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Hello, welcome to another module in this massive open online course on Estimation or 

Estimation theory for Wireless Communication. And in the previous module we had started 

looking at the basic model for Estimation.  

We had considered a sensor network and then noisy observation model for the Sensor 

network in which our observation.  
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Remember we have our observation y which is equal to the parameter h + the noise, so this is 

your observation at the Centre which is equal to the parameter that is denoted by h + the noise 

that is denoted by… And in addition we have seen then this v is Gaussian with mean 0 Sigma 

square. 

Then this y is also Gaussian with mean given by the unknown parameter h and variance 

Sigma square. Therefore, Probability Density Function of this observation f y of y that is the 

PDF of this observation y.  

That is the random variable y is 1 over 2 pie square root Sigma square e raise to - 1 over 2 

Sigma square y - h square, this is the Probability Density Function of the observation y at the 



Sensor node corresponding to the parameter h and Gaussian noise v with mean 0 at variance 

or power Sigma square. So this is what we have seen in the previous module. 

Now let us extend this module further, let us extend this to a scenario where a sensor node is 

making multiple measurements in time. For now I would like to consider our sensor node 

scenario. So let us go back to our sensor network, our sensor node which is now making 

multiple measurements. So our sensor node which is making multiple, so our sensor node is 

making…  
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Again remember measurements, but this time it is making multiple measurements of this 

parameter h in time. So we have measurements y 1, y 2, y N and these are the multiple 

measurements being made at different time instance 1, 2 up to and so we have the 

measurements y 1, y 2, y N capital N measurements being made a capital N time instance. 

And interestingly now you can also consider this as a sensor network with multiple sensor 

nodes with capital N sensor nodes making capital N measurements, right. Instead of 

considering these such as single sensor making N measurements in time when can also 

consider this as N sensors making multiple measurements at a single instant of time. 

So this so this basically captures both the single sensor and also a multiple sensor scenario for 

the measurement and subsequent estimation of the parameter h. Now therefore, these 

measurements can be modeled as each measurement is basically a noisy observation y 1 

equals h + v 1, y 2 equals the parameter h + v 2.  



So on and so forth y N, the Nth measurement is the parameter h + v N and similarly we also 

assume that all these noise elements v 1, v 2, v N are noise with 0 mean and variance Sigma 

square, so each measurement y K at the Kth instant of time is h + v K where K can range 

from 1 to N, we have N instant of time. 

So in general I can represent this as the Kth measurement y K equals h + v K where K 

denotes the Kth instant the Kth instant of time. 
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 And naturally the Probability Density Function corresponding to y K is f of y K of your 

observation y K is again the same. It is Gaussian with mean given by the parameter h and 

variance Sigma square. 

So this is given by the Probability Density Function which is 1 over square root of 25 Sigma 

pie Sigma square e raise to -1 over 2 Sigma square y K - h whole square, this is the 

Probability Density Function, this is the PDF of each individual of each individual 

observation y of K.  

This is the PDF of each individual observation y of K, we are saying the same thing that is 

each individual observation made by the sensor at time instant K is a Gaussian, has a 

Gaussian Probability Density Function mean with given by the unknown parameter h and 

variance given by the variance of the noise v k which is Sigma square. 

Now what we are interested is we want to come up with the joint density of the of the 

observation y 1, y 2 up to y N. We have to come up with a joint PDF or the joint Probability 



Density Function of the observation y 1, y 2 up to y N which is represented by f subscript y 1, 

y 2, y N of y 1, y 2 up to y N. 
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We have to come up with the joint Probability Density Function, this is a joint PDF of these 

observations y 1, y 2 up to y N and towards this and we will make a simplifying assumption 

to come up with a joint probability density function, we are going to assume initially that 

these noise elements v 1, v 2, v N are IID that is these are Independent Identically 

Distributed.  

So the noise elements, the assumption that we are going to make is towards this end to 

develop the joint Probability Density Function. The noise elements or the noise samples v 1, 

v 2, v N are IID.  
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 What do we mean by IID that is, they are independent and identically, they are Independent 

Identically Distributed. That is, all of these are identical distributed, that is, what we have 

already early on, that is Gaussian with mean 0 variance Sigma square. 

And also they are Independent, right. These noise samples v 1, v 2, v N are Independent. 

Which means observations y 1, y 2, y N are also independent, so the observations y 1, y 2, y 

N of the noise sample v 1, v 2, v N are dependent. The observations y 1, y 2, y N are 

Independent and therefore what we have, since v 1, v 2 noise samples v 1, v 2 up to v N are 

Independent. 
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This implies that basically your observations y 1, y 2 up to y N are also independent. In fact, 

they are Independent identically distributed with mean h and variance Sigma square. 

Therefore, the probable joint Probability Density Function of the observation is of the 

observations y 1, y 2, y N is the product of the individual Probability Density Function 

corresponding to the observation because the observations are Independent. 

And that gives us an important result. 
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That is, the joint Probability Density Function which we are talking about before f of y 1 y 2 

up to y N of y 1, y 2 up to y N. This is equal to the product of the individual Probability 

Density Function that is f of y 1 of y 1 times f of y 2 of y 2 times f of N of y N that is, this is 

the product of the individual Probability Density Function. 

Product of individual Probability Density Function of the observation and we know what is 

the individual Probability Density Function of each observation that is… 
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 1 over 2 pie Sigma square, square root of 2 pie Sigma square e raise to - 1 over 2 Sigma 

square times y 1 - h whole square… 
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 Times the product times the product 1 over square root 2 pie Sigma square e raise to - 1 over 

2 Sigma square y 2 - h square times 1 over square root of 2 pie Sigma square e rise to - 1 over 

2 Sigma square y N - h y N - h whole square. This is the product of the individual Probability 

Density Function corresponding to the observations y 1, y 2 up to y N. 



 And now simplifying this product of the individual Probability Density Function, you can 

clearly see that this is given as 1 over, that is collecting 1 over the square root of 2 pie Sigma 

square terms, I have 1 over 2 pie Sigma square raise to the power N by 2 e raise to - 1 over 2 

Sigma square submission, all the expressions all the terms in the exponent will add up K 

equals 1 to N submission K equals 1 to N y K - h whole square. 

And this is your joint Probability Density Function. 
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 This is the joint PDF of this is the joint PDF of the observation y 1, y 2 up to y N. And now 

[we] I would like to bring to your attention an important point, note that while deriving this 

joint PDF we have ignored the facts so far that this parameter h is an unknown parameter. 

This is the parameter that we are trying to estimate at the sensor node or the fusion centre. 

This parameter h as I pointed out to you also in the previous module that this parameter h is 

unknown. So to realize that in this, in our Probability Density Function, this parameter h is 

unknown. This parameter h is unknown and therefore one has to estimate this parameter h, 

this is known as Parameter Estimation. 

This is what I pointed out to you in the previous module that is estimating this parameter h. 

That is finding on what this computing the value of this parameter h is termed as Parameter 

Estimation. And this probability joint Probability Density Function as a function of the 

unknown parameter h, because there is a parameter which is unknown, as a function of the 

unknown parameter h, this is known as a Likelihood Function. 



And this is the important point, and one of the central points. I would like to point out in the 

entire framework of estimation theory. That is the Probability Density Function viewed as the 

function of the unknown parameter h is termed as Likelihood Function. That is the the joint 

Probability Density Function of the observation. 
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Let me put it this way, the joint PDF of your observations y 1 y 1, y 2 up to y N as a function 

of the unknown parameter H is termed the Likelihood Function. This is the Likelihood 

Function corresponding to the, this is the Likelihood Function which is basically the joint 

Probability Density Function of the observations y 1, y 2, y N which is viewed as a function 

of this unknown parameter h. 

This is known as the Likelihood Function, Likelihood Function of the parameter h. The 

argument is the unknown parameter h in a certain sense, this represents for each value h this 

represents the likelihood corresponding to the unknown parameter h.  

Right and we would like to use this Likelihood Function to find the estimate of the parameter 

h and therefore one natural framework to find an estimate of the parameter h is to find that 

value of h for which the likelihood is maximum and that is known as the Maximum 

Likelihood Estimate. And this is an important aspect of estimation or this is an important 

concept in estimation. 

We have derived the likelihood function of the unknown parameter h. Now we would like to 

maximize this Likelihood Function and find out that value of h which maximizes this 

Likelihood Function and that is known as the Maximum Likelihood Estimate. So what we 



would like to do is first let us look at this likelihood function, right. What is this Likelihood 

Function? 
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This Likelihood Function is your joint PDF that is f of y 1, y 2 up to y N y 1, y 2 up to y N 

which is equal to 1 over square root of 2 pie Sigma square e raise to - 1 over 2 Sigma. In fact, 

this is 1 over 2 pie Sigma square raise to the power of N by 2 e raise to - 1 over 2 Sigma 

square K equals 1 to N y K - h Whole Square. This is a function of the unknown parameter h. 

Now what I am going to do, I am going to define this as the as the likelihood of the 

observations y bar parameterized by h where y bar is observation vector y bar is observation 

vector. Remember, we have multiple observations so y bar is the observation vector y 1, y 2 

up to y N. So this is my basically my observation vector.  
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This contains all observation. This y bar is my observation vector and p of y bar h denotes 

this is the likelihood, what is this; this is the Likelihood Function of the observation vector 

and this is parameterized by h denotes, this is parameterized h, the terminology that is used is 

p. That is, we have this observation vector y bar which is of length N which contains 

observation y 1, y 2 up to y N. 

And p of y bar semi colon h remember it is not a,, it is a semi-colon h which denotes or which 

signifies the Likelihood Function of the observation vector y bar parameterized by this 

unknown parameter h. That is, p of y bar h yeah, so this is the likelihood function of the 

observation vector y bar which is parameterized by h. 

And now let us look at this thing, this like Likelihood Function; we have derived the 

expression for this Likelihood Function. Now as we said this basically, this is the Likelihood 

Function which corresponds to the likelihood of observation vector parameterized by h and 

now what we would like to do is we would like to maximize this Likelihood Function.  
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p of y bar y bar h, this is your Likelihood Function. What we would like to do is we would 

like to maximize this maximise this Likelihood Function to find the estimate which is termed 

as the Maximum Likelihood Estimate. In short, this is also denoted by m l. So we would like 

to maximise the Likelihood Function to find the Maximum Likelihood Estimate of the 

unknown parameter h. 

This maximum likelihood, this concept of maximum likelihood is also abbreviated as m l 

which denotes the maximum likelihood. Now let us look at this, instead of maximizing p of y 

bar parameterized by h, I can also maximise that is, maximising this is equivalent to 

maximising the log of p of y bar parameterised by h. Because if the function maximum, the 

Logarithm is also maximum because the log is a monotonically increasing function. 

We are talking about the natural logarithm. Let me denote this by l n that is log to the base e. 

When a function is maximum, its logarithm is also maximum. So function is maximise, 

instead of maximising the function, finding the point where the function is maximum, it is 

convenient in this problem since we have an exponential, we would like to find the parameter 

h for which the logarithm of the function maximum. 

Now let us look at the logarithm of the joint density function. 
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 The logarithm of the [pro] of the likelihood function is basically your law logarithm of 1 
over 2 pie Sigma square raise to the power of 2 over 2 e raise - 1 over 2 Sigma square 
submission K equal to 1 to N y K - h whole square. 

And if I take the logarithm of this likelihood function, now can get, you can see 
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 - N over 2 l n 2 pie Sigma square - 1 over 2 Sigma square submission K equals 1 to N of y K 

- h whole square and this is basically the log of the likelihood which is denoted by 

prescription l y bar parameterised by h. This is basically your log or the natural logarithm l n 

of p likelihood function p of observation vector y bar parameterised by h. 



This is also termed as the log likelihood function. The logarithm of the Likelihood Function, 

this is also termed as the log, this is also termed as the log likelihood. And instead of 

maximising the likelihood, I can maximise the log likelihood of the observation vector y bar. 

And now we can observe something interesting, look at this part in the log likelihood, this is 

a constant. 

So basically this is always a constant, so I did not worry about this. I would not worry about 

maximizing this, right; if the function is maximum, the function + constant is also a 

maximum. So I need to maximise this part, but this part has a negative sign, so I need to 

minimize this part, so I need to look at where I am, I mean this function has a negative sign, 

so to maximize the log likelihood function; I need to minimize this part.  

That is, in order to maximise - 1 over 2 Sigma square submission K equal to 1 to N y K - h 

square. If I remove the negative sign, I can minimize the rest of the argument and now 

observe that this factor 1 over 2 Sigma square is a constant, so I all I am left with is 

minimising this component which is submission K equal to 1 to N y K - h square. 

So what I am saying is that is equivalent this. Although this log likelihood function might 

seem complicated to begin with, it is equivalent to basically minimising this part. That is, 

minimise this part and now that minimisation is easier. I can simply differentiate this and said 

this equal to 0.  
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To minimise submission K equal to 1 to N y K - h square. To minimise this, differentiate and 

set equal to 0 and if I differentiate this, what am I going to get if I differentiate this with 

respect to h. 

 I am going to get submission K equal to 1 to N twice y K - h equal to 0 that is differentiating 

and setting equal to 0 imply submission K equal to 1 twice y K - h equal to 0 which basically 

implies that submission K equal to 1 to N of y K equal n times h which basically implies that 

this occurs at your h hat equals, what is the value of h that occurs? 
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This occurs at value of h equals, this occurs at value of h which is equal to 1 over N 

submission K equal to 1 to N y of K at this particular value of h is denoted by h hat. This is 

an estimate of the unknown parameter h that is the value of h at which the Likelihood 

Function is maximised is basically the estimate of the unknown parameter h. 

This is denoted by h hat, this is the Maximum Likelihood Estimate of h. So this is your h hat 

which we have calculated, this is the maximum likelihood of estimate; this is your Maximum 

Likelihood Estimate. Let me write this clearly, this is the maximum likelihood or ML 

estimate of h and one can also denote this by subscript ML to denote that this is the 

Maximum Likelihood Estimate. 

So this h hat is the Maximum Likelihood Estimate and look at this, this is simply the average 

of the observations, what is this, this is the average, simple average or arithmetic mean of 

observations. Your observations y 1, y 2 up to y n. And this is also known as this average is 

also known as the sample mean. That is the Maximum Likelihood Estimate is given by the 



sample mean. What is the sample observation y 1, y 2, y N and the mean of this sample is 1 

over N submission K equal to 1 to capital N y K.  

This is the arithmetic mean or the sample mean of the observations and this is very intuitive, 

what we are saying is the Maximum Likelihood Estimate, they are Maximum Likelihood 

Estimate of the unknown parameter h is simply to take the average of the observations at the 

sensor load which is something very intuitive, but we have derived this analytically, 

rigorously and justified this that is we have formed the likelihood function and this value of 

h. 

This is sample mean of the observations, maximises the likelihood function, therefore this is 

known as the Maximum Likelihood Estimate.  
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 So this sample or turns out that in this case the sample mean is basically your ML, the 

sample mean is your ML estimate which is something very important which you have learnt 

in this module. 

So what we have started in this module, we have extended our single observation model to a 

multiple observation or an observation vector model. We found out the joint Probability 

Density Function of these observations and is the function of the unknown parameter h, we 

said this is termed as a likelihood.  

The value of h at which this likelihood is maximum which corresponds to the maximum 

likelihood of the parameter h is known as the Maximum Likelihood Estimate. And for this 



particular problem we have derived the Maximum Likelihood Estimate as h hat equals 1 over 

N submission K equal to 1 to N y K which is the sample mean. 

And this is a very interesting aspect, this is a Maximum Likelihood Estimate which is a very 

interesting and very important and a very powerful estimation paradigm. This is the 

Maximum Likelihood Estimation, this example of sensor node making multiple 

measurements illustrates the the basics, the basics of this Maximum Likelihood Estimation 

principle. 

And in the next module, in further module we will discover, we will explore this Maximum 

Likelihood Estimate further and discover other properties of this Maximum Likelihood 

Estimation procedure and the Maximum Likelihood Estimate that we have found. So let us 

stop here and we will continue in the subsequent model. Thank you very much. 


