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Hello, welcome to another module in this massive open online course on probability and random 

variables for wireless communications. So we are talking about random processes and in the 

previous modules, we have seen the properties of a wide sense stationary random process and 

also more importantly we have seen the definition of power spectral density of the power 

spectral density of a wide sense stationary random process and an interesting application in the 

context of the bandwidth required for the transmission of a wireless signal.  

 

That is the spectrum that is required for transmission of a wireless signal. So let us continue our 

discussion on random processes and let us today look at the transmission of a random process 

through an LTI system. That is what happens when a random process is input to an LTI, or the 

linear time invariant system. Okay?  
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So in today’s lecture let us start looking at the transmission, another key property that is the 

transmission of a random process through an LTI system. where what is the meaning of LTI? 

LTI denotes obviously most of you would be familiar with this. LTI denotes a linear time 



invariant system. So what we will be considering? Let us consider a wide sense stationary 

random process X(t).  
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So let us start by considering X(t) which is wide sense stationary random process. So X(t) is a 

basic wide sense stationary random process. And what we’re saying is this random process X(t) 

is an input to an LTI or a linear time invariant system and remember every linear time invariant 

system is characterized by impulse response. That is the key aspect of an LTI system. That is 

every linear time invariant system is characterized by the impulse response. Let us denote this by 

h.  
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So we are saying, this wide sense stationary random process X(t) is input to a linear time 

invariant system with impulse response h(t) and that I want to represent that schematically over 

here. So I have my LTI system. This is the input to the LTI system. So, X(t) is the input to LTI 

system, Y(t) is the output of the LTI system. So this is my LTI system which is characterized by 

the impulse response h(t). 

 

Remember, every LTI system is characterized by h(t). So what is h(t)? h(t) is the impulse 

impulse response of this system. So this is an LTI system and this is a linear time invariant 

system X(t). What is X(t)? X(t) is the input, Y(t) is the output. X(t) is the input to the LTI 

system, Y(t) is the output to the LTI system and the LTI system is characterized by the impulse 

response h(t). That is, if the impulse δ(t) is applied as an input to this LTI system than the output 

will be h(t). That is the meaning of the impulse response. That is, impulse response is nothing but 

a response to the impulse input of this system.  
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And therefore, remember for an LTI system, the output Y(t) for any signal input signal X(t), the 

output Y(t) is the signal X(t) convolved with impulse response  h(t).  

Y(t) = X(t) ∗ h(t) 

This is your basic convolution operator. So the output of this system Y(t) is the input X(t) of the 

system convolved with the impulse response h(t) of this system. And the convolution operator 

can be represented in the time domain as follows.  
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So I have, 

Y(t) =              
 

  
 

This is basically the convolution. And also we are given that this X(t), this is a random process. 

This is random in nature. Further it is a function of time. Now, Y(t) is therefore, it is random. 

Since X(t) is random, Y(t) is random. Also naturally, Y(t), you can see, this is a function of time.  

 

That is, it is random. It is a function of time. Y(t) is random because X(t) is random. That is, the 

input is random to the LTI system. So naturally, the output Y(t) is random. Further, it is a 

function of time. That is, it is index pattern. Therefore, Y(t) is also a random process.  
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And therefore, now what we would like to do is we would like to examine the properties. We 

would like to examine the properties of this output random process Y(t). What are the properties 

of this output random process Y(t)? In particular, we would like to ask the question, is Y(t) wide 

sense stationary? If Y(t) is wide sense stationary then what is the mean and what is the 

autocorrelation of Y(t)? 
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So we would like to answer the question, is this output random process, Y(t) is this also wide 

sense stationary? It is not a given that it is going to be wide sense stationarity. We have to 

demonstrate that is, if it is wide sense stationary which is what we are going to do next. 
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So now, let us examine Y(t). 1
st
, we have shown that Y(t) is a random process because it is a 

function of time so Y(t) is a random process. And now, we would like to ask the question, is Y(t)  

wide sense stationary? Is it WSS or wide sense stationary? So let us start with the mean or 

average. The average like the time average μY(t), which is the expected value of this random 

process Y(t) is defined as follows. That is, 

μY(t) = E{Y(t)} 

= E{              
 

  
 } 

So remember, Y(t) is the convolution of X(t) and h(t). And now we’re taking the expected value 

of this whole thing. We’re taking the expected value of this convolution between the random 

process X(t) and the impulse response, h(t).  
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And therefore now remember since the expectation operator is linear, I can move the expectation 

operator inside this integral. So this becomes, 

=                  
 

  
  

 

 Now remember that X(t) is wide sense stationary. Therefore it is stationary in the mean which 

means at any time       , the mean of this is constant. Therefore this quantity is equal to μX. It 

does not depend on time.  

=           
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And now, since μX is a constant, I can bring this outside. 

E{Y(t)} = μX        
 

  
 

 That is expected value of this random process Y(t). This does not depend upon time. There is no 

time, t. It is not a function of time.  

Therefore, the mean of this random process Y(t) which is the output of the LTI system is 

constant. Therefore, this is stationary in the mean.  
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Therefore, this is equal to a constant, that is μY. Therefore, output random process, Y(t) is 

stationary in the mean.  

 



And what do we have? We have the E{Y(t)} =  μY which is basically a constant. Expected value 

of Y(t) this basically demonstrated that for this output random process, the expected value of 

Y(t) is basically μY which is a constant. It does not depend on time. Therefore the output random 

process Y(t) is stationary in the mean. Let us now therefore look at the autocorrelation of this 

random process Y(t).  
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So you are demonstrated that it is stationary in the mean. Let us now examine the autocorrelation 

of Y(t). 
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 We have, 

Y(t) =              
 

  
 

Y(t+ τ) =                
 

  
 

 

 

Now I have to look at what is the autocorrelation? Autocorrelation is, 



E{Y(t) Y(t+ τ) } = E { (             
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And, 

=                                   
 

  
 

And remember, X(t) the random process, is a wide sense stationary random process. Therefore 

the autocorrelation depends only on the timeshift or the time difference between these 2 time 

instances.  
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Therefore, since X(t) is wide sense stationary. This is autocorrelation at T1 =    , T2 = 

     . 
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So it only depends on, the timeshift between these 2 instants T2 -T1 between these 2 instants 

which is equal to –  

T2 – T1 =     +   

 

Therefore,  

                           +    

the expected value of                depends only on the timeshift between these 2 time 

instants. Therefore, it is         +    because X is a wide sense stationary random process.  
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And now, substituting this in here, I have, 

E{Y(t) Y(t+ τ) } =                             
 

  
 

 

Now you can see, this whole thing depends only on the shift,  . That is E{Y(t) Y(t+ τ) } depends 

only on  , that is the timeshift.  
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Therefore, I can denote this by        , which is the autocorrelation Y which depends only on 

the timeshift,  .  

Therefore, it follows that Y(t) is stationary in the autocorrelation therefore it follows that you get 

this, E{Y(t) Y(t+ τ)} depends only on the timeshift  . Therefore it is stationary on the 

autocorrelation. Previously, we have shown that Y(t) is stationary in the mean. Therefore, which 

means therefore, these 2 together demonstrate that Y(t) is also a wide sense stationary random 

process. 
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 Therefore, Y(t) is WSS. So therefore let me write this again here. Therefore, Y(t) is a wide sense 

stationary random process.  
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Now further look at this. Let me read this again. I have the autocorrelation        is equal to – 

E{Y(t) Y(t+ τ) } =        

=                             
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Now let us do a simple thing. 
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 Let us replace alpha by   . So let us do the substitution.    =   . So,  

d   =     

So I can write this thing as, 
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=                                  
 

  
 

Where                
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 And now you can see from this. From this expression, 

                         ∗      ∗       

So this you can clearly see is the output autocorrelation that is – 

              ∗      ∗       
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This is the relation I have in the time domain. Not exactly the time domain but the shift domain, 

the domain  . That is the convolution in   domain. These are your basic convolution operators. 

Now let us look at what happens in the frequency domain.  

To understand what happens in the frequency domain, let us look at what is the frequency 

response of      . 
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Now if I look at the frequency response of      . Let me call that      . That is, 

     . =                 
 

  
 

  



This is the Fourier transform of      .  
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Now I substitute, 

        

          

     . =                  
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Now if I consider   *(f) , that is equal to – 

  *(f) = (                  
 

  
 )* 

=   ∗                
 

  
 

H(f) =                   
 

  
 

 but we’re considering a system with a real impulse response h(t). 
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Therefore,  

             <->   (f) = H*(f) 

       <->  H*(f) 

Why is that the case?  
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Because we have shown that   *(f) = H(f). 
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Now, if I substitute this in this, I have        whose Fourier transform is the power spectral 

density of X.  
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That is SXX(f). Remember,  

SYY(f) = SXX(f) X H(f) X H*(f) 

              ∗      ∗       

 

The frequency response of the LTI system that is the Fourier transform of the impulse response 

H(f) times H*(F). 
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Therefore we can write,  

SYY(f)  = SXX(f) . |H(f)|2 

So this is my output PSD. This is the PSD of the output. This is the input PSD. Remember, PSD 

stands for power spectral density. 

So what we have shown is that the magnitude that is the output power spectral density SYY(f)  is 

equal to the input power spectral density H(f) times magnitude square of the Fourier transform of 

the channel frequency response. That is |H(f)|2 and this is a very interesting result and a very 

important result which relates the input wide sense stationary random process to the output wide 

sense stationary random process. So we have demonstrated something very interesting. We have 

considered the transmission of a random process, wide sense stationary random process X(t) 

through an LTI system which is characterized by an impulse response h(t).  

 

We have shown that the output random process Y of this LTI system is itself wide sense 

stationary with stationary in the mean, stationary in the autocorrelation and further, we have 

demonstrated something very interesting that is the output power spectral density SYY(f)  is the 

input power spectral density SXX(f)  times |H(f)|2 where H(f) is the frequency response of the LTI 

system. That is H(f) is the Fourier transform of the impulse response, h(t) of the LTI system. So 

we will stop this module here and we will look at other applications of this in the subsequent 

what use. Thank you very much. 


