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Hello, welcome to another module in this massive open online course on estimation for 

wireless complications. In the previous modules we have seen the maximum likelihood 

estimate of the channel coefficient of a wireless communication system as well as the 

properties of the maximum likelihood estimate that is the mean and the variance. Let us now 

look at a simple example to compute this estimate of wireless channel coefficient to 

understand this process better. So, today let us look at a simple example for wireless channel 

estimation. 
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A simple example of wireless, that is wireless channel estimation, as we have seen channel 

estimation is the process where we compute the estimation of the wireless channel 

coefficient. We have already seen the model for the wireless channel, that is the model of our 

wireless channel is given as,  
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that is our wireless model or a wireless system model or wireless system model is given as 

YK equals H times XK + VK where as we have already said and we have described it in the 

previous model is that YK is your observation, the outputs of, the output at the receiver. H is 

your channel coefficient X is the transmitted pilot symbol, your X is the transmitted pilot 

symbol and VK is the noise. VK is the noise. So, we have this model YK equals H times XK 

+ VK in the wireless system. 

Alright, and this describe the input output model of a wireless communication system. For 

instance, let us say we have a simple base station and the mobile receiver that is a mobile, I 

have for instance, this kind of represents a model where I have a wireless base station which 

is transmitting on the downlink to a mobile.  
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So this is my wireless base station which is the transmitter and the downlink, let us say it is 

transmitting to a mobile and therefore I have the transmitted signal which is XK, the received 

signal which is YK at the mobile, channel coefficient which is H and basically also we have 

additive noise VK at the mobile. So, basically this is my mobile and this is my base station 

and this is basically a simple wireless downlink scenario. 

This is a simple wireless downlink scenario where we have said, we are saying that basically 

a base station is transmitting to a mobile, the base station transmits the symbol XK that 

travels through the channel with channel coefficient H which is represented by the channel 

coefficient H and the received symbol at the mobile is given is denoted by YK and also there 

is additive noise VK at the receiver, this is known as the downlink scenario because the base 

station had the is transmitting and the mobile is receiving. 

Corresponding when a mobile is transmitting and the base station is receiving, you have the 

uplink scenario and also the transmission, the corresponding system model for uplink 

scenario is symmetric where XK is the transmitted symbol by the mobile and YK is the 

received symbol at the base station. So, basically this can be used to estimate the channel 

coefficient, the procedure can be used to estimate the channel coefficient both at the mobile 

in the downlink and also at the base station in the uplink. Alright, so now let us look at a 

simple example, let us take some simple numbers to understand this paradigm better, alright. 
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So, we said VK the additive Gaussian noise and in previous modules, we have also assumed 

VK to be the 0 mean, if you remember, VK is 0 mean symmetric complex Gaussian noise 

with variance Sigma square equals 3 DB. So, this is 0 mean symmetric complex Gaussian 

noise with variance given by 3 DB alright. So, VK we are saying is complex additive 

complex Gaussian noise is a symmetric and has a 0 mean and it has a variance of 3 DB. 

Alright. Okay.  
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And also now let the transmitted pilot symbols be given as, let the transmitted… Remember 

we have pilot symbols being transmitted for channel estimation, so let the transmitted pilot 



symbols be, the transmitted pilot symbols are X1 equals 1+ J, X2 equals 1 - J, X3 equals 2 - J 

and X4 equals 1+ 2J. 

So, these are the transmitted pilot symbols, in fact we have 4 transmitted we have 4 

transmitted pilot symbols that is X1, X2, X3, X4, these are the 4 transmitted pilot symbols on 

the downlink which are transmitted by the base station on the downlink, alright, for the 

purpose of channel estimation on the downlink, that is the channel, the downlink channel is 

estimated at the mobile. So, we have 4 transmitted by the symbol and in fact what we did is 

we stack these 4 pilot symbols as a pilot better. 
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That is we have X bar which is if you remember your pilot vector.  
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So, the pilot vector X bar is now given as 1+ J, 1 - J, 2 - J, 1+ 2J, these are the transmitted 

pilot symbols, this is basically the pilot vector. This is basically a pilot vector.  
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Now let the corresponding received symbols, let the corresponding received outputs or pilot 

outputs, we said the received outputs or the outputs corresponding to the transmitted pilot 

symbols which are also known as a pilot outputs are given as Y1 equals 3+ 5J, Y2 equals -5 - 

3J, Y3 equals 2+ 3J and Y4 equals -3 - 2J. So, these are the corresponding, 4 corresponding 

pilot outputs, so what do we have, we have 4 transported pilot symbols X1, X2, X3 and X4 

which we have stacked to form the pilot vector X bar corresponding to each of the pilot 



symbols transmitted pilot symbols on the downlink we have the corresponding received pilot 

output or the observed pilot output Y1, Y2, Y3, Y4 at the mobile on the downlink and now I 

can again stack these received pilot outputs as a vector to form the output pilot vector or the 

output symbol vector Y bar. 
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Okay, so now I am going to stack these pilot output Y1, Y2, Y3, Y4 and that gives me, that 

basically your output vector or basically your pilot output vector. Since these are the outputs 

corresponding to the pilot symbols, it is automatically understood that this is the pilot output 

vector Y bar, that is this is denoted by Y bar.  
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So, writing this explicitly my Y bar is going to be 3+ 5J -5 - 3J 2 + 3J and -3 - , -3 - 2J and 

this is basically your observation vector, output pilot vector, output vector, also your 

observation vector. You can call it by any name. 

And now therefore we have the transmitted pilot vector X bar, we have the observation vector 

Y bar, alright. And notice that both these vectors have complex entries, therefore they are 

complex in nature. Therefore the scenario that we are considering is the estimation of a 

complex baseband channel coefficient. Remember the framework that we have developed, 

we said, can also be estimated to a realistic scenario by the channel coefficient that is H is a 

complex quantity and this arises because we are considering the complex, we are considering 

a complex baseband channel coefficient H, that basically represents the complex baseband 

transmission model of the wireless systems of the wireless channel between the transmitter 

which is the base station and the receiver which is the mobile for the downlink. 

So we are considering a complex baseband transmission model and correspondingly we have 

the complex channel coefficient H and naturally we also have complex quantity such as the 

complex transmit pilot vector which is X bar, the complex output vector or the complex 

observation vector of Y bar and also complex additive white Gaussian noise at the receiver. 

So, we are considering the framework for the estimation of a complex baseband channel 

coefficient H. Okay.  
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And as we have derived the expression, the estimate of the complex channel coefficient H hat 

equals X bar Hermitian Y bar divided by Norm X bar square. Alright. So this is the estimate 



of the complex, remember, this is the estimate of the complex baseband channel coefficient. 

This is the estimate of the complex baseband channel coefficient and this is a complex 

parameter. Naturally, this is a complex parameter and therefore let us compute the quantities 

one by one. 
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I have Norm X bar square which is the norm square of the pilot vector that is given as 

magnitude of 1+ J square + magnitude of 1 - J square + magnitude of 2 - J square + 

magnitude 1+ 2J square which is basically 2 +2+5+5 which is equal to 14, this is magnitude 

norm of a bar square that is we have derived the norm of a bar square which is a sum of the 

magnitude of, sum of the squares of the magnitudes of each of the components of this 

complex vector, this we have derived as basically equal to 14.  
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Now let us derive the other quantity which is X bar Hermitian Y bar which is the numerator, 

therefore X bar Hermitian Y bar, this is basically equal to the conjugate transpose of X which 

is 1 - J. That you take X bar the, take the transpose of the vector and take the conjugate of 

each element because X bar Hermitian denotes the conjugate transpose of the vector 2+ J and 

1 - 2J times the product, that is this is X bar Hermitian, this is X bar Hermitian which is 

basically we said take X bar transpose and then take the conjugate and then take the X bar 

transpose, transpose of the vector and conjugate. 

And then of course we have the observation vector Y bar which is 3+ 5J, 3 + 5J -5-3 - 3J, 2+ 

3J -3 - 2J, which I can write as…  
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now taking the sums, well 1st I am going to write the real part, the real part turns out to be 

3+5-5+3+4-3-3-4, this is the real part + the imaginary part which is -3+5-5-3+2+6+6-2 times 

J, you can check this through computation of X bar Hermitian Y and therefore this is equal to 

0, real part is 0+ imaginary part 6J. So, this is basically X bar Hermitian, this is basically your 

X bar Hermitian Y bar and therefore now we have computed both the quantities, we have 

computed the numerator, that is X bar Hermitian Y bar and we have also computed the 

denominator, that is norm X bar square. Which is also basically X bar Hermitian X bar, 

remember, Norm X bar square is also X bar Hermitian X bar.  
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Therefore the estimate of the complex channel coefficient H hat equals X bar Hermitian Y 

bar divided by Norm X bar square which is basically equal to your X bar Hermitian Y bar 

divided by X bar Hermitian X bar and this is basically equal to, well X bar Hermitian Y bar 

equals 6J Norm X bar square is basically we have already calculated this, this is equal to 14, 

so basically the channel estimate X H hat is equal to, that is the complex baseband channel 

estimate H hat equals 6 divided by 14 times J. 
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This is the estimate of the complex baseband channel coefficient. This is the estimate of the 

complex baseband channel coefficient. So, we have derived the expression for the estimate, 

we have computed the estimate of the complex baseband channel coefficient and H hat equals 

X bar Hermitian Y bar divided by Norm X bar square which is equal to 6J divided by 14, 

therefore the estimate is 6 divided by 14 times J. And now let us also compute the the 

variance of the channel estimate,  
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of course we know that the expected value of the general estimate is basically the true 

channel underlying underlying true unknown channel itself because we have said that the ML 

estimate, the ML channel estimate is unbiased. 

Let us now compute the variance of this computed channel estimate and we have said that the 

variance of the general estimate, that is what we have computed the previous module, that is 

expected value of magnitude H hat - H whole square, that is average value of the square of 

the deviation, remember this is equal to Sigma square divided by Norm X bar square, it is 

already been given that the DB noise variance, that is 10 log 10 Sigma square, what is this, 

this is your DB noise variance. Noise variance or noise power DB noise power or DB noise 

variance equals 3 DB,  
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so 10 log to the base 10 Sigma square equals 3 which basically implies that Sigma square 

equals stand to the power of 0 .3 which is equal to 2.  

So, the noise variance Sigma square equals 2 which means the variance of the channel 

estimate, therefore we have expected value of magnitude H hat - H whole square which is 

equal to Sigma square divided by Norm X bar square which is equal to 2 divided by 14, 

which is basically 1 divided by 7, so this quantity is basically 1 divided by 7.  
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This quantity is basically the variance of the complex baseband channel estimate. This is 

variance of the complex baseband channel estimate. Further, so we have computed the 



variance of the complex baseband channel estimate and we are saying that is 1 over 7, further 

remember we are assuming 0 mean symmetric complex Gaussian noise of various 3 DB, that 

is of power 2. Which means because the noise is symmetric, a complex Gaussian symmetric, 

therefore it also means as we have proved in the previous modules that the estimate of the 

real and imaginary parts are basically uncorrelated, estimate that is errors in the estimate of 

the real and imaginary parts are uncorrelated. Alright. 

Also both of them have an equal variance which is half of the total variance of the complex 

parameter.  
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Therefore, since and finally this also implies, further we can say, since noise is symmetric 

complex, Gaussian, this also basically implies that you are variance of real part of the channel 

estimate is equal to the variance of the imaginary part, variance of the imaginary part of the 

estimate and that is equal to basically half of the total variance,  
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half Sigma square divided by Norm X bar square which is equal to half 2 divided by 14 

equals 1 divided by 14, so basically this is the you are variance of the real and imaginary part. 

So, what we have done, we have seen a simple example in which the variance of the estimate 

of the complex parameter, the net variance of the estimate of the complex parameter is 

basically 1 over 7 and the variance of each of the real and imaginary, the variances of each of 

the real and imaginary parts are equal, are equal to basically half of this net variance, that is 

half of basically 1 over 7, that is basically 1 by 14.  

So, what we have seen in this module is we have seen a simple example of a channel 

estimation procedure in action when considering the downlink Wireless scenario with the 

base station is transmitting pilot symbols, the mobile is observing the corresponding pilot 

symbols, pilot outputs, with knowledge of the transmitted pilot symbols and also with the 

corresponding received pilot outputs, one can compute the channel estimate at at the receiver 

which in this case is the mobile which is receiving the symbols on the downlink.  

Alright, so we have seen and in fact we are considering a complex baseband transmission 

model in which all the quantities are complex, that is the transmitted pilot symbols, the 

received pilot outputs and the noise samples at the receiver, all the quantities and also for 

importantly the channel coefficient H is a complex baseband channel coefficient.  

So, corresponding to the simple example with the transmission of 4 pilot symbols and 4 

correspondingly received pilot outputs, we have computed the channel estimate, that is 



estimate of the complex baseband channel coefficient H which is denoted by H hat and also 

not only that, more importantly we have characterised this computed estimate in terms of the 

variance. We have computed the variance of the estimate of this complex baseband channel 

coefficient and also the variances of each of the real and imaginary components of this 

complex baseband channel coefficient. So this example sort of comprehensively illustrates 

this process of channel estimation, the scheme for maximum likelihood channel estimation in 

a wireless system. So, we will stop this model here and continue with other aspects in 

subsequent modules. Thank you very much. 

 


