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Hello, welcome to another module in this massive open online course on probability and random 

variables for wireless communications. In the previous model we have looked at various 

concepts of probability. In this module, let us start looking at another new concept or a new 

result which is very important in the context of communication. This is the Bayes Theorem. 
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 So let us look, in this module, let us start looking at Bayes Theorem. For Bayes Theorem, what 

we would like to do is we would like to consider  the sample space, S. I would like to consider 2 

events. Consider 2 events, A0 and A1, these are basically 2 events. And these, both A0 and A1 

belong to the sample space S such that 

A0 ∪ A1 = S 

 And A0, A1 are mutually exclusive. That is,  

A0 ∩ A1 = ∅ 

 

So we are considering 2 events, A0 and A1 in our sample space S such that A0 ∪ A1 that is the 

union of these 2 events is equal to the entire sample space, S and these 2 events A0 and A1 are 



mutually exclusive that is A0 ∩ A1 is the null set or null event, ∅. Such events, A0 and A1 are 

known as mutually exclusive and exhaustive.  

 

So these events, A0, A1 are mutually exclusive and exhaustive. Exhaustive meaning, their union 

spans the entire sample space, S and while their intersection is the null event. Therefore these 

events are mutually exclusive and exhaustive. 
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 Now let us consider another event B. Let us consider an event B in the sample space, S. Now 

you can see, this part is B ∩ A0 and this part is B ∩ A1. A0 now you can see clearly, B ∩ A0 and 

B ∩ A1 are also mutually exclusive. Further, B ∩ A0 and B ∩ A1 together span B or together, 

the union of these 2 is B. 



 

Alright! So we can see, for any set B, B ∩ A0, B ∩ A1 are mutually exclusive events that is their 

intersection is ∅ or the null event. Further,  

(B ∩ A0) ∪ (B ∩ A1) = B 

Alright ! So we are saying that for any event B, we have B ∩ A0 and B ∩ A1 are mutually 

exclusive. That is, their intersection is a null event and (B ∩ A0) ∪ (B ∩ A1) = B. 
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Therefore, if I now look at the probability of B, so now, 

B = (B ∩ A0) ∪ (B ∩ A1)  

 



Therefore, 

P(B) = P(B ∩ A0) +  P(B ∩ A1)  

 

because B ∩ A0 and B ∩ A1 are mutually exclusive. Now again we know that from the basic 

definition of conditional probability, we had already shown that, 

P(B ∩ A0) = P(B|A0).P(A0) 

P(B ∩ A1) = P(B|A1).P(A1) 

We know from the definition, from our conditional probability module that, the probability of B 

intersection -  

P(B ∩ A0) = P(B|A0).P(A0) 

P(B ∩ A1) = P(B|A1).P(A1) 
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Therefore, substituting these in the expression above, we have the total probability, 

P(B) = P(B|A0).P(A) + P(B|A1).P(A1) 

So the probability of B is the probability B given A0 times probability A0 plus probability B 

given A1 times the probability of A1. 
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Now, we also know again that, 

P(B ∩ A0) = P(B|A0).P(A0) 

= P(A0|B).P(B) 

Therefore from this, what I have is interestingly I have from this. This implies that, 



P(A0|B) =  
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Now what I am going to do here is I am going to substitute the expression of probability of B 

from the previous page and therefore what I have is this is equal to 
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… 

P(A0|B) =  
             

                           
 



This is the expression for P(A0|B). So we have, probability of A0 given B equals probability of B 

given A0 times probability of A0 divided by the probability of B given A0 times p(A0) + p(B) 

given A1 times the p(A1). Right? 
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Similarly, I can derive the expression for p(A1 | B). It is given similar to as above,  

P(A1|B) =  
             

                             
 

 

As A0 and A1 are mutually exclusive and exhaustive events. Therefore 

 

P(A0|B)+P(A1|B)= 1 
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 And these quantities here, these quantities that we have calculated here, so this is basically the 

Bayes theorem. Right? Now these quantities here, the probabilities of A0 given B and the 

probabilities of A1 given B: these quantities are very important in the context of communication. 

These are known as Aposteriori probabilities. These quantities are very important in the context 

of communication.  

 

The probabilities P(A0|B) and P(A1|B), are known as Aposteriori probability. And we are going 

to introduce an example later which will clarify the application of these. Aposteriori probabilities 

can now be computed using Bayes Theorem. 
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 The expressions that you see for the Aposteriori probabilities that you see, this is nothing but 

this is our Bayes Theorem. Our Bayes theorem gives an expression for the Aposteriori 

probabilities. The quantities, P(A0), P(A1): are known as the prior probabilities and the quantities, 

P(B|A0) and P(B|A1), are called the likelihoods.  

 

All of these are important terminologies in the context of communication or wireless 

communication. So if A0, A1 are mutually exclusive and mutually exhaustive, the Bayes gives 

us a very useful relation to calculate the Aposteriori probabilities, P(A0|B) and P(A1|B) in terms 

of the prior probabilities P(A0), P(A1) and the likelihoods, P(B|A0) and P(B|A1).  

 

And this is a very important result and we are going to demonstrate an application of this shortly 

in the context of the MAP principle or the maximum Aposteriori probability receiver but before 

we do that, let us extend this Bayes Theorem to a general case with N mutually exclusive and 

exhaustive events, Ai.  
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So now, let us extend this to a general version of the Bayes Theorem. So let us now state a 

generalised version of or a general version of Bayes Theorem where we now consider a sample 

space, S. Let us now consider the sample space, S which is divided into N mutually exclusive 

and exhaustive. So what I have over here is, I have my sample space, S and A0, A1 up to AN-1. 

These are N events which belong to S. Further, A0, A1 up to AN-1 are mutually exclusive.  

 

⇒ Ai∩Aj =∅, ∀ i≠j 

 

 

That is, we have the property that, I have N events,  

A0, A1 …. AN-1, these are mutually exclusive implying that if I take any 2 events, Ai and Aj, Ai 

intersection Aj is the null event that is phi.  
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Further, 

A0∪A1∪       ∪AN-1= S  

This is the exhaustive property.  

 

Exhaustive implying that the union of all these events is this entire sample space and mutually 

exclusive implying that if you take any 2 events, Ai and Aj, their intersection is the null event.  

 

Basically, in terms of set theory, we say the sets of events, A0, A1 …. AN-1 are a partition of the 

entire sample space, S. That is, their union’s spans the entire sample space, S and these different 

events or sides are disjoint. That is, if I take any 2 sets, their intersection is the empty set. These 

are mutually exclusive and exhaustive events. 
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And now the Bayes Theorem for the Aposteriori probabilities, Bayes theorem gives the 

Aposteriori probability similar to what we have seen before, P of Ai given B is given as  

 

         
             

              
   
   

 

 

and this is the result for the Bayes Theorem. 
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And also, therefore, as we have also seen before, summation of, it is easy to see that the 

summation of j=0 to N - 1 or i=0 to N - 1, for P(Ai|B) is equal to 1. Further, these quantity’s, 

P(Ai|B), are the Aposteriori probabilities. Remember these are the Aposteriori probabilities. The 

probabilities of P(Ai) are the prior probabilities. 
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And the P(B| Ai), are the likelihoods.  

 

So this is a general expression for the Bayes Theorem. It expresses for the Aposteriori 

probabilities in terms of the prior probabilities and the likelihoods. We said that this Bayes 

Theorem or this Bayes result is a very important principle in communications. This is used to 

construct what we call that as the maximum Aposteriori, the MAP receiver which is something 

that we are going to look at in our next module. So I would like to conclude this module here. 

Thank you very much. 


