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Hello, welcome to another module in this massive open online course on probability and 

random variables for wireless communication. In the previous modules, we have looked at 

the Gaussian random variables and properties of Gaussian random variables. Specially the 

linear combination of Gaussian random variables which results in another Gaussian random 

variable. Let us look today at an application, at a novel application of this property of 

Gaussian random variables from wireless communication in the context of antenna arrays or 

array processing or beamforming.  
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So, let me consider a receiver with multiple antennas, so what I am drawing here is a wireless 

receiver with multiple antennas, such that the antennas are arranged in a line or these 

antennas are arranged linearly i.e. the spacing between antenna is constant. 

Spacing between antennas = d. 

So, this is the linear array of antenna. 

Now that each antenna is spaced at a distance d from the next antenna, so the spacing 

between these antennas is uniform and this array of antennas, is known as uniform linear 

array. Such a spacing of antenna, i.e. antenna configuration, is known as a uniform linear 

array and in this new uniform linear array, let us consider a signal which is arriving at an 

angle  . 

This angle θ, this is known as the angle of arrival. So, I am considering a uniform linear 

antenna array with antenna spacing d and the signal which is arriving at an angle of θ with the 

vertical, this is known as the angle of arrival of the signal. Okay. And let Yi denote the signal 

at the i
th

 antenna, so which means Y1 is the signal at the 1
st
 antenna, Y2 is the signal at the 2

nd
 

antenna and so on if we have L antenna, so we are considering a scenario with L antennas 

which implies that YL is the signal at the L
th 

antenna. So what I am saying is that Yi is the 

signal received at the i
th

 antenna and the spacing between the antennas is d. 
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θ is the angle of arrival.  

Now let us write the system model for this uniform linear array. The system model for this 

uniform linear array is given as follows.  
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This system follows the model for uniform linear array given as the signal received at the i
th

 

antenna is given as 

                 

where Wn is the Gaussian noise. 

Now let us substitute the different values of i  

          

        

            

             

. 

. 

. 

                 

 

 



 

Okay, so this is the system model. 

We are saying the signal Yi received that i
th

 antenna is 

                 

 therefore now you can see therefore for each of the received signal, if you remove the noise, 

you see that the received signal at the 1
st
 antenna is  , 2

nd
 antenna, it is       at the 3

rd
 

antenna, it is       , so the signal at each successive receive antenna is delayed by a phase 

factor      corresponding to the signal at the previous receive antenna.  

So this signal at each successive receive antenna is delayed by, or has an additional phase 

factor of     .  
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Therefore, this is also known as a phased antenna arrays. This is a phased array. So, as in this 

uniform linear array, the signal at each successive antenna has a phase with respect to the 

signal at the previous antenna, is known as the phased antenna array or simply known as 

phased array. 

So, in this phased array, signal at each successive antenna has a phase difference of      with 

respect to the previous antenna.  

Now, let us look at the signal processing for this phased antenna array. How do we process 

the received signal [Y1, Y2 … YL] in this phase array or in this uniform linear array?  
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Now, before I write the system model, let me describe to you what this angle   is? This angle 

  is related to the angle of arrival θ as 

       

      

 
 

  
   

 
      

where,                                                                        

 (Refer Slide Time: 11:24) 

 



 

Okay, now let us look at signal processing for this phased array. The system model, the 

vector system model for this phased array, is given as 

 
 
 
 
 
 
  

  

 
 
 

   
 
 
 
 
 

 

 
 
 
 
 
 

 
    

 
 
 

          
 
 
 
 
 

   

 
 
 
 
 
 
  

  

 
 
 

   
 
 
 
 
 

  

                                                          =            

Here,                                            

It is as if you are steering the array in the direction of θ. So, I write this system model, i.e. 

received signal vector,  

   =            

Where, 

    

 
 
 
 
 
 
  

  

 
 
 

   
 
 
 
 
 

                                        

                 

                             

                                               

Thus, I have expressed this system model in terms of the array steering vector. 
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Now let us look at the signal processing, so as we have model as- 

   =            

Further, now let us look at the properties of noise as seen in the special case in previous 

module. Consider noise samples W1, W2, …WL to be IID Gaussian, i.e. independent 

identically distributed Gaussian. Remember IID means, independent identically distributed 

Gaussian with 0 mean. That is each Gaussian random variable, each noise sample Wi has 

mean equal to 0. 
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Further, let us assume that each noise sample has power or variance equal to 

      
       

So this is basically your variance or noise power.  

Further we also assume that the noise samples are not independent, i.e. they are uncorrelated, 

so  

      
     

However remember, only in the case of Gaussian, uncorrelated also means that they are 

independent.  

So, we are considering independent identically distributed Gaussian noise samples with  

        

              

                                                                      

               
     

 

(Refer Slide Time: 16:50) 

 



 

Now let us consider the combining of the received samples Y1, Y2, up to YL. So what I am 

going to do is, consider the combiner vector    , 

                   

 
 
 
 
 
 
  

  

 
 
 

   
 
 
 
 
 

 

 This is a vector of size L, and now I am going to form    equals,  

     
      

        
    

Where,   
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Now you can see this is basically nothing but, 
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 So now, I have  

          

As we remember,    is the array steering vector given as, 

   =            

                                                                           

                                                                                                                                           

                                                          

                   

                   

In addition let us say that the transparent signal power is P, that is 

          

 Also, remember the power in the transmitted signal is nothing but the variance of the signal, 

expected value of magnitude X square equals P, let us assume that the transmitted signal 

power is P.  
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Let us now look at what is the signal to noise power ratio of this system. So, we are looking 

at a beam former, we are looking at performing       . From this we have isolated the signal 

part and the noise part. Let us now look at the signal-to-noise power ratio, which is  

     
            

           
 

i.e. the ratio of power in the signal to the power in the noise. 

Here, 

                         
 
        

So, 
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Now let us look at what is the noise power of this system. Now previously we have seen and 

this is when our properties of Gaussian will come handy, remember the noise is given as 

              

 which is a linear combination of Gaussian random variable. Previously we have seen that if 

W1, W2, …, WL are Gaussian and if they are IID Gaussian with 0 mean, we have 

            

i.e. this basically is 0 mean noise.  
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Further the noise variance of the resulting noise power, i.e. 
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Therefore SNR becomes, 

 

     
           

 
       

       
 

 

Therefore this is the expression for general beam former A and this is the expression we 

derived for the SNR at the output. 

Now we want to find the beamforming vector    or the beamforming weights A1, A2, …, AL 

which will maximise the SNR at the output of this uniform linear array or this phased array 

i.e. we want to find the beam former A bar which will yield the maximum SNR so that we 

enhance the signal to noise power ratio at the output. 
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So, we want to find we want to find    which maximizes SNR at the output. Now you can see 

from this expression from the Cauchy Schwarz inequality, 
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Therefore the maximum SNR is given as-  

        
       

 
 

  
 

This is what we derived from the Cauchy Schwarz inequality. 
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Now let us see what this maximum SNR is. As we showed,       is  
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Therefore the maximum SNR, 
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Remember, without the array, the initial signal to noise power ratio is simply  

                  
 

  
 

 So using this phased array, i.e. uniform linear array, we are able to multiply this signal to 

noise power ratio by a factor of L. So, this factor of L, where L is the number of antennas is 

gain in the signal to noise power ratio at the output of this uniform linear array. Thus this is 

known as the array gain.  



 

So, we are able to multiply the initial SNR by the factor of L, known as the array gain of the 

system and therefore the uniform linear array is a very important or is a very novel 

technology because it results in the gain of a factor of L in the signal to noise power ratio at 

the receiver. 
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So, what do we have, we have the SNR of the phased array that is SNR of the uniform linear 

array equals L Times initial SNR. What do I mean by the initial SNR? That is initial SNR is  

                             
 

  
 

Thus, i.e. without the phased array, therefore in this we have the gain of L and this is the 

array gain. This is the array gain of the system.  

 

 

Now, how do we choose the weights A1, A2,.., AL, remember from Cauchy Schwarz 

inequality… 
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 if we look at the Cauchy Schwarz inequality, we have  

           
 

              
 
 

Where, equality occurs only when   , that is the combining vector is proportional to the vector 

  . 

The equality occurs when 

             

one way to achieve this Cauchy Schwarz inequality therefore is to set    simply equal to      .  
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Therefore if we choose 

            

for maximum SNR, which is basically  
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 Therefore, now the optimal beam former will be given or optimal combining will be given as  

     
      

        
    

                                                          

And therefore this is the optimal combiner, this basically, you remember is also equal to- 

     
      

        
    

                                                                  
       

              
   

 
 
 
 
 
 
  

  

 
 
 

   
 
 
 
 
 

 

                                                            

 The last relation is also known as optimal combiner which results in the maximum SNR, 

remember what is the maximum SNR,  

         
 

  
 

 

 



 

Thus it is known as the maximal ratio combiner, for this array processing system or this is 

also the matched filter, since it maximizes the ratio of the signal power to the noise power at 

the receiver. Remember, since 

            

i.e. receiver filter is matched to the array steering vector, this is also known as the specially 

matched filter. This is also known as matched filter or as the maximal ratio combiner. 
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Alright, so this is a unique application of the properties of Gaussian in the context of signal 

processing, in the context of wireless communications. What we have said, we have 

considered a multiple receive antennas so, there are L receive antennas with equal antenna 

spacing, that is in turns of a phased array, we have looked at a signal which is arriving at an 

angle of Θ with respect to the vertical, that is angle of arrival Θ, we have considered 

independent identically distributed noise elements at the different receive antennas and we 

have demonstrated that using the maximal ratio combiner or using the optimal beam former 

or the matched filter, one can enhance the signal to noise power ratio in this uniform linear 

array or phased array system by a factor of L, where L is the number of antennas, therefore 

this L is also known as the array gain of the system. 

And this is basically possible because of the coherent combining of the signals received 

across the various receive antennas. That is, the member were performing 

                            , 

that is where inverting the phase of the received signal on each antennas combining them, 

that is the signal combines coherently, where is the noise which is random, the Gaussian 

noise combines incoherently, therefore we are able to enhance the signal to noise power ratio 

by a factor of L and which is the array gain and this is an important property, this 

demonstrates an important application of both signal processing in Wireless Systems and also 

the principal of combination of these Gaussian noise samples across the various receive 

antennas. 



 

 

So, with this let us end this module here, we will look at other aspects in the subsequent 

lectures. Thank you very much. 

 


