, this case 4 cross 4 diagonal matrix. 

Y bar this is N cross 1 vector, h bar is your N cross 1 that is again 4 cross 1 coefficient vector. 

And V bar is basically your N cross 1 or basically your 4 cross 1 noise vector. 

This is an equivalent channel vector, you can think of this as basically your channel vector in 

the frequency domain and you can think of this as the pilot matrix in the subcarrier domain. 

That is, the diagonal matrix x if we are transmitting pilot symbols on to the [sum] subcarrier, 

so this is the pilot matrix in the subcarrier domain. That is where, and this is the receive pilot 

outputs in the subcarrier domain. 

For channel estimation, these are the pilot outputs in the subcarrier domain. Basically what 

we are saying is, we are considering capital X 0, capital X 1, capital X 2, capital X 3 to be the 

N pilots loading onto the N subcarrier. So basically what we are saying is we have 4 purposes 

of channel estimation, if we load the pilots onto the subcarriers, so these are your pilots 

loaded onto the subcarriers. 
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These are the pilot which are loaded onto the subcarriers and therefore what I have is, now I 

have a familiar y equals x h bar plus V bar where this is the pilot matrix. This is something 

what we have seen many times before, even in the downlink channel estimation where we 

have the receive vector basically y equals pilot matrix x times the channel vector h plus the 

noise vector. 

And therefore now, one can formulate the channel estimation problem that is, the estimation 

of the coefficient vector capital H bar as a Least Squares problem. So naturally I can now 

formulate this as a Least squares problem and it is going to be a Least simply Squares 

problem. So channel estimation, I’m going to formulate this as a Least squares problem. This 

is going to be your Least Squares that is LS problem for channel estimation. 
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Which is simply now like many times before, y minus h x bar square and we would like to 

minimise it with respect to h bar that is, we would like to find the h bar which minimises this 

Least Squares function and that gave the Maximum Likelihood Estimate and remember that 

is also something that we had derived and the least squares solution again is very simple. 

That is, h hat equal x hermitian considering complex symbols. X hermitian that is simply 

replacing the transposed by hermitian x hermitian x inverse x hermitian y that is basically… 

Remember, previously we had x transpose x inverse x transpose. Why I am simply replacing 

the transpose by hermitian, because of to allow complex matrix x, yeah.And therefore what 

we have and now therefore now let me write this again a little bit clearly. 
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x hermitian x inverse x hermitian y, this is the Least Square estimate of the coefficient vector. 

This is the Least Square or the LS estimate of the coefficient vector, right. x hermitian x 

inverse x hermitian y right, where y basically vector y is the FFT of the outputs received of 

the sample, output samples received in the time domain. 

Basically, y bar is the vector of outputs across the various subcarriers, correct. And x is 

basically the diagonal matrix consisting of the pilot symbols which are loaded onto the 

subcarriers and now if you observe something interesting, this matrix x is a diagonal matrix 

which is basically invertible, right. 

So if you look at this is slightly different from the Least Square that we have seen before, 

your x is a x basically equals. In fact, let me just write it expressively.  
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This is your x 0, x 1, x 2, x 3 which is an only diagonal entries are nonzero, rest of the entries 

are 0. So basically your x is a diagonal matrix. 

X is a diagonal matrix which is invertible and therefore what you have, so this matrix is 

basically this is an invertible matrix. This is basically an invertible matrix which means now 

what you have is normally, see remember previously we said, so this is an N cross N matrix, 

so X is basically a square. 

 In fact, diagonal matrix and hence x is invertible. Previously, when we considered the pilot 

matrix, remember the pilot matrix we said is N cross M where N is a number of pilot vectors 



and [a] M is basically the number of antennas at the base station. That was in the case of 

multi-antenna downlink channel estimation. 

Here we have something very interesting because of the nature of OFDM channel estimation. 

We have, if the pilot matrix x is N cross N, it is a square matrix. So therefore in fact it is 

invertible and hence in this scenario particularly, x hermitian x, since x is a invertible matrix, 

this is not always true, so this becomes x inverse times x hermitian inverse. 
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This is only for this scenario because x is invertible. This is not because x X is invertible, this 

is not generally true, and this is only true in this scenario because in OFDM and this OFDM 

scenario X is N cross N. It is an N cross N invertible matrix. And therefore now if I substitute 

this, I have h hat equals x hermitian x inverse x hermitian y bar which is basically now x 

inverse into x hermitian inverse into x hermitian into y bar. 

Of course you can see x hermitian inverse into x hermitian, this is identity, so this is simply 

now very interestingly simply x inverse y bar where x is basically your, where x is basically, 

this x is basically your pilot matrix pilot matrix. 
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 And also since the pilot matrix is diagonal, since it is a diagonal matrix, x inverse is also 

very easy to compute. 

If basically the inverse of each of the diagonal elements that is the reciprocal of each of the 

diagonal elements. Therefore, x inverse simply, since x is a diagonal matrix, this is also 

important to note. Since x is diagonal, x inverse is easy to compute. When I say easy, it 

means it is sufficient, x inverse is simply basically your 1 over x 0, 1 over x 1, 1 over x 2, the 

rest are 0s. 

This is your diagonal matrix and therefore now if I look at h hat. 
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 Estimate of the vector h hat that is estimate of h hat 0, h hat 1, ha hat 2, h hat 3, this is simply 

x inverse that is 1 over x 0, 1 over x 1,1 over x 2, 1 over x 3 0 times the symbol vector 

received across the subcarriers, that is y bar which is y 0, y 1, y 2, y 3 and now therefore now 

since this is diagonal matrix.  

Now if you look at this, you have 1 over x 0 multiplying by y 0, you have 1 over x 1 

multiplying y 1, you have 1 over x 2 multiplying y 2, x 3 multiplying y 3. Now therefore the 

channel estimates are very simple, it is simply h hat 0 equals y 0 divided by x 0, h hat 1 is 

basically your y 1 divided by x 1, h hat 2 equals y 2 divided by x 2 and finally h hat 3 equals 

y 3 divided by x 3. 
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That is basically the estimate of the channel coefficient across each subcarriers N is simply 

the pilot output across the subcarrier divided by the pilot input across the subcarrier and that 

is very simple to see. So basically summarising this channel estimates, h hat k equals y k 

divided by x k, this is what, this is the estimate of coefficient or let us write it in terms of l, 

since that is the notation that we are using. 

 h hat L equals  y L divided estimate of coefficient across subcarrier l, y L symbol across 

subcarrier l. The pilot output symbol, pilot output across subcarrier L and x L is basically 

your pilot symbol. This is basically the pilot symbol across subcarrier L and therefore, if we 

look at this across each subcarrier, we have h hat l.  



It is very simple, the estimate of coefficient across subcarrier N is simply y L divided by x L 

where x L is the pilot symbol loaded onto the Lth subcarrier, all right. So the estimate h hat 0 

is equal to, you can clearly see. 
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This is y 0 divided by x 0, h hat 1 equals y 1 divided by x 1. 

(Refer Slide Time: 29:20) 

 

 h hat 2 similarly equals y 2 divided by x 2 and h hat 3 this is equal to y 3 divided by x 3.And 

in general therefore one can say the estimate of the coefficient on the Lth subcarrier h hat L 

equals y L divided by x l. 
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 This is what is L h hat, L is basically, this is the estimate of the coefficient on the Lth 

subcarrier. This is the estimate, this if the estimate of the coefficient on the Lth subcarrier, all 

right. 

So we are saying h hat L equals y L, that is the received pilot symbol y L on the Lth 

subcarrier divided by x L which is the transmitted pilot symbol on the Lth subcarrier. And 

therefore now if I look at this, now if I look at the coefficient h hat 0, h hat 1, now remember 

what we said earlier, remember.  
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The h hat, the capital H, what are they, they are the given by the FFT of the channel taps, 

remember we had [h 1], h 0, h 1, 0 pared and you look at the N equal to 4 point IFFT or N 

equal to 4 point FFT or basically your DFT, you get the capital H S which are the basically 

the channel coefficients corresponding to the subcarriers, right.  

These are the coefficients for the subcarriers, so what are these, these are your channel taps 

and these are the coefficients corresponding to the various coefficients of the subcarrier. So 

the coefficients of the subcarrier, channel coefficients of the subcarriers are given by the 0 

pared FFT of the channel taps. But therefore, from the estimates of the coefficients of the 

subcarriers, if you want to construct the channel taps, we have to look at the IFFT. 

Right, because the channel taps FFT use the channel coefficients of the subcarriers, the 

coefficients on the subcarriers, if you take the IFFT or the IDFT, you get back the taps. So 

now we have the estimates of the channel coefficient on the subcarrier. How do we find the 

channel taps, estimates of the channel taps, we take the IFFT or IDFT.  

And therefore naturally what we want to do is… 
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 I have h hat of 0, h hat of 1, h hat of  2, h hat of 3 and what do I do, I basically take the IFFT 

or basically IDF. N equal to 4 point… To get back your h hat 0, to get back the estimates of 

the, what are these, these are the basically your estimates of the channel taps. So these are the 

estimates of the so these are estimates of the subcarrier coefficients.These are the estimates of 

your channel taps.  
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In other words, basically what we are saying is this h hat k which is the estimate of the 

channel tap of the subcarrier k on or the estimate of the kth channel tap is given by the N 

point IFFT, that is 1 over N, L equal to 0 to N minus 1, h Hat of L, e raise to j 2 pie kL by N 

and now here, I am going to substitute an equal to 4.Now substitute N equal to 4. 
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Which means what I have is h hat of k equals 1 over 4 L equal to 0 to 3, h hat of L e power j 

2 pie k L [k L] divided by 4 which is basically 1 over 4 L equal to 0 to 3 h hat of L e power j 

pie to k times L. This is the expression for the estimate of the kth; this is estimate for the 

expression of the kth channel tap. So this is the estimate of the kth channel tap. 



Expression for the estimate of the kth channel tap which is given by the IFFT of the estimates 

of the subcarrier coefficients that is, estimates of the channel coefficients of the various 

subcarriers. And the [IF] size of the IFFT or the IDFT is N equal to 4 point. Okay, for 

example, h hat 0, if you look at h hat of 0, I now have to do is, I have to substitute basically 

your k equal to 0 corresponds to k equal to 0. 
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So this is 1 over 4, submission L equal to 0 to 3, h hat L , e power j pie by 2, k equal to 0 0 

tads L, so this quantity is 1, so this is basically 1 over 4 submission L equal to 0 to 3, h hat of 

L, e power, well this thing is one, so it is simply submission 1 over 4 L equal to 0 to 3 h hat 

of L and h hat of 1 which is the estimate of the first channel tap is 1 over 4, basically that 

corresponds to k equal to 1, L equal to 0 to 3, h hat of L, e power j pie by 2, k equal to 1 into 

L. 

So this is basically 1 over 4, L equal to 0, h hat of L, e power j pie by 2 into L. So this is 

estimate of channel tap 0 or estimate of 0 (()) (37:48) and this is basically your estimate of the 

first tap. This is basically the estimate of the first tap.  

This is estimate of the channel tap 1, okay. So basically what we have over here, now what 

we have done, we have comprehensively demonstrated how to do channel estimation for an 

OFDM that is Orthogonal Frequency Division Multiplexing System.  

So in this module and the past modules, what we have seen is first we have formulated, we 

have developed the model for OFDM or Orthogonal Frequency Division Multiplexing based 

transmission where we said we have symbols which are loaded into the subcarriers that is, 



basically perform the IDFT followed by the cyclic prefix, transmit them over the frequency 

select or the Internet symbol interference channel, right. 

At the receiver perform the FFT, that converts, that basically because of the cyclic prefix 

action of the channel is that of circular convolution, so basically in the FFT domain the action 

of the channel is that of multiplication, the channel coefficient is multiplied across each 

subcarrier with the transmitted symbol plus of course you have additive noise.  

And then we formulated, considering these symbols loaded onto the subcarrier to be pilot 

symbols, we formulated the least squares channel estimation problem, we estimated the 

channel coefficients corresponding to the various subcarriers.  

In fact, we said that it is very simple, what we have to do is we have to take the received pilot 

symbol capital Y L across subcarrier L divided by the transmitted pilot symbol capital X L on 

the Lth subcarrier, that is capital Y L divided by X L that gives capital h hat L. The estimates 

of the channel coefficient across subcarrier L remember, this is the channel coefficient in the 

frequency domain. 

Now to get the time domain channel coefficients, what paved we have to do is we have to 

take the IFFT similarly, the N equal to 4 point IFFT and then you get the corresponding 

estimates of the channel taps in the time domain. So that is how, that is how enquiry or in 

summary how OFDM channel estimation works, alright.  

So we will stop this module here, in the subsequent module we will look at a simple example, 

because examples illustrate things clearly, so we will look at element example to see how this 

whole mechanism of OFDM channel estimation works, alright so we will stop this module. 

Thank you very much. 


